

# GLOBAL LEUKEMIA ACADEMY

Bridging Science and Practice: From Newest Clinical Approaches to Real-World Clinical Cases

June 19–20, 2023 – Latin America

Meeting sponsors



SAPTITUDE HEALTH



# Welcome and meeting overview

**Elias Jabbour** 





## **Meet the Faculty**

#### **CO-CHAIR**



Elias Jabbour, MD MD Anderson Cancer Center, Houston, TX, USA

#### **CO-CHAIR**



Naval Daver, MD MD Anderson Cancer Center, Houston, TX, USA

#### FACULTY



Roberta Demichelis, MD Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico



Jae Park, MD Memorial Sloan Kettering Cancer Center, New York, NY, USA



Phillip Scheinberg, MD, PhD Hospital A Beneficência Portuguesa, São Paulo, Brazil



Fabio Santos, MD, PhD Hospital Israelita Albert Einstein, São Paulo, Brazil



## **Objectives of the program**

Understand current treatment patterns for acute leukemias including incorporation of new technologies Uncover when genomic testing is being done for acute leukemias, and how these tests are interpreted and utilized Understand the role of stem cell transplantation in acute leukemias as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring acute leukemias Gain insights into antibodies and bispecifics in ALL: What are they? When and how should they be used? Where is the science going? Discuss the evolving role of ADC therapies in acute leukemias Review promising novel and emerging therapies in acute leukemias

Explore regional challenges in the treatment of acute leukemias across LATAM



#### Day 1: Virtual Plenary Sessions Wednesday, June 19, 2024 5.00 PM – 8.00 PM UTC -5 (Houston) 7.00 PM – 10.00 PM UTC -3 (Brasilia/Buenos Aires)

| Time (UTC -3)      | Title                                                                                                                                                                                                           | Speaker                                                                                                        |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 7.00 рм – 7.10 рм  | Welcome and meeting overview; introduction to the voting system                                                                                                                                                 | Elias Jabbour                                                                                                  |
| 7.10 рм – 7.25 рм  | Latest achievements and developments in ALL and AML                                                                                                                                                             | Elias Jabbour                                                                                                  |
| 7.25 рм – 7.40 рм  | Review of prognostic value of MRD in ALL and AML                                                                                                                                                                | Jae Park                                                                                                       |
| 7.40 рм – 7.50 рм  | Best practices for first-line treatment in ALL                                                                                                                                                                  | Elias Jabbour                                                                                                  |
| 7.50 рм – 8.05 рм  | AYA patients with ALL: What is the current treatment approach for this diverse patient population? Special considerations for adolescents and young adults and how we can use this experience in adult patients | Roberta Demichelis                                                                                             |
| 8.05 рм – 8.35 рм  | <ul> <li>ALL case-based panel discussion</li> <li>Case ALL: elderly/frail (8 min + 5-min discussion)</li> <li>Case ALL: AYA (8 min + 5-min discussion)</li> </ul>                                               | Roberta Demichelis (moderator)<br>• Fausto A. Rios-Olais, MD<br>• Jessica Zalapa, MD<br>Panelists: all faculty |
| 8.35 рм – 8.45 рм  | Break                                                                                                                                                                                                           |                                                                                                                |
| 8.45 рм – 9.10 рм  | Genetic characterization and risk stratification of AML; role of <i>FLT3</i> and <i>IDH</i> in AML and special considerations for young and fit patients                                                        | Naval Daver                                                                                                    |
| 9.10 рм – 9.25 рм  | Therapeutic approaches in high-risk and frail patients with AML                                                                                                                                                 | Philip Scheinberg                                                                                              |
| 9.25 рм – 9.50 рм  | Panel discussion: Open questions in ALL and AML – regional challenges (transplant, CAR T, studies, and other)                                                                                                   | Elias Jabbour and all faculty                                                                                  |
| 9.50 рм – 10.00 рм | Session close                                                                                                                                                                                                   | Elias Jabbour                                                                                                  |



Day 2: Virtual Plenary Sessions Thursday, June 20, 2024 5.00 PM – 8.00 PM UTC -5 (Houston) 7.00 PM – 10.00 PM UTC -3 (Brasilia/Buenos Aires)

| Time (UTC -3)      | Title                                                                                                                                                                                                                                                                                                                                            | Speaker                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 7.00 рм – 7.10 рм  | Welcome to Day 2                                                                                                                                                                                                                                                                                                                                 | Naval Daver                                              |
| 7.10 рм – 7.30 рм  | Current treatment options for relapsed ALL in adult and elderly patients                                                                                                                                                                                                                                                                         | Elias Jabbour                                            |
| 7.30 рм – 7.50 рм  | Long-term safety considerations for leukemias (focus on ALL)                                                                                                                                                                                                                                                                                     | Jae Park                                                 |
| 7.50 рм – 8.10 рм  | Current and future role of transplantation in acute leukemias in LATAM                                                                                                                                                                                                                                                                           | Phillip Scheinberg                                       |
| 8.10 рм – 8.20 рм  | Break                                                                                                                                                                                                                                                                                                                                            |                                                          |
| 8.20 рм – 8.40 рм  | Current treatment options for relapsed AML in adult and elderly patients                                                                                                                                                                                                                                                                         | Fabio Santos                                             |
| 8.40 рм – 9.10 рм  | <ul> <li>AML case-based panel discussion</li> <li>Case AML: young high-risk (8 min + 5-min discussion)</li> <li>Case AML: elderly (10 min) (8 min + 5-min discussion)</li> </ul>                                                                                                                                                                 | Fabio Santos and<br>TBD (case presenters)<br>All faculty |
| 9.10 рм – 9.50 рм  | <ul> <li>Panel discussion: How treatment in first line influences further therapy approaches in ALL and AML</li> <li>Will CAR T and bispecifics change the treatment landscape?</li> <li>Role of HSCT – is it still necessary?</li> <li>What does the future look like? Adoption of therapies and evolving standards of care in LATAM</li> </ul> | Naval Daver and all faculty                              |
| 9.50 рм – 10.00 рм | Session close                                                                                                                                                                                                                                                                                                                                    | Naval Daver                                              |





# Introduction to the voting system

**Elias Jabbour** 







#### In which country do you currently practice?

- A. Argentina
- B. Bolivia
- C. Brazil
- D. Chile
- E. Colombia
- F. Mexico
- G. Peru
- H. Venezuela
- I. Other country in Latin America
- J. Other country outside Latin America





#### Which leukemias do you primarily treat?

- A. AML
- B. ALL
- C. Both





If an elderly patient with Ph-negative ALL tests positive for MRD after doseadjusted Hyper-CVAD induction chemotherapy, what would you advise?

Please assume that you have access to all of these options.

- A. Proceed directly to transplant
- B. Consolidation chemotherapy
- C. Blinatumomab
- D. Inotuzumab ozogamicin
- E. CAR T-cell therapy
- F. Other





#### Which of the following factors are important in assessing patients with AML at diagnosis?

Select all that apply.

- A. Adverse genetic alterations
- B. Age
- C. Comorbidities
- Performance status
- Ε. Prior cytotoxic therapy
- Prior myelodysplasia F. |





## Latest achievements and developments in ALL and AML

**Elias Jabbour** 





## Revumenib MonoRx in R-R KMT2A AML/ALL (AUGMENT 101)

- 94 pts; median age 37 yrs (1.3-75); 78 AML, 16 ALL-MPAL
- Median prior Rxs 2 (1-11); prior SCT 50%
- Efficacy population (phase 2) 57 pts
- CR-CRh 13 (23%); median DOR 6.4 mos. ORR 63%
- Differentiation syndrome 16%; QTC prolongation 14%

## Revumenib + AZA + VEN in Newly Dx Older NPM1/KMT2A AML

- Beat AML trial-- age 60+yrs
- AZA x 7, VEN daily, REV daily (113-163 mg BID)
- 13 Rx—CR 10, CRh-i 3; ORR 13/13 (100%)
- MRD-neg 12/13 (92%)
- 2 relapses; 2 deaths. 1-yr OS 90%

### DSP 5336 (Menin Inhibitor) in R-R AML-ALL

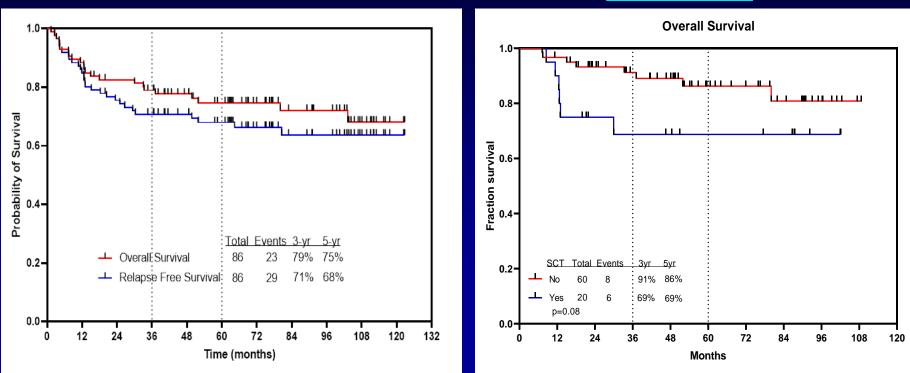
- 58 pts; DSP 40-300 mg BID; 27 pts no azoles, 31 pts with azoles
- AML 93%; median prior Rx 3 (1-9); KMT2A 45%, NPM1 24%
- Responses at >140 mg BID
- KMT2A-NPM1, no prior menin-inhibitors, dose >140 mg BID: ORR 10/22 (45%); CR-CRh 5/22 (23%)

#### JNJ-617 + VEN-AZA in KMT2A-NPM1 R-R AML

- 60 pts; median age 60 yrs (20-82); NPM1 50%, KMT2A 50%. median prior Rx 2 (1-5)
- Rx AZA x 7, VEN x 28, JNJ 15+ mg BID (D4 +)
- JNJ 50+ mg BID (n=34): ORR 27/34 (79%); CR/CRh-i 14/34 (41%)

## SAR 443579 (CD 123-NK Engager) in R-R AML

- 59 pts with RR AML; median age 67 yrs; median prior Rx 2 (1-10)
- SAR 0.75 mg-6 mg/kg Q wk or 2x/wk
- Target dose 1 mg/kg/wk—CR-CRi 5/15 (33%; 4 CR, 1 CRi)


## What Is New in ALL

### HyperCVAD + Ponatinib in Ph+ ALL

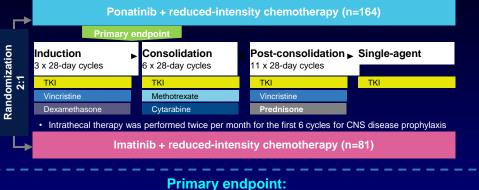
- 86 pts Rx; median age 47 yrs (39-61); median FU 75 mos (16-123)
- CR 68/68 (100%); FCM-MRD negative 85/86 (99%); CMR 84%; 5-yr OS 75%, EFS 68%

**RFS and survival** 

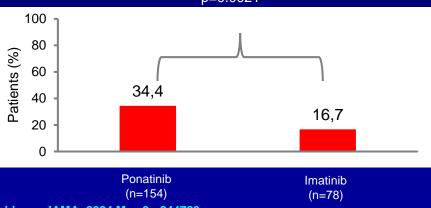
6-month Landmark

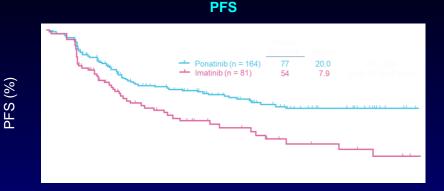


Kantarjian. Am J Haematol 98:493-501;2023

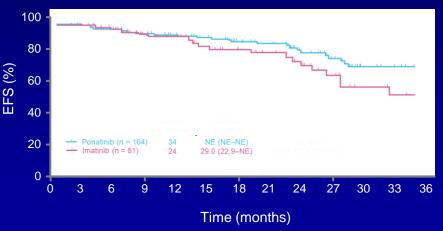

## No Benefit of Allogeneic SCT in Patients With Ph+ ALL Who Achieve CMR

- Propensity score analysis of patients who achieved CMR within 3 months
- Allogeneic SCT → lower risk of relapse but higher NRM
- No impact of SCT on OS or RFS





## **Ponatinib vs Imatinib With Rx in Ph+ ALL: PhALLCON**

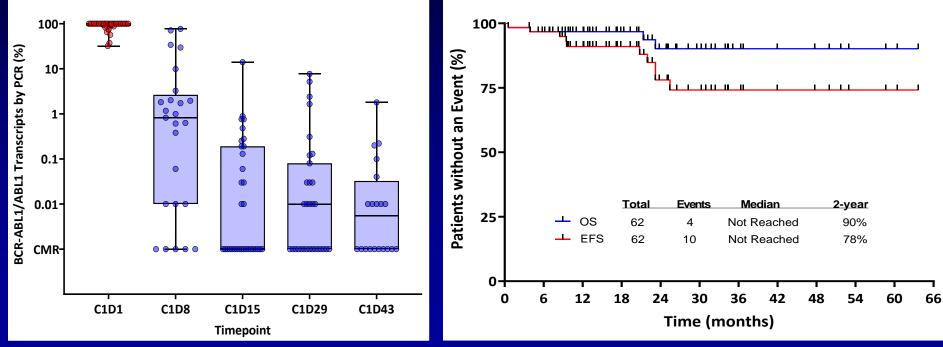
#### Study design




MRD– (MR4) CR at end of induction RR: 2.06 (95% Cl=1.19–3.56) \_p=0.0021






EFS



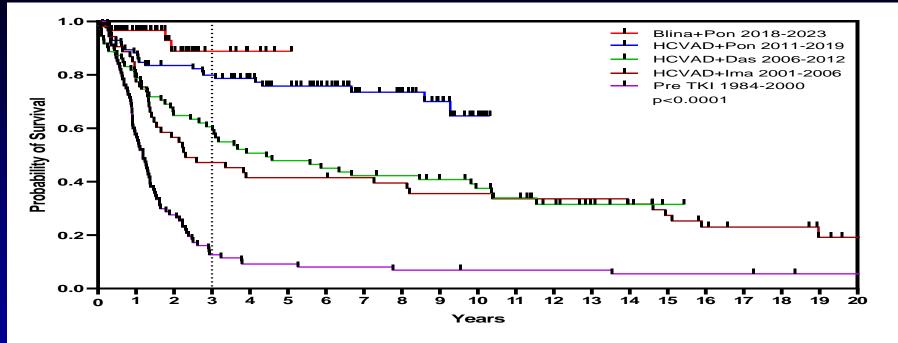
Jabbour. JAMA. 2024 May 9:e244783.

#### Ponatinib and Blinatumomab in Newly Dx Ph+ ALL

- 62 pts Rx with simultaneous ponatinib 30-15 mg/D and blinatumomab x 5 courses. 12-15 ITs
- Only 2 pt had SCT(3%); Median F/U 17 mos
- CR/CRi 98% (CR 95%); CMR 84% (67% after C1); NGS-MRD negativity 94%
- 2-yr EFS 78%, OS 90%. 7 relapses (all p190): 4 CNS, 1 CRLF2+ (Ph-), 2 systemic. 5/7 WBC >75k

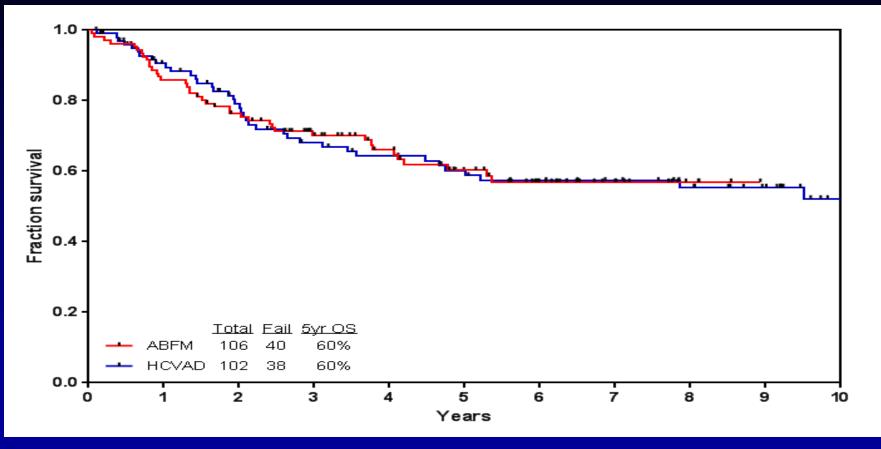


Jabbour. Lancet Haematol. 2023;10(1):e24-e34.


## **Ponatinib vs Dasatinib + Blinatumomab in Ph+ ALL**

| Parameter                       | Pona+Blina<br>(n=62; <mark>5 blina</mark> ) | Dasa+Blina<br>(n=63; <mark>2+blina</mark> ) | Dasa+ Blina<br>(n=24; <mark>3 blina</mark> ) |
|---------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|
| Median age (yrs)                | 58                                          | 54                                          | 73                                           |
| % PCR neg<br>% NGS-clonoSEQ neg | 84<br>94                                    | 93 (+PNQ)                                   | 63                                           |
| % 4-yr OS                       | 90                                          | 82                                          | 75                                           |
| % allo SCT                      | 3                                           | 48                                          | 5                                            |
| Relapses (CNS)                  | 7 (4)                                       | 9 (4)                                       | 8 [3 T315I]                                  |

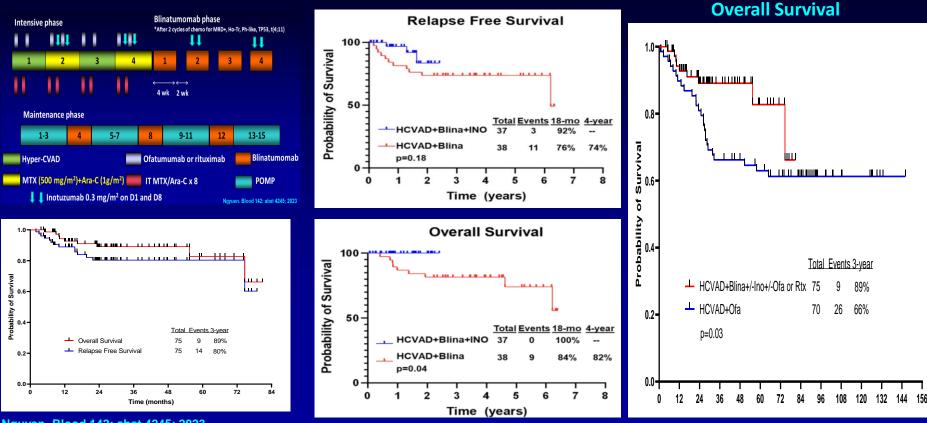
Jabbour. Lancet Haematol. 2023;10(1):e24-e34.


Foa. JCO online, December 23; 2023.

#### Ph+ ALL: Survival by Decade (MDACC 1984-2023)

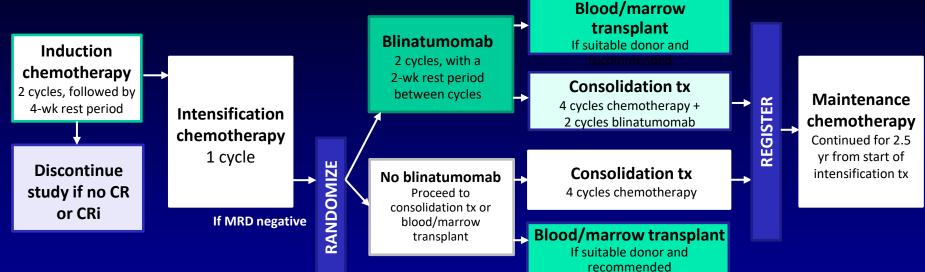


|                        | Total | Events | 3yr OS | 5yr OS | Median      |
|------------------------|-------|--------|--------|--------|-------------|
| Blina+Pon 2018-2022    | 62    | 4      | 89%    |        | Not reached |
| HCVAD+Pon 2011-2019    | 85    | 23     | 80%    | 76%    | Not reached |
| HCVAD+Das 2006-2012    | 71    | 47     | 61%    | 48%    | 53 mos      |
| —— HCVAD+Ima 2001-2006 | 53    | 41     | 47%    | 42%    | 28 mos      |
| —— Pre TKI 1984-2000   | 87    | 83     | 13%    | 9%     | 14 mos      |
| p<0.0001               |       |        |        |        |             |


#### Hyper-CVAD vs ABFM: Overall Survival



## Hyper CVAD-Inotuzumab → Blina in Newly Dx Adult ALL


75 pts; median age 33 yrs (18-59); Median F/U 26 months (1-77)

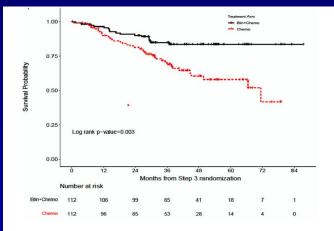
• CR rate 100%; MRD negative 95% (66% at CR); NGS-MRD negative 73%; 60-day mortality 0%; 24 (32%) allo-SCT;

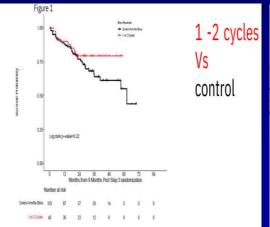


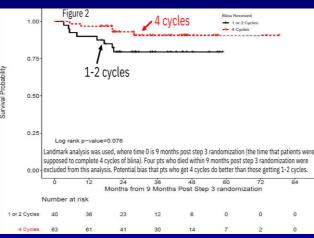
Nguyen. Blood 142: abst 4245; 2023

# E1910 Randomized Phase III Trial: Blina vs SOC as Consolidation in MRD-Negative CR




- Accrual = 488
- US intergroup study
- n = 265/360 (509) patients
- USA, Canada, Israel
- 1:1 randomization

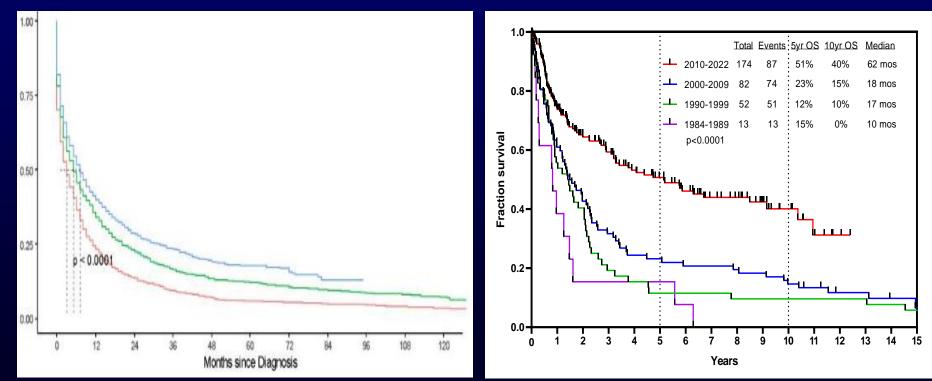

Litzow MR, et al. Blood. 2022;140(suppl 2): abstract LBA-1.


## E1910 Randomized Phase 3 Trial: Blina vs SOC as Consolidation in MRD–: Outcomes by Number of Cycles

- 488 pts median age 51 yrs (30-70)
- 224 MRD-negative CR randomized 1:1
- 22 pts (20%) Rx ASCT in each arm
- Median F/U 43 months; median OS NR vs 71.4 mos (HR=0.42; p=0.003)
- No difference in OS if 1-2 cycles of blina vs control (HR: 0.62; p=0.22)
- OS: 1-2 cycles vs 4 cycles (HR: 0.39; p=0.07)

| #cycles | 121      |
|---------|----------|
| 1       | 12       |
| 2       | 32       |
| 3       | 4        |
| 4       | 63 (52%) |

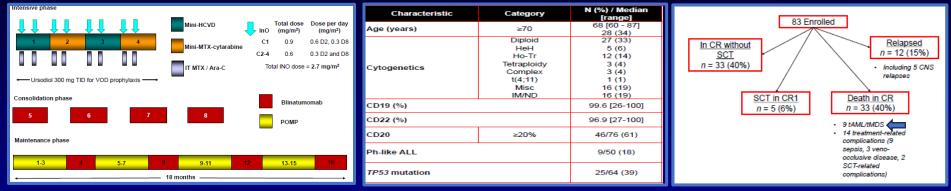


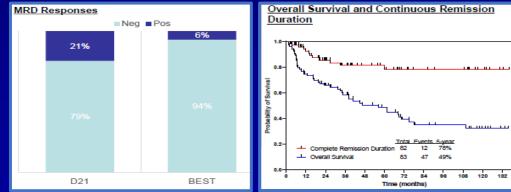





#### Luger. Blood 142: Abst 2877; 2023

### MDACC vs SEER ALL: Survival by Decades for ≥60 Years


- 26,801 pts age 65+ yrs. B-ALL 91%
- OS better in Ph+ (HR 0.68) and 2012-2018 (HR 0.64); worse in secondary ALL (HR 1.15), AA (HR 1.19), and Hispanic (HR 1.1)
- 5 yr OS <20%

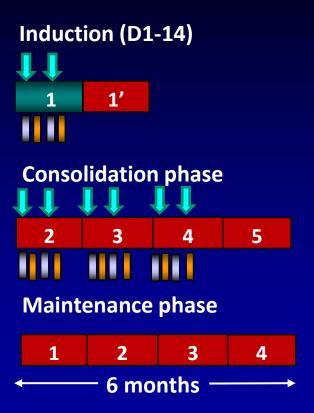


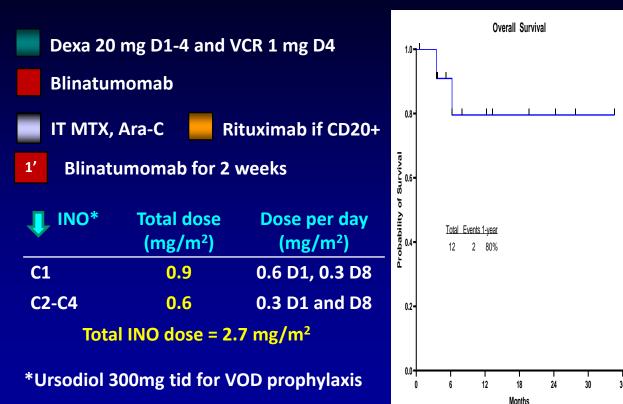

Gupta. Blood 140: abst 1379; 2022

#### Mini-HCVD + INO ± Blina in Older ALL (N=83)

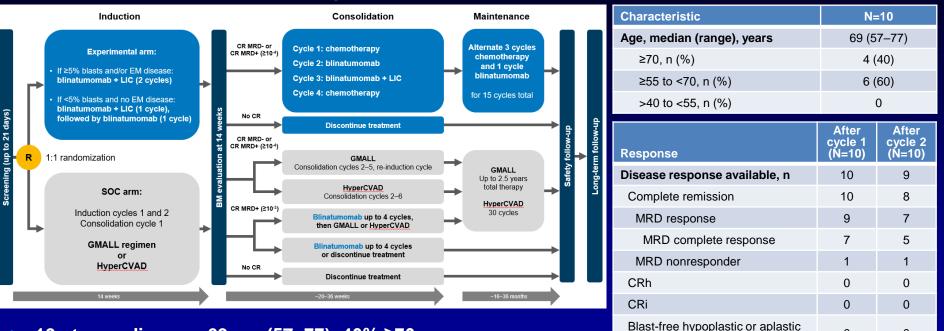
- Median age 68 years (range, 60-87; 34% ≥ 70 years)
- High-risk features: TP53 39%; Ph-like 18%; poor cytogenetics 23%
- ORR 99% (CR 90%); MRD negativity 94% (79% at CR)







#### Median F/U 88 months

- 5/12 pts with relapse (42%) had EMD (1 concurrent BM relapse), all with CNS involvement (5/83; <u>6%</u>)
- Death due PD/NR: 12/83 (15%); median 23 mos (2-78); median age 64 yrs (60-79)
- Death due to AML/MDS: 9/83 (11%); median 34 mos (7-75); median age 71 yrs (64-87)
- Death in CR: 33/83 (40%); 11/28 (39%) in pts ≥70 yrs
- 14/33 deaths (42%) Rx related (9 sepsis, 3 VOD, 2 ASCT)


#### Jen. Blood 142: abst 2878; 2023

## INO + Blina in Older ALL. Amended Design (Pts ≥70 years)





## Blina + Low-Intensity ChemoRx in Older Pre-B ALL: Golden Gate Safety Run-In Results of Phase 3



0

0

0

0

0

BM without CRh or CRi

Nonresponse

Relapse

PD

PR

0

0

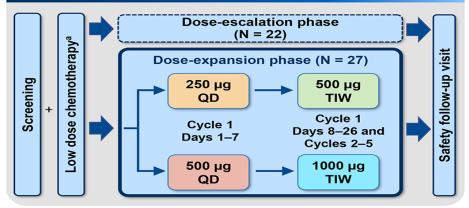
0

0

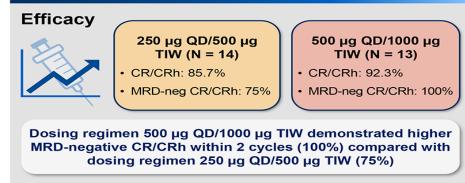
- 10 pts; median age 69 yrs (57–77); 40% ≥70 yrs
- 9/10 had molecular response after C1; 7/10 MRD-negative CR
- No Grade ≥3 CRS or ICAN

Jabbour E, et al. ASH 2022; Abstract 2732; NCT04994717. Available at https://clinicaltrials.gov/ct2/show/NCT04994717. Accessed January 2024.

#### Single Agent Subcutaneous Blinatumomab for Advanced Acute Lymphoblastic Leukemia


Results from the expansion phase of a phase 1b trial

#### Objective





To assess the efficacy and safety of subcutaneous blinatumomab in heavily pretreated adults with R/R B-ALL at two doses

#### **Study Schema**



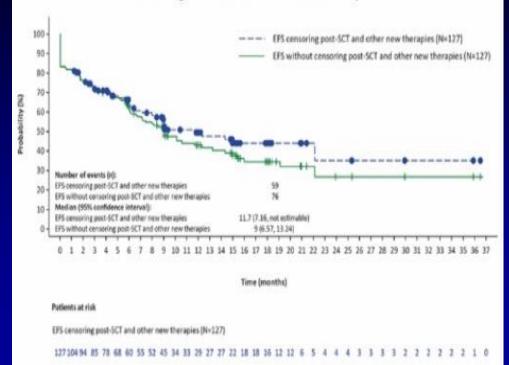
#### Results





- · SC injections were well tolerated
- No treatment-related grade 4 CRS or NE

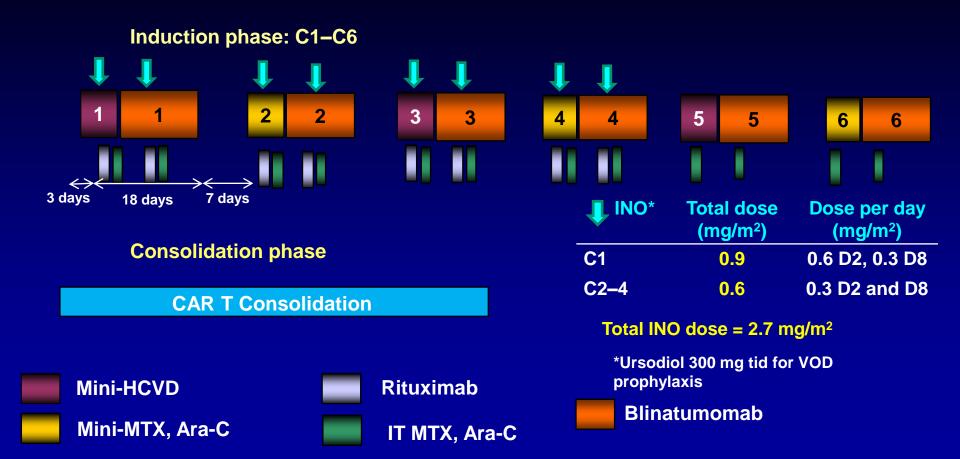
#### Conclusion


Treatment with single agent SC blinatumomab resulted in a high CR rate, high MRD-negativity rate, and an acceptable safety profile in heavily pretreated adults with R/R B-ALL

Jabbour, et al. AJH 2024, In press

#### **Obecaptagene Autoleucel (OBE-CEL) in Adult R/R ALL (FELIX)**

- AUTO 1 fast off-rate CD19 binder CAR T
- 153 enrolled, 127 (83%) infused.
   Median age 47 yrs
- Prior blina 42%, ino 31%, allo SCT 44%
- cCR-CRi 99/127 = 78% (99/153 = 65%). 19/77 allo SCT
- Loss of CAR T = HR 2.9
- 12-mos EFS 49%, 12-mos OS 61%


Kaplan–Meier plot of EFS in patients with or without censoring for consolidative SCT or new therapies



EFS without censoring post-SCT and other new therapies (Nr127)

Jabbour E, et al. *J Clin Oncol.* 2024;24:S6504; Roddie et al. *HemaSphere.* 2024;8:S114.

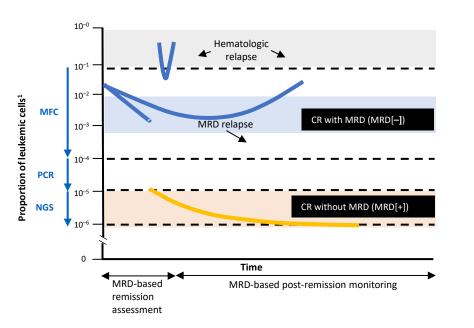
#### **Dose-Dense Mini-HCVD + INO + Blina + CAR T Cells in ALL: The CURE**



## Leukemia Questions?

Email: ejabbour@mdanderson.org
Cell: 713-498-2929
Office: 713-792-4764




# Review of prognostic value of MRD in ALL and AML

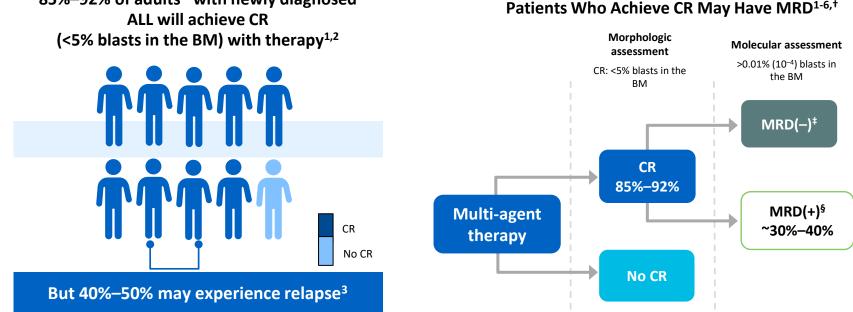
Jae Park





#### MRD Is a Strong Prognostic Indicator in B-ALL<sup>1-4</sup>




- MRD is defined as the presence of detectable leukemic cells (generally >10<sup>-4</sup> or 0.01%) within the BM during remission<sup>5,6</sup>
- Studies collectively show the high prognostic value of MRD (both during and after initial induction therapy) in assessing relapse risk for patients with ALL<sup>2</sup>
- Patients who proceed to transplant with MRD-positive disease have a higher relapse rate than patients with MRDnegative disease<sup>3,4</sup>

ALL, acute lymphoblastic leukemia; B-ALL, B-cell acute lymphoblastic leukemia; BM, bone marrow; CR, complete remission; MFC, multiparameter flow cytometry; MRD, measurable/minimal residual disease; NGS, next-generation sequencing; PCR, polymerase chain reaction.

1. Short NJ, et al. Am J Hematol. 2019;94:257-265; 2. Berry DA, et al. JAMA Oncol. 2017;3:e170580; 3. Spinelli O, et al. Haematologica. 2007;92:612-618;

4. Patel B, et al. Br J Haematol. 2010;148:80-89; 5. Bassan R, et al. Haematologica. 2019;104:2028-2039; 6. Gökbuget N, et al. Blood. 2012;120:1868-1876.

#### Patients Who Achieve CR May Still Harbor MRD<sup>1-6</sup>

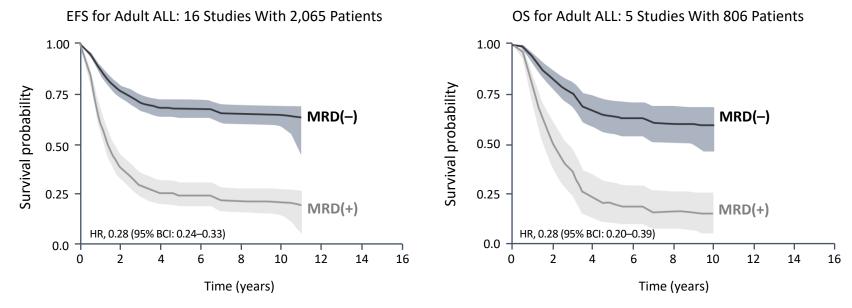


\*80%–90% of pediatric leukemia cases experience and remain in remission.<sup>6</sup> \*Example diagram based on clinical studies.<sup>2-5</sup> \*Complete MRD response refers to the absence of detectable leukemic cells confirmed in a highly sensitive assay (generally ~10<sup>-4</sup> cells, or 0.01%).<sup>2</sup> §Range based on 3 clinical studies in which MRD was measured at different time points.<sup>2,4,5</sup>

ALL, acute lymphoblastic leukemia; BM, bone marrow; CR, complete remission; MRD, measurable/minimal residual disease.

85%–92% of adults\* with newly diagnosed

1. Brüggemann M, et al. Blood. 2012;120:4470-4481; 2. Gökbuget N, et al. Blood. 2012;120:1868-1876; 3. Brüggemann M, Kotrova M. Blood Adv. 2017;1:2456-2466; 4. Beldjord K, et al. Blood. 2014;123:3739-3749; 5. Brüggemann M, et al. Blood. 2006;107:1116-1123; 6. Hoelzer D, et al. Ann Oncol. 2016;27(suppl 5):v69-v82.


#### **MRD Is a Strong Predictor of Outcomes in ALL**

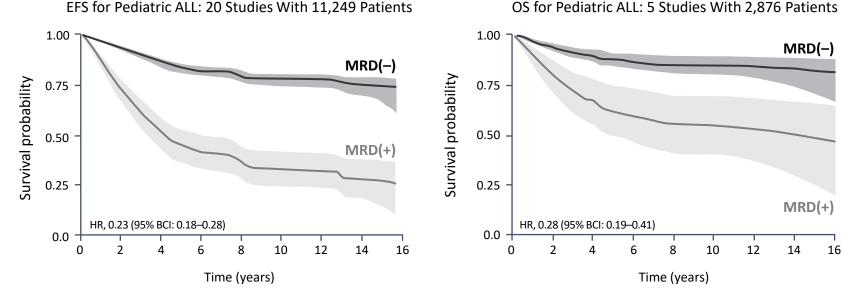
- MRD is prognostic for both adults and children in all ALL subtypes, including<sup>1</sup>
  - B- and T-cell lineage
  - Ph-positive and -negative disease
- Post-treatment detection of MRD in B-ALL<sup>2</sup>
  - MRD status has been shown to predict relapse and has been associated with treatment response

ALL, acute lymphoblastic leukemia; B-ALL, B-cell acute lymphoblastic leukemia; MRD, measurable/minimal residual disease; Ph, Philadelphia chromosome. 1. Abou Dalle I, et al. *Ther Adv Hematol*. 2020;11:1-13; 2. Vora A, et al. *Lancet Oncol*. 2013;14:199-209.

# MRD Status Has Been Shown to be a Predictor of EFS and OS in Adult Patients With ALL

Meta-analysis: Estimated Survival Curves for Adult Patients With ALL




These data include various treatments and are not intended to make any sort of survival claim, nor is the benefit specific to any treatment.

This information is presented for the purpose of demonstrating the utility of MRD testing as a prognostic indicator in B-ALL. Treatment decisions are the sole discretion of the healthcare provider.

ALL, acute lymphoblastic leukemia; BCI, Bayesian credible intervals; EFS, event-free survival; HR, hazard ratio; MRD, measurable/minimal residual disease; OS, overall survival. Berry DA, et al. JAMA Oncol. 2017;3:e170580.

# MRD Status Has Been Shown to be a Predictor of EFS and OS in Pediatric Patients With ALL

Meta-analysis: Estimated Survival Curves for Pediatric Patients With ALL



These data include various treatments and are not intended to make any sort of survival claim, nor is the benefit specific to any treatment.

This information is presented for the purpose of demonstrating the utility of MRD testing as a prognostic indicator in B-ALL. Treatment decisions are the sole discretion of the healthcare provider.

ALL, acute lymphoblastic leukemia; BCI, Bayesian credible intervals; EFS, event-free survival; HR, hazard ratio; MRD, measurable/minimal residual disease; OS, overall survival. Berry DA, et al. JAMA Oncol. 2017;3:e170580.

#### **MRD Negativity Was Favored Across a Variety of Parameters**

#### Subset Analysis of RFS for Adults With ALL (With 95% Cls)

| Parameter            | Subgroup         | Studies, n |                                       | HR (95% CI)      |
|----------------------|------------------|------------|---------------------------------------|------------------|
| Disease stars        | CR1              | 21         | HeH                                   | 2.39 (1.93–2.98) |
| Disease stage        | CR2 or later     | 2          | I }=                                  | 1.84 (1.14–2.95) |
|                      | After HSCT       | 2          | <b>⊢</b>                              | 4.18 (1.93–9.03) |
| Timing of MRD        | Before HSCT      | 6          | i <b>⊢-</b> ■(                        | 1.69 (1.23–2.31) |
|                      | 10-3             | 2          | 1                                     | 2.36 (1.50–3.70) |
| MRD level            | 10 <sup>-4</sup> | 12         | ⊢=-(                                  | 2.74 (2.12-3.56) |
|                      | 10 <sup>-5</sup> | 4          | <b>⊢</b> −■−1                         | 1.82 (1.28–2.59) |
| MRD testing location | Central          | 10         | Heri                                  | 2.55 (2.06–3.14) |
|                      | Local            | 7          | <b>⊢</b> − <b>■</b> −1                | 1.92 (1.27–2.92) |
| Timing of MRD        | ≤3 months        | 14         | I ⊨∎-1                                | 2.60 (2.05–3.31) |
|                      | >3 months        | 5          | <b>⊢</b> ■-1                          | 2.23 (1.67–2.97) |
| MRD methodology      | Flow             | 4          |                                       | 2.84 (1.35–5.94) |
|                      | PCR              | 17         | HEH                                   | 2.30 (1.84–2.87) |
| Overall              |                  | 23         |                                       | 2.34 (1.91–2.86) |
|                      |                  |            | $0.1 \checkmark 1 \longrightarrow 10$ |                  |
|                      |                  |            | Favors MRD(+) Favors MRD(-)           |                  |

ALL, acute lymphoblastic leukemia; CI, confidence interval; CR, complete remission; HR, hazard ratio; HSCT, hematopoietic stem cell transplant; MRD, measurable/minimal residual disease; PCR, polymerase chain reaction; Ph, Philadelphia chromosome; RFS, relapse-free survival. Bassan R, et al. *Haematologica*. 2019;104:2028-2039.

#### NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines<sup>®</sup>) Recommend MRD Testing for ALL

NCCN Guidelines<sup>®</sup> recommend MRD assessment upon completion of initial induction, at the end of consolidation, and at additional timepoints guided by the regimen used<sup>1</sup>

- Serial monitoring frequency may be increased in patients with molecular relapse or persistent low-level disease burden<sup>1</sup>
- When possible, therapy aimed at reducing MRD before alloHSCT should be considered<sup>1</sup>

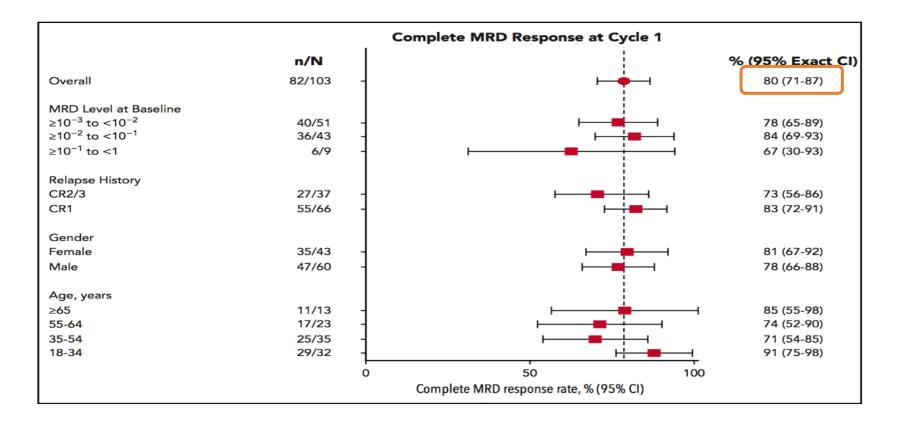
NCCN Guidelines<sup>®</sup> state that the optimal sample for MRD testing is the first pull of the bone marrow aspirate<sup>1</sup>

- Experts recommend ≤3 mL of the bone marrow aspirate to avoid hemodilution of the specimen<sup>2</sup>
- It is suggested that a test that has been validated to quantify ALL to a sensitivity of at least 10<sup>-4</sup> is used<sup>2</sup>

NCCN makes no warranties of any kind whatsoever regarding its content, use of application and disclaims any responsibility for their application or use in any way. ALL, acute lymphoblastic leukemia; alloHSCT, allogeneic hematopoietic stem cell transplantation; MRD, measurable/minimal residual disease; NCCN, National Comprehensive Cancer Network.

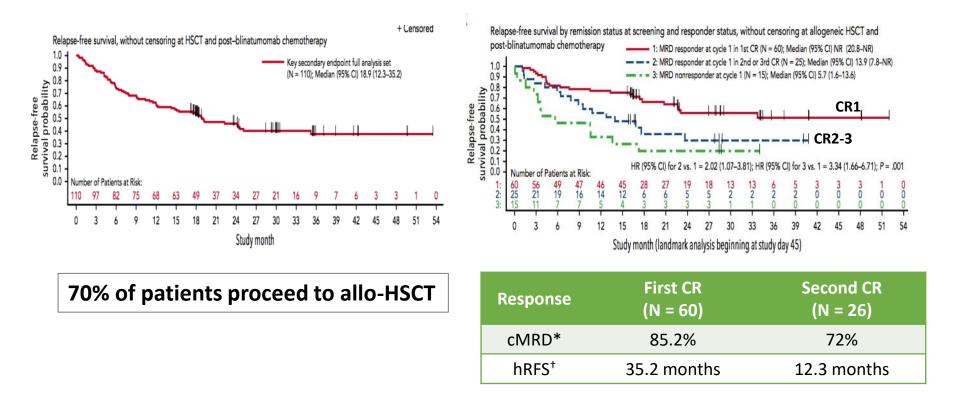
1. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines<sup>®</sup>) for Acute Lymphoblastic Leukemia V.1.2022. © National Comprehensive Cancer Network, Inc 2022. All rights reserved. Accessed July 27, 2022. To view the most recent and complete version of the guideline, go online to NCCN.org. 2. Nucleus ASTCT. Best Practices in MRD Quantification: The Importance of the First Bone Marrow Pull. <u>https://nucleus.astct.org/Full-Article/best-practices-in-mrd-quantification-the-importance-of-the-first-bone-marrow-pull</u>. Accessed September 7, 2022.




#### **Blinatumomab in MRD+ B-ALL**

#### • Eligibility criteria

- First or later CR AND
- Persistent or recurrent MRD ≥10<sup>-3</sup> after minimum 3 blocks of intense chemo
- Primary endpoint
  - MRD-CR after 1 cycle
- Secondary endpoint
  - RFS at 18 months


| Characteristic                         | Patients (n = 116) |
|----------------------------------------|--------------------|
| Relapse history, n (%)                 |                    |
| In first CR                            | 75 (65)            |
| In second CR                           | 39 (34)            |
| In third CR                            | 2 (2)              |
| Baseline MRD levels                    |                    |
| ≥10 <sup>-1</sup> to <1                | 9 (8)              |
| ≥10 <sup>-2</sup> to <10 <sup>-1</sup> | 45 (39)            |
| ≥10 <sup>-3</sup> to <10 <sup>-2</sup> | 52 (45)            |
| <10 <sup>-3</sup>                      | 3 (3)              |

#### **CR Rates by Subgroups in MRD+ B-ALL**



Gökbuget N, et al. Blood. 2018;131:1522-1531.

#### **RFS of MRD+ ALL Patients After Blinatumomab**



\*Complete MRD response is defined as the absence of detectable MRD confirmed in an assay with minimum sensitivity of 0.01%; <sup>†</sup>Time from start of blinatumomab to hematologic or extramedullary relapse, secondary leukemia, or death due to any cause; includes time after transplantation; Kaplan-Meier estimate. Gökbuget N, et al. *Blood.* 2018;131:1522-1531; Jen EY, et al. *Clin Cancer Res.* 2019;25:473-477.

#### FDA Approval of Blinatumomab for MRD+ B-ALL in US

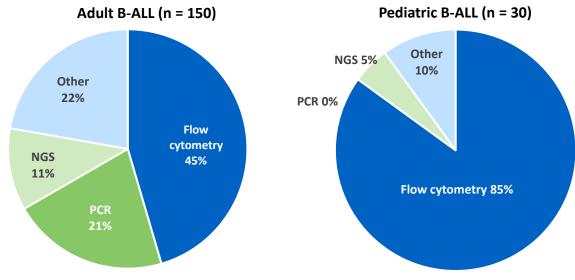
- Blinatumomab approved for the treatment of B-ALL in first or second complete remission with MRD ≥0.1%
- Prior to the approval, MRD results did not change disease management
- With the approval, the incorporation of MRD is standard of care for all subtypes of ALL
- In January 2020, the FDA released guidance for industry on the use of MRD in the development of investigational agents for hematologic malignancies
  - FDA accepts MRD levels of <0.01% as evidence of efficacy
  - ALL is the only disease in which MRD has been used as a surrogate endpoint supporting drug approval

US Food and Drug Administration. Resources – Drugs. Hematologic Malignancies: Regulatory Considerations for Use of Minimal Residual Disease in Development of Drug and Biological Products for Treatment – Guidance for Industry. Jan 2020. Accessed Sep 8, 2023. https://www.fda.gov/media/134605/download

#### **Current Challenges With MRD**

- When to measure?
  - Currently, MRD is focused (generally) on a single time point: EOI
  - ALL therapy extends well beyond a day-29 endpoint
  - Very little data on serial monitoring
- MRD assays differ
  - Multiparameter flow (FCM)
  - Next-generation sequencing (NGS)
  - Quantitative PCR (qPCR)
- Limited data on concordance of the different assays and risk stratification

#### MRD Detection Methods Vary in Their Target, Sensitivity, Benefits, and Limitations<sup>1-6</sup>


| Method                        | Target                                                    | Sensitivity                                                                                        | Some Potential Benefits                                                                                                                                               | Some Potential Limitations                                                                                             |
|-------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Flow cytometry <sup>1-5</sup> | Leukemia-associated immunophenotypes                      | 3–4 color: 10 <sup>-3</sup> to 10 <sup>-4</sup><br>6–9 color: 10 <sup>-4</sup> to 10 <sup>-5</sup> | <ul><li> Rapid</li><li> Target Ag information</li></ul>                                                                                                               | <ul><li>Limited sensitivity/standardization</li><li>Difficult to interpret</li></ul>                                   |
| PCR <sup>1-5</sup>            | <u>RT-qPCR:</u><br>Abnormal gene fusions<br>(eg, BCR-ABL) | 10 <sup>-4</sup> to 10 <sup>-5</sup>                                                               | <ul><li>High sensitivity</li><li>Specific</li></ul>                                                                                                                   | <ul> <li>Only possible in leukemias that<br/>harbor fusion transcripts</li> <li>Risk of cross-contamination</li> </ul> |
| PCR                           | ASO-PCR:<br>Ig and TCR gene<br>rearrangements             | 10 10 10                                                                                           | <ul><li>High sensitivity</li><li>Standardized</li></ul>                                                                                                               | <ul><li>Time-consuming</li><li>Patient-specific primers needed</li></ul>                                               |
| NGS <sup>5,6</sup>            | Ig and TCR gene rearrangements                            | 10 <sup>-6</sup>                                                                                   | <ul> <li>High sensitivity</li> <li>No patient-specific<br/>primers required</li> <li>Available via reference lab</li> <li>Some are FDA-cleared<sup>7</sup></li> </ul> | <ul> <li>Turnaround time (~7 days)</li> <li>Need initial diagnostic sample</li> </ul>                                  |

ASO-PCR, allele-specific oligonucleotide PCR; FDA, Food and Drug Administration; Ig, immunoglobulin; MRD, measurable/minimal residual disease; NGS, next-generation sequencing; PCR, polymerase chain reaction; RT-qPCR, real-time quantitative PCR; TCR, T-cell receptor.

1. Campana D. *Am Soc Hematol Educ Progr.* 2010;2010:7-12; 2. Brüggemann M, et al. *Blood.* 2012;120:4470-4481; 3. Schrappe M. *Am Soc Hematol Educ Progr.* 2012;2012:137-142; 4. van Dongen JJ, et al. *Blood.* 2015;125:3996-4009; 5. Chen X, Wood B. *Best Pract Res Clin Haematol.* 2017;30:237-248; 6. Thol F, et al. *Genes Chromosomes Cancer.* 2012;51:689-695; 7. FDA Decision Summary for ClonoSEQ<sup>\*</sup>. https://www.accessdata.fda.gov/cdrh\_docs/reviews/DEN170080.pdf. Accessed September 7, 2022.

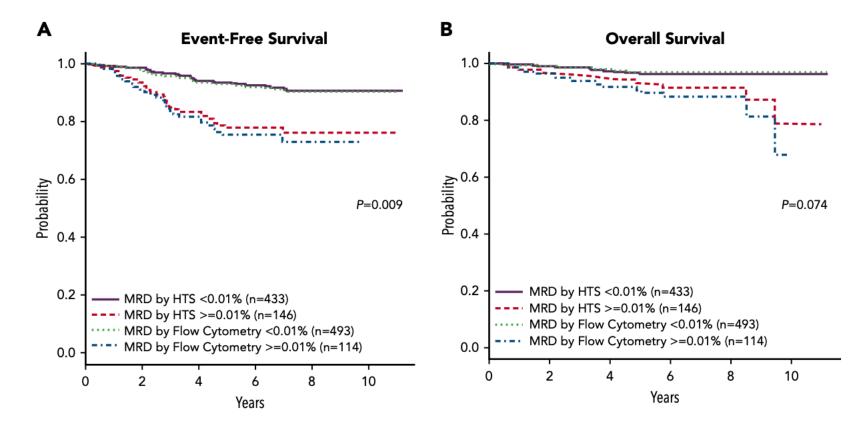
#### Flow Cytometry Is the Most Commonly Used Method of MRD Detection in the USA

Most Frequently Used Method of MRD Detection Reported by US Physicians<sup>1,\*</sup>

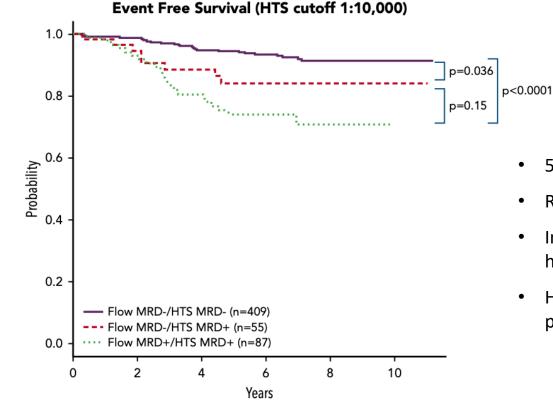


## While flow cytometry is frequently used in the USA, RT-qPCR is the most widely used technique in European MRD clinical studies<sup>2</sup>

\*Based on a survey. To be included in this analysis, physicians were required to be treating ≥ 5 patients with B-ALL and to conduct MRD testing. The 'Other' category included cytogenetics, FISH, immunological testing, and 'Not sure'.<sup>1</sup>

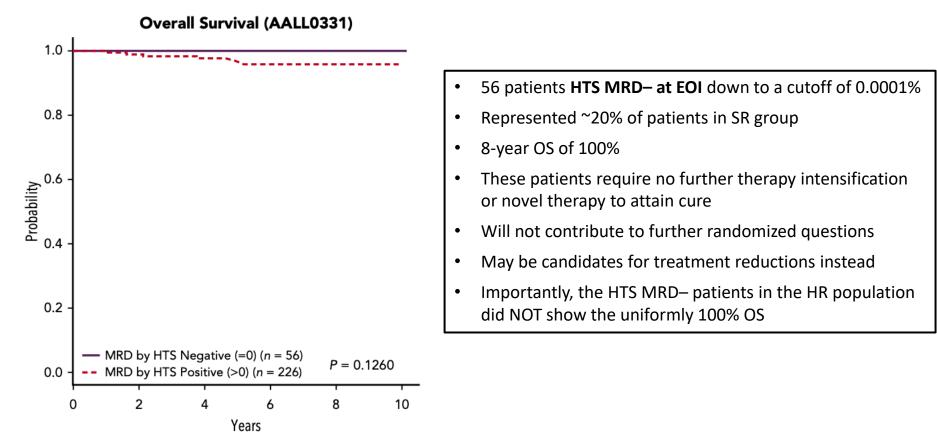

B-ALL, B-cell acute lymphoblastic leukemia; FISH, fluorescence in situ hybridization; MRD, measurable/minimal residual disease; NGS, next-generation sequencing; PCR, polymerase chain reaction; RT-qPCR, real-time quantitative PCR.

1. Kim C, et al. Hematology. 2019;24:70-78 and supplemental data; 2. Berry DA, et al. JAMA Oncol. 2017;3:e170580.

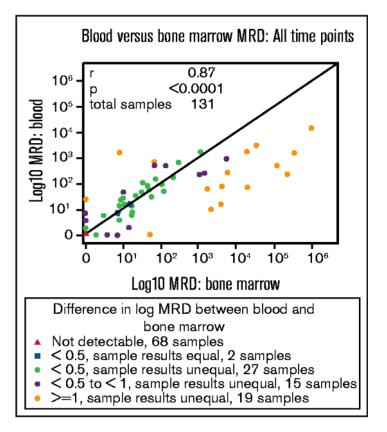

#### Children's Oncology Group Comparison of MRD by FCM and NGS

- Paired pretreatment and EOI (day 29) samples from 619 patients enrolled on AALL0331 (standard-risk protocol) and AALL0232 (high-risk protocol) were used for the analysis
  - 315 samples were high risk
  - 304 samples were standard risk
- FCM MRD done at University of Washington or Johns Hopkins
- Tissue-banked specimens were sent to Adaptive Biotechnologies for DNA extraction and immunosequencing
  - IGH and TRC CDR3 regions were amplified and sequenced
  - ImmunoSEQ platform was used
- EFS and OS were evaluated and compared with MRD assays

#### Strong Correlation Between MRD by HTS or FCM (0.01%)




#### **Discordant MRD by HTS or FCM Has Intermediate Prognosis**




- 55 patients with FCM MRD-/HTS MRD+
- Represented ~38% of patients in SR group
- Inferior 5-year EFS, so may be considered as higher-risk and ? intensification of therapy
- HTS in this study can identify higher-risk patients

#### **HTS Can Identify Patients With Excellent Outcomes**



#### **Concordance of BM and PB MRD Assessment**

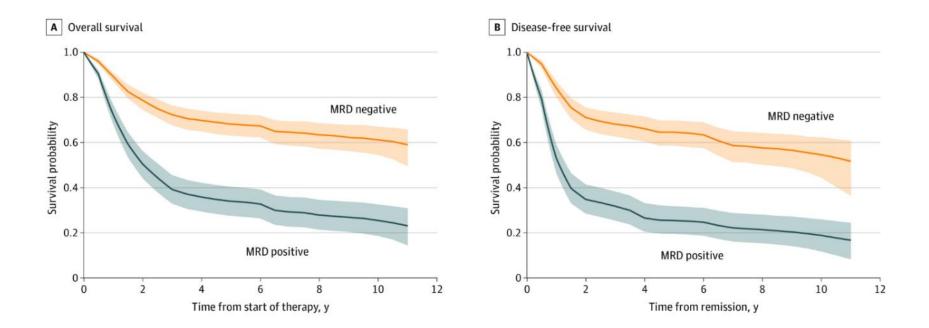


Prospective observational study evaluating MRD in patients receiving HSCT or CAR T-cell therapy (n = 69)

- Strong correlation between PB and BM MRD: sensitivity 87% and specificity 90% in PB vs BM
- Median time from MRD to clinical relapse
  - Post-HSCT 90 days
  - Post-CAR 60 days
- PB MRD NGS monitoring appears to be adequate alternative to BM

#### **MRD Monitoring in AML**

Although MRD is emerging as a potential predictive factor of treatment effectiveness and likelihood of disease recurrence, consensus on the utility of evaluating MRD in clinical practice has yet to be achieved. The ELN guidelines currently recommend MRD assessment before consolidation treatment and throughout disease monitoring as part of the standard of care for AML patients. NCCN guidelines recommend MRD after induction chemotherapy to help inform choice of consolidation treatment.


| Flow Cytometry                                                                                                         | Molecular Biology                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aspirate 5–10 mL BM and use the first pull for<br>MRD assessment                                                       | Aspirate 5–10 mL BM and use the first pull for MRD assessment                                                                                                                                 |
| Use 500,000 to 1,000,000 white blood cells                                                                             | Patients with mutant NPM1, RUNX1-RUNX1T1, CBFB-MYH11, or<br>PML-RARA should have molecular assessment of residual disease<br>at informative clinical time points                              |
| Use the following markers in a MRD panel:<br>CD7, CD11b, CD13, CD15, CD19, CD33,<br>CD34, CD45, CD56, CD117, HLA-DR    | <i>WT1</i> expression should not be used as an MRD marker unless no other MRD marker is available                                                                                             |
| Single-center studies with no extensive<br>experience on multiparameter flow cytometry<br>MRD are strongly discouraged | Do not use mutations in <i>FLT3</i> , <i>NRAS</i> , <i>KRAS</i> , <i>DNMT3A</i> , <i>ASXL1</i> , <i>IDH1/2</i> , or <i>MLL-PTD</i> and expression levels of <i>EVI1</i> as single MRD markers |

Döhner H, et al. Blood. 2017;129(4):424-447; NCCN clinical practice guidelines in oncology: acute myeloid leukemia (Version 2.2021). National Comprehensive Cancer Network<sup>®</sup> website. <u>https://www.nccn.org/professionals/physician\_gls/pdf/aml.pdf</u>. Updated November 12, 2020. Accessed November 19, 2020.

#### **MRD in AML**

- In the context of MRD assessment, targeted NGS is commonly used for serial assessment of mutations found at diagnosis
- Caution, as several AML-associated mutations (eg, DNMT3A, TET2, ASXL1) are associated with CHIP (DTA)
- A meta-analysis of 81 trials with over 11,000 patients found strong associations between MRD negativity and superior disease-free survival

#### **Prognostic Impact of MRD in AML (Meta-analysis)**

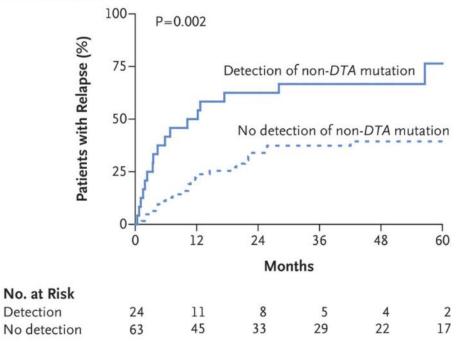


Short N, et al. JAMA Oncol. 2020; 6(12): 1890-1899.

#### **Prognostic Impact of MRD in AML (Meta-analysis)**

#### A Overall survival

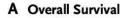
| Subgroup             | HR<br>(95% CI)   |        | Favors<br>no MRD | Favors<br>MRD |
|----------------------|------------------|--------|------------------|---------------|
| Age                  |                  |        |                  |               |
| Adult                | 0.38 (0.33-0.44) |        | -                |               |
| Pediatric            | 0.30 (0.20-0.46) |        |                  |               |
| Mixed                | 0.22 (0.07-0.69) |        |                  |               |
| MRD time point       |                  |        |                  |               |
| Induction            | 0.40 (0.35-0.47) |        | +                |               |
| During consolidation | 0.37 (0.29-0.47) |        |                  |               |
| Afrer consolidation  | 0.30 (0.23-0.39) |        |                  |               |
| MRD detection method |                  |        |                  |               |
| MFC                  | 0.47 (0.39-0.56) |        |                  |               |
| PCR (WT1)            | 0.30 (0.19-0.47) |        |                  |               |
| PCR (gene)           | 0.25 (0.20-0.32) |        |                  |               |
| NGS                  | 0.43 (0.24-0.75) |        |                  |               |
| Cytogenetics/FISH    | 0.89 (0.43-1.83) |        |                  |               |
| Others               | 0.43 (0.20-0.91) |        |                  |               |
| AML subtype          |                  |        |                  |               |
| CBF                  | 0.20 (0.13-0.32) |        |                  |               |
| Non-CBF              | 0.40 (0.36-0.46) |        | -                |               |
| Specimen source      |                  |        |                  |               |
| Bone marrow          | 0.37 (0.33-0.43) |        |                  |               |
| Peripheral blood     | 0.27 (0.16-0.43) |        | <b>_</b>         |               |
| Mixed                | 0.37 (0.16-0.84) |        |                  |               |
| MA-bayesian          | 0.37 (0.33-0.42) |        | -                |               |
|                      | 0.               | 05 0.1 | HR (95% CI)      | 1 2           |

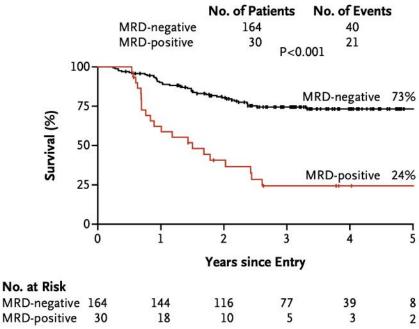

B Disease-free survival

| Subgroup             | HR<br>(95% CI)   |           | Favors<br>o MRD | Favors<br>MRD |
|----------------------|------------------|-----------|-----------------|---------------|
| Age                  |                  |           |                 |               |
| Adult                | 0.40 (0.33-0.50) |           |                 |               |
| Pediatric            | 0.38 (0.26-0.55) |           | -               |               |
| Mixed                | 0.42 (0.18-0.95) |           |                 |               |
| MRD time point       |                  |           |                 |               |
| Induction            | 0.44 (0.35-0.55) | -         | _               |               |
| During consolidation | 0.41 (0.31-0.56) |           | _               |               |
| After consolidation  | 0.32 (0.24-0.43) |           |                 |               |
| MRD detection method |                  |           |                 |               |
| MFC                  | 0.42 (0.33-0.53) |           | -               |               |
| PCR (WT1)            | 0.36 (0.24-0.54) |           | -               |               |
| PCR (gene)           | 0.34 (0.25-0.46) |           |                 |               |
| NGS                  | 0.45 (0.25-0.80) |           |                 |               |
| Cytogenetics/FISH    | 0.75 (0.39-1.47) |           | -               |               |
| Others               | 0.48 (0.28-0.81) |           | <u> </u>        |               |
| AML subtype          |                  |           |                 |               |
| CBF                  | 0.26 (0.18-0.38) |           |                 |               |
| Non-CBF              | 0.43 (0.35-0.53) |           | -               |               |
| Specimen source      |                  |           |                 |               |
| Bone marrow          | 0.41 (0.34-0.50) |           |                 |               |
| Peripheral blood     | 0.21 (0.14-0.32) |           |                 |               |
| Mixed                | 0.41 (0.23-0.69) |           |                 |               |
| MA-bayesian          | 0.40 (0.33-0.49) |           |                 |               |
|                      | 0.05             | 0.1       |                 | 1 2           |
|                      |                  | HR (95% C | )               |               |

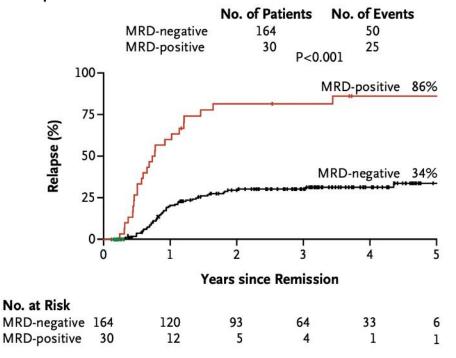
Short N, et al. JAMA Oncol. 2020; 6(12): 1890-1899.

#### **MRD Presence After Induction Is Prognostic in AML**


A Relapse among Patients with Persistent DTA Mutations




DTA mutations = DNMT3A, TET2, ASXL1


Jongen-Lavrencic M, et al. N Engl J Med. 2018;378:1189-1199.

#### NPM1 PB MRD Is Associated With Worse Survival





**B** Relapse in All Patients



Ivey A, et al. N Engl J Med. 2016;374:422-433.

#### Conclusions

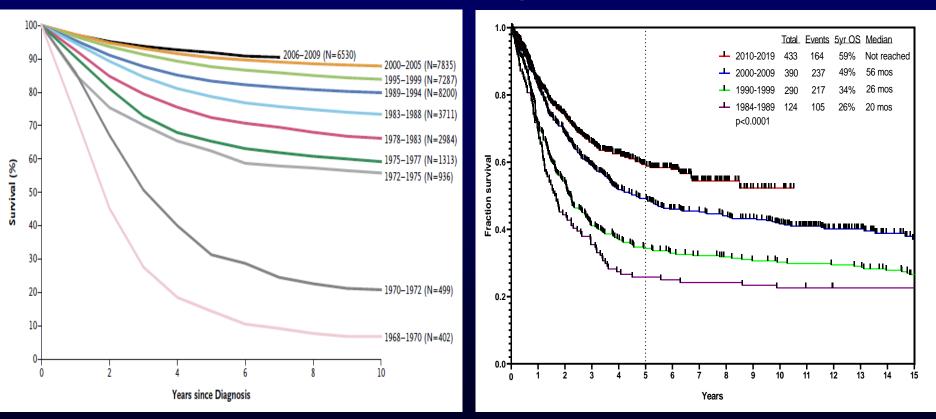
- MRD monitoring throughout therapy is needed *and* critical to guide prognosis and risk-directed treatments in ALL; should be standard of care
- MRD monitoring should include early assessment of response to therapy (EOI) and post-treatment monitoring for early relapse detection and to guide therapeutic intervention prior to overt relapse, ie, continued assessment vs one-time
- NGS/HTS is a robust clinical platform for MRD determination
- More data demonstrate prognostic importance of MRD in AML but no specific therapeutic interventions yet



# Best practices for first-line treatment in ALL

**Elias Jabbour** 

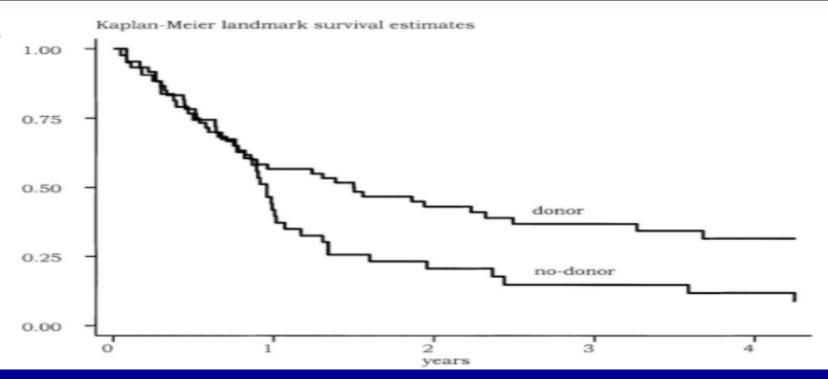





#### Integration of Immunotherapy in Newly Diagnosed ALL

Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center, Houston, TX

**Summer 2024** 


## Survival in Pediatric and Adult ALL with Classical Intensive ChemoRx Regimens



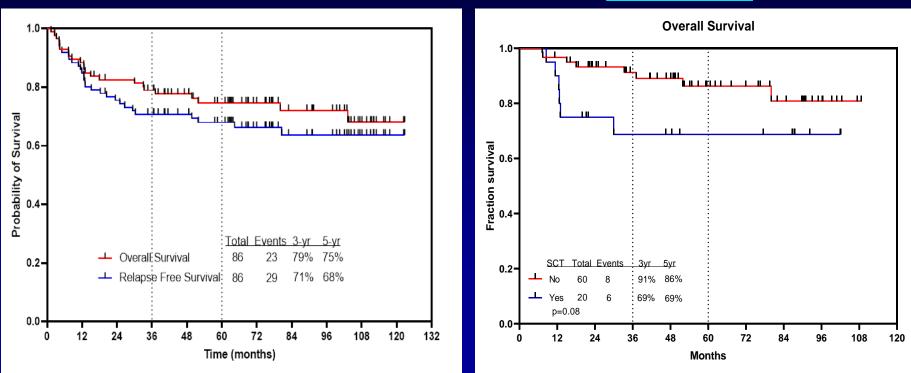
Hunger et al. N Engl J Med. 2015;373(16):1541-1552.

#### Kantarjian H, et al. Cancer. 2022;128:240-259.

#### SCT for Ph+ ALL: Pre-TKI



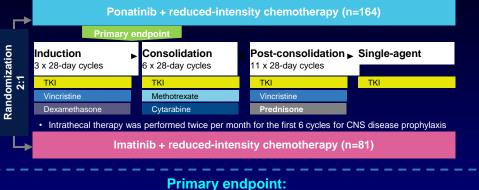
- Donor (n=60) 3-year OS: 37%
- No donor (n=43) 3-year OS: 12%


Dombret H, et al. Blood. 2002;100(7):2357-2366.

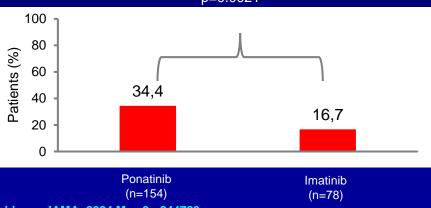
#### HyperCVAD + Ponatinib in Ph+ ALL

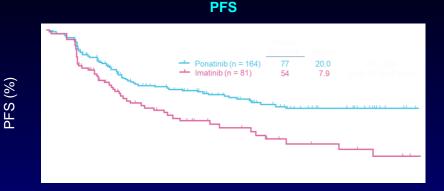
- 86 pts Rx; median age 47 yrs (39-61); median FU 75 mos (16-123)
- CR 68/68 (100%); FCM-MRD negative 85/86 (99%); CMR 84%; 5-yr OS 75%, EFS 68%

**RFS and survival** 

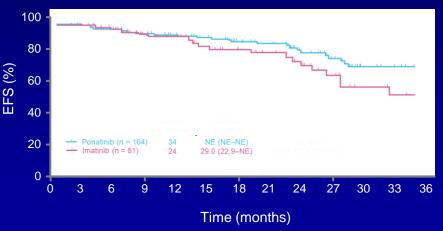

6-month Landmark




Kantarjian. Am J Haematol 98:493-501;2023

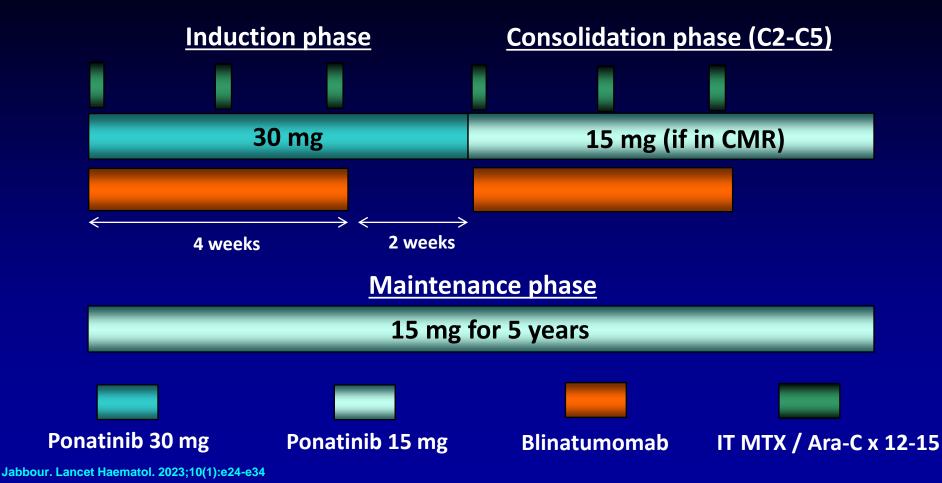

## **Ponatinib vs Imatinib With Rx in Ph+ ALL: PhALLCON**

#### Study design



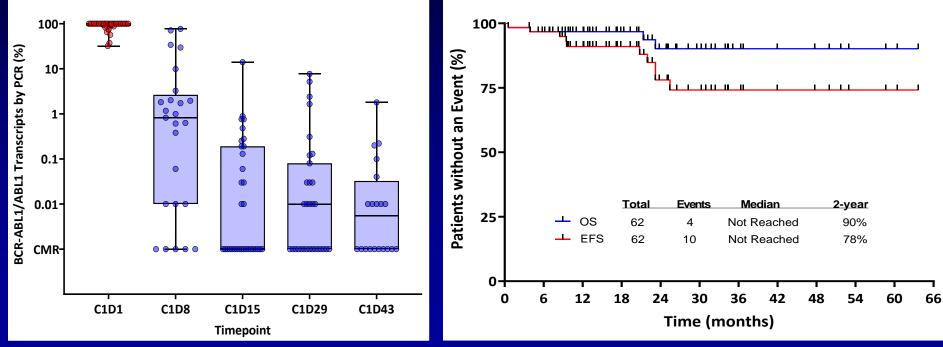

MRD– (MR4) CR at end of induction RR: 2.06 (95% Cl=1.19–3.56) \_p=0.0021






EFS




Jabbour. JAMA. 2024 May 9:e244783.

### Ponatinib + Blinatumomab in Ph+ ALL: Regimen

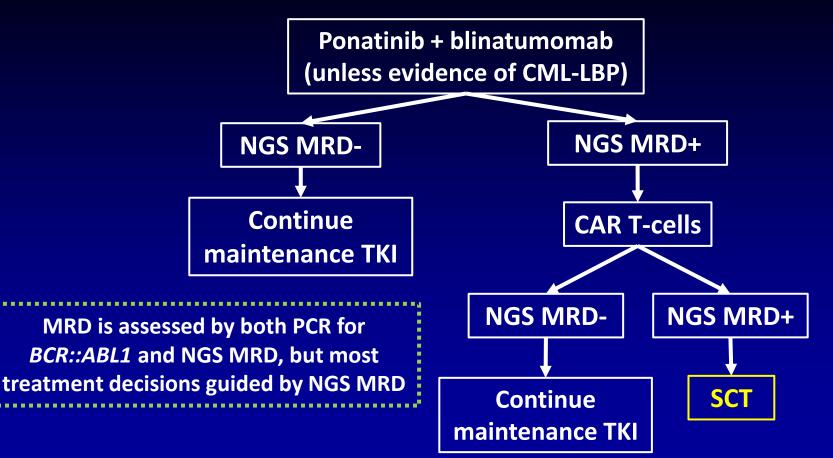


#### Ponatinib and Blinatumomab in Newly Dx Ph+ ALL

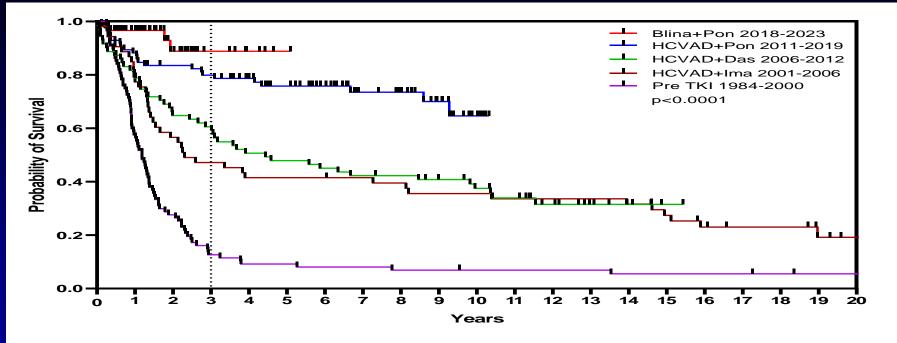
- 62 pts Rx with simultaneous ponatinib 30-15 mg/D and blinatumomab x 5 courses. 12-15 ITs
- Only 2 pt had SCT(3%); Median F/U 17 mos
- CR/CRi 98% (CR 95%); CMR 84% (67% after C1); NGS-MRD negativity 94%
- 2-yr EFS 78%, OS 90%. 7 relapses (all p190): 4 CNS, 1 CRLF2+ (Ph-), 2 systemic. 5/7 WBC >75k



Jabbour. Lancet Haematol. 2023;10(1):e24-e34.

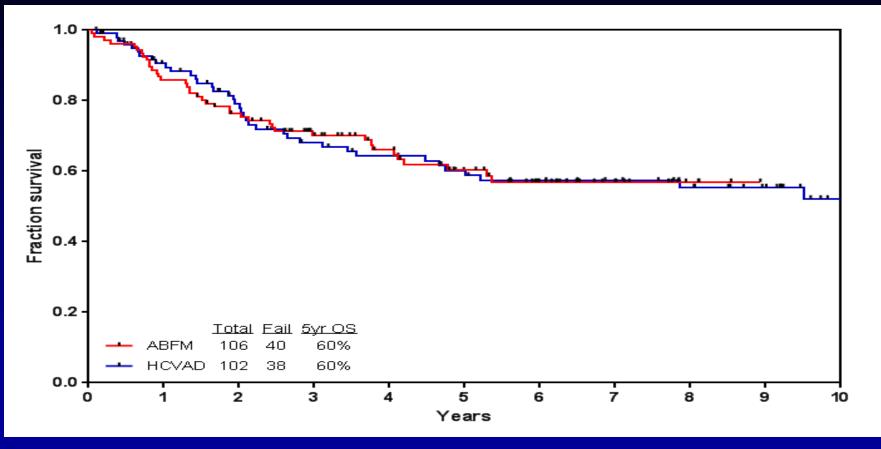

#### **Ponatinib vs Dasatinib + Blinatumomab in Ph+ ALL**

| Parameter                       | Pona+Blina<br>(n=62; <mark>5 blina</mark> ) | Dasa+Blina<br>(n=63; <mark>2+blina</mark> ) | Dasa+ Blina<br>(n=24; <mark>3 blina</mark> ) |
|---------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|
| Median age (yrs)                | 58                                          | 54                                          | 73                                           |
| % PCR neg<br>% NGS-clonoSEQ neg | 84<br>94                                    | 93 (+PNQ)                                   | 63                                           |
| % 4-yr OS                       | 90                                          | 82                                          | 75                                           |
| % allo SCT                      | 3                                           | 48                                          | 5                                            |
| Relapses (CNS)                  | 7 (4)                                       | 9 (4)                                       | 8 [3 T315I]                                  |

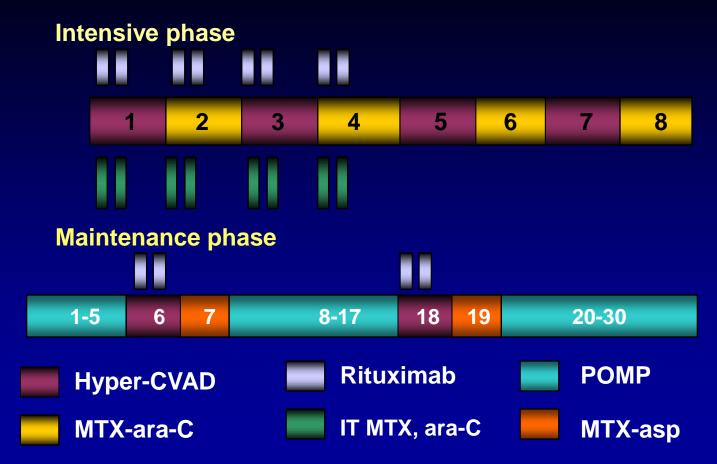

Jabbour. Lancet Haematol. 2023;10(1):e24-e34.

Foa. JCO online, December 23; 2023.

#### **Research Rx Algorithm for Ph+ ALL**



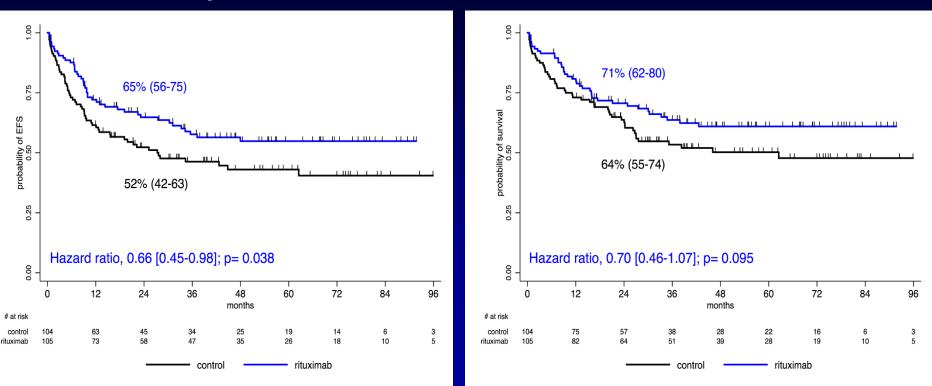

#### Ph+ ALL: Survival by Decade (MDACC 1984-2023)




|       |                     | Total | Events | 3yr OS | 5yr OS | Median      |
|-------|---------------------|-------|--------|--------|--------|-------------|
| ——— E | Blina+Pon 2018-2022 | 62    | 4      | 89%    |        | Not reached |
| H     | HCVAD+Pon 2011-2019 | 85    | 23     | 80%    | 76%    | Not reached |
| H     | HCVAD+Das 2006-2012 | 71    | 47     | 61%    | 48%    | 53 mos      |
| F     | HCVAD+Ima 2001-2006 | 53    | 41     | 47%    | 42%    | 28 mos      |
| F     | Pre TKI 1984-2000   | 87    | 83     | 13%    | 9%     | 14 mos      |
| p     | 0<0.0001            |       |        |        |        |             |

#### Hyper-CVAD vs ABFM: Overall Survival

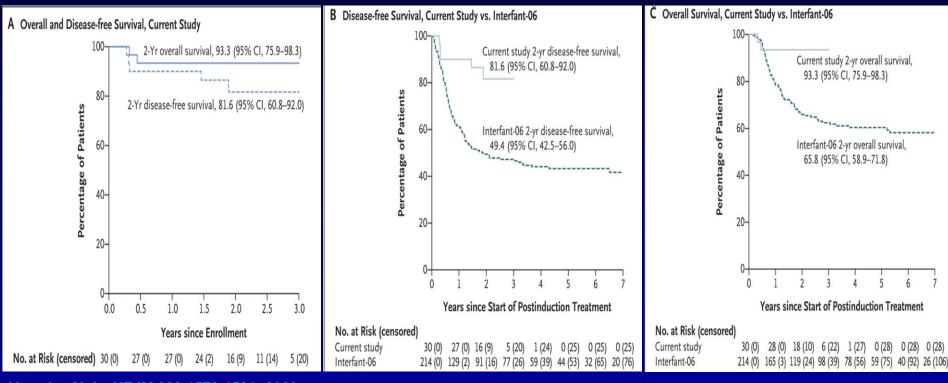



#### Hyper-CVAD + Rituximab in Precursor B-ALL



Thomas. JCO 2010; 28:3880-9

#### Chemo Rx +/- Rituximab: Results of the Randomized GRAALL-R 2005 in Pre–B-ALL

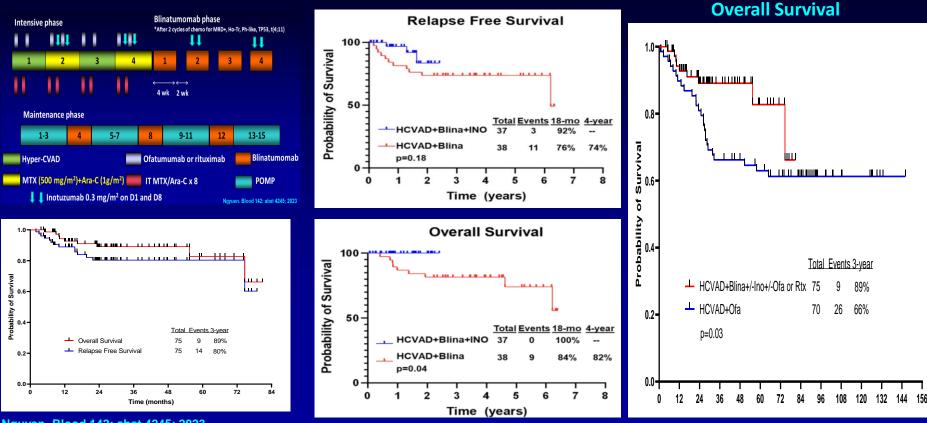

Median follow-up 30 months



Maury. N Engl J Med. 2016;375:1044-53

#### ChemoRx + Blina in Newly Dx KMT2A-Rearranged ALL

30 infants age <1 yr Rx with chemoRx induction, then 1 course blina consolidation (15 mcg/m<sup>2</sup> x 28), then chemoRx continuation




Vam der Sluis. NEJM 388:1572-1581; 2023

#### Hyper CVAD-Inotuzumab → Blina in Newly Dx Adult ALL

75 pts; median age 33 yrs (18-59); Median F/U 26 months (1-77)

• CR rate 100%; MRD negative 95% (66% at CR); NGS-MRD negative 73%; 60-day mortality 0%; 24 (32%) allo-SCT;



Nguyen. Blood 142: abst 4245; 2023

#### Hyper-CVAD + Blinatumomab + Inotuzumab in B-ALL

#### **Outcome by ALL Risk**

#### **Outcome by ASCT (5-mo landmark)**

Total Events 3-year

3

2

91%

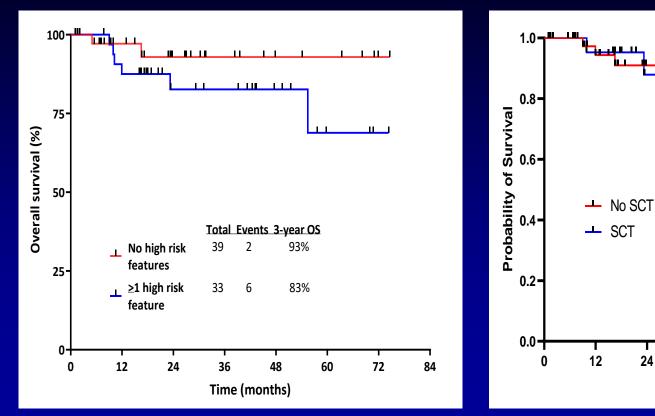
88%

48

Time (months)

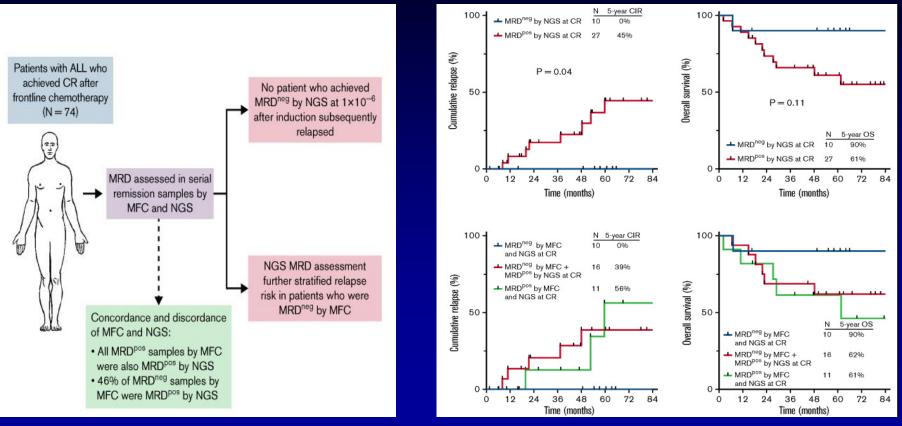
60

72


84

46

22

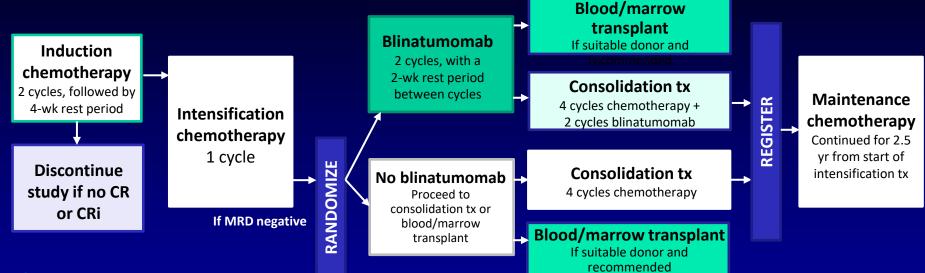

36

24



#### Jabbour, Lancet Haematology 9 : e 878-e885; 2023

## Outcome Prediction by NGS MRD Better Than MFC MRD in Pre–B-ALL



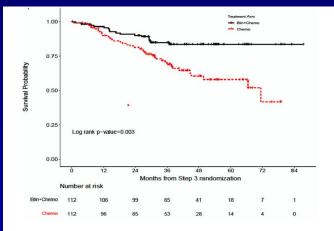

#### Frontline Blinatumomab and Inotuzumab Combinations in Adult Newly Dx ALL

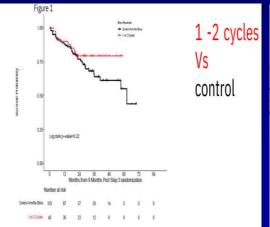
|                                | Agent                          | Ν   | Median Age<br>(yrs, range) | % CR | % MRD<br>negativity | % OS<br>(x-yr) |
|--------------------------------|--------------------------------|-----|----------------------------|------|---------------------|----------------|
| HCVAD-blina-<br>inotuzumab     | Blinatumomab<br>and Inotuzumab | 75  | 33 (18-59)                 | 100  | 95                  | 89 (4-yr)      |
| GIMEMA<br>LAL1913              | Blinatumomab                   | 149 | 41 (18-65)                 | 88   | 93                  | 71 (3-yr)      |
| GRAALL-<br>2014-Quest          | Blinatumomab                   | 95  | 35 (18-60)                 | NA   | 74                  | 92 (1.5 yr)    |
| Low-intensity-<br>Blinatumomab | Blinatumomab                   | 30  | 52 (39-66)                 | 100  | 73                  | 69 (2-yr)      |

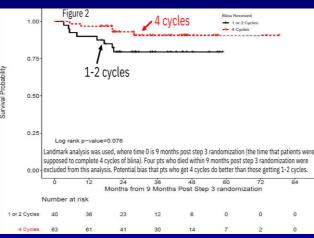
Jabbour. Lancet Haematology 9: e878-e885;2023. Chiaretti. Blood 142: abst 826; 2023. Boissel. Blood 140: abst 1232; 2021. Fleming. Blood 138:1224; 2021

# E1910 Randomized Phase III Trial: Blina vs SOC as Consolidation in MRD-Negative CR




- Accrual = 488
- US intergroup study
- n = 265/360 (509) patients
- USA, Canada, Israel
- 1:1 randomization

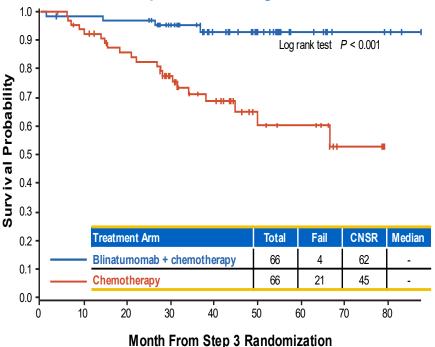

Litzow MR, et al. Blood. 2022;140(suppl 2): abstract LBA-1.


# E1910 Randomized Phase 3 Trial: Blina vs SOC as Consolidation in MRD–: Outcomes by Number of Cycles

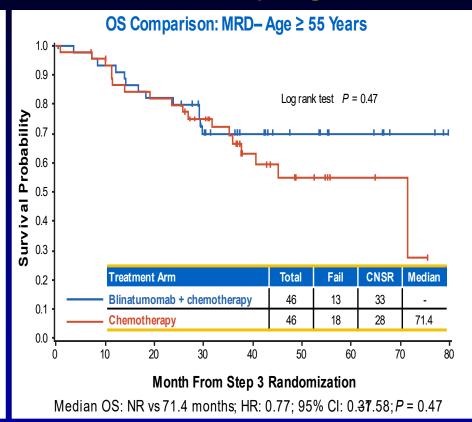
- 488 pts median age 51 yrs (30-70)
- 224 MRD-negative CR randomized 1:1
- 22 pts (20%) Rx ASCT in each arm
- Median F/U 43 months; median OS NR vs 71.4 mos (HR=0.42; p=0.003)
- No difference in OS if 1-2 cycles of blina vs control (HR: 0.62; p=0.22)
- OS: 1-2 cycles vs 4 cycles (HR: 0.39; p=0.07)

| #cycles | 121      |
|---------|----------|
| 1       | 12       |
| 2       | 32       |
| 3       | 4        |
| 4       | 63 (52%) |





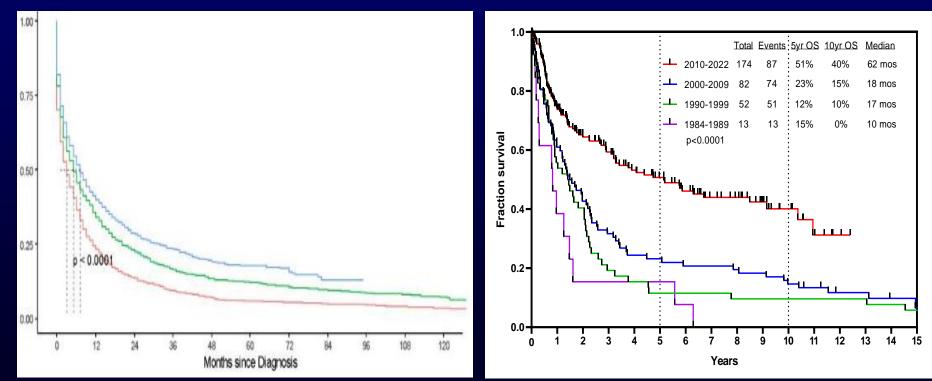




#### Luger. Blood 142: Abst 2877; 2023

#### E1910 Randomized Phase 3 Trial: Blina vs SOC as Consolidation in MRD–: Outcomes by Age

OS Comparison: MRD– Age < 55 Years

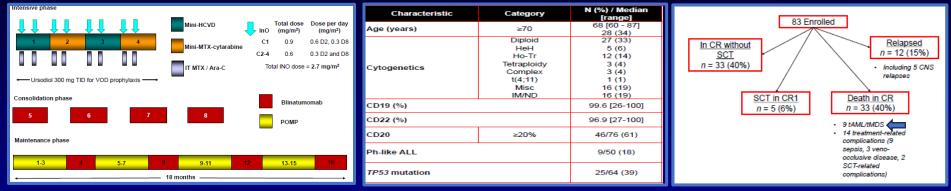


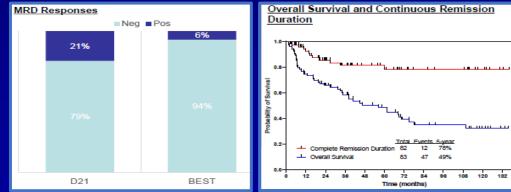

Median OS: NR in both arms; HR: 0.18; 95% CI: 0.406.52; P < 0.001



Mattison R, et al. EHA 2023; Abstract S115

#### MDACC vs SEER ALL: Survival by Decades for ≥60 Years


- 26,801 pts age 65+ yrs. B-ALL 91%
- OS better in Ph+ (HR 0.68) and 2012-2018 (HR 0.64); worse in secondary ALL (HR 1.15), AA (HR 1.19), and Hispanic (HR 1.1)
- 5 yr OS <20%




Gupta. Blood 140: abst 1379; 2022

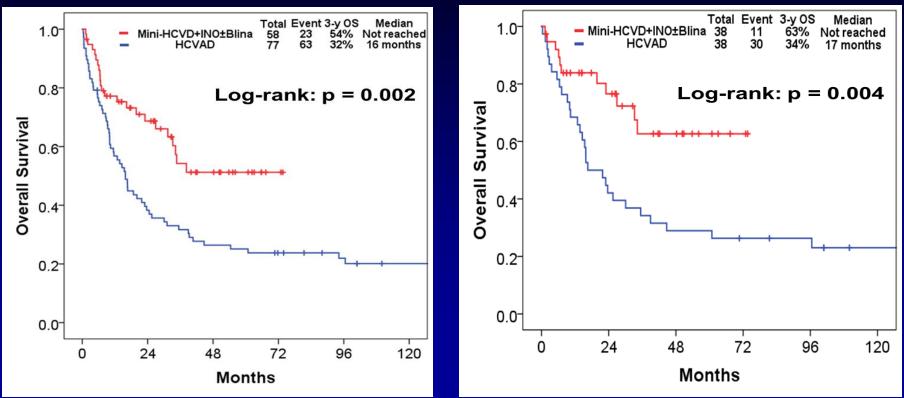
#### Mini-HCVD + INO ± Blina in Older ALL (N=83)

- Median age 68 years (range, 60-87; 34% ≥ 70 years)
- High-risk features: TP53 39%; Ph-like 18%; poor cytogenetics 23%
- ORR 99% (CR 90%); MRD negativity 94% (79% at CR)



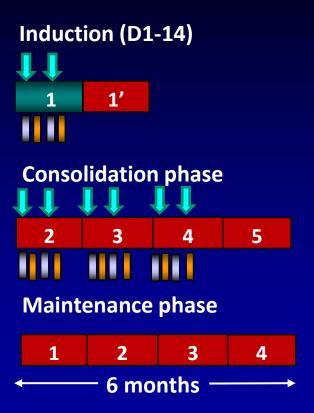


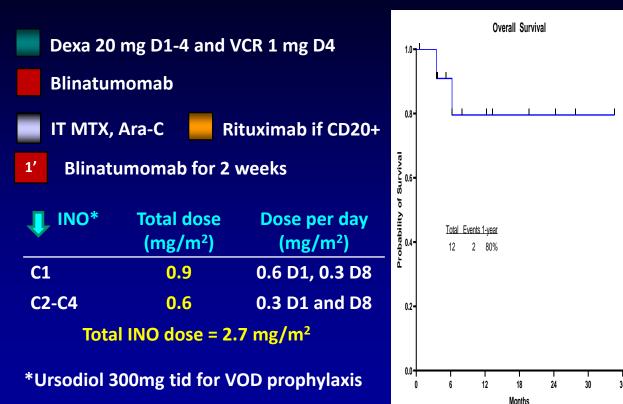
#### Median F/U 88 months


- 5/12 pts with relapse (42%) had EMD (1 concurrent BM relapse), all with CNS involvement (5/83; 6%)
- Death due PD/NR: 12/83 (15%); median 23 mos (2-78); median age 64 yrs (60-79)
- Death due to AML/MDS: 9/83 (11%); median 34 mos (7-75); median age 71 yrs (64-87)
- Death in CR: 33/83 (40%); 11/28 (39%) in pts ≥70 yrs
- 14/33 deaths (42%) Rx related (9 sepsis, 3 VOD, 2 ASCT)

#### Jen. Blood 142: abst 2878; 2023

# Mini-HCVD + INO ± Blina vs HCVAD in Older ALL: Overall Survival


#### **Pre-matched**

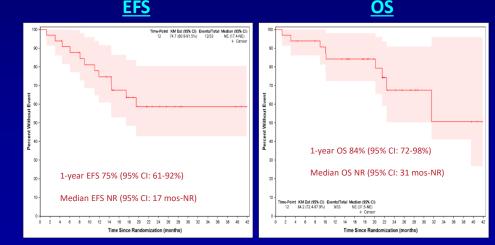

**Matched** 



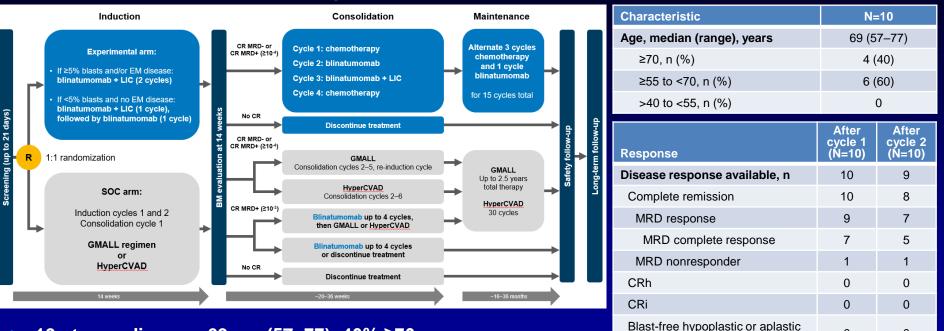
Jabbour E. Cancer. 2019;125(15):2579-2586.

## INO + Blina in Older ALL. Amended Design (Pts ≥70 years)






# Chemo Rx-Free Inotuzumab + Blinatumomab in Pre–B-ALL (Alliance A 041703)


- 33 pts; median age 71 yrs (60-84). Median CD22 92%. F/U 22 months
- Induction: INO 0.8 mg/m<sup>2</sup> D1, 0.5 mg/m<sup>2</sup> D8 & 15 (1.8 mg/m<sup>2</sup>)
- Maintenance: If CR-CRi INO 0.5 mg/m<sup>2</sup> D1, 8, 15 (1.5 mg/m<sup>2</sup>) x 2 then BLINA x 2
- If no CR-CRi—BLINA 28m cg/D x21 then x 28 x 3
- IT x 8
- CR 85% post INO x 3; cumulative CR 97%
- 1-yr EFS 75%; 1-yr OS 84%
- 9 relapses; 2 deaths in CR. 9 deaths, 6 post relapse

Wieduwilt. HemaSphere 7: abst S117: 2023

|                               | Induction with Inotuzumab<br>(IA/B/C) | Consolidation with<br>Blinatumomab |
|-------------------------------|---------------------------------------|------------------------------------|
| Cumulative CR<br>(CR+CRh+CRi) | 28/33 (85 %)                          | 32/33 (97 %)                       |
| CR                            | 15/33 (45%)                           | 19/33 (58 %)                       |
| CRh                           | 11/33 (33 %)                          | 12/33 (36 %)                       |
| CRi                           | 2/33 (6 %)                            | 1/33 (3 %)                         |
| Refractory                    | 3/33 (9 %)#                           | -                                  |



### Blina + Low-Intensity ChemoRx in Older Pre-B ALL: Golden Gate Safety Run-In Results of Phase 3



0

0

0

0

0

BM without CRh or CRi

Nonresponse

Relapse

PD

PR

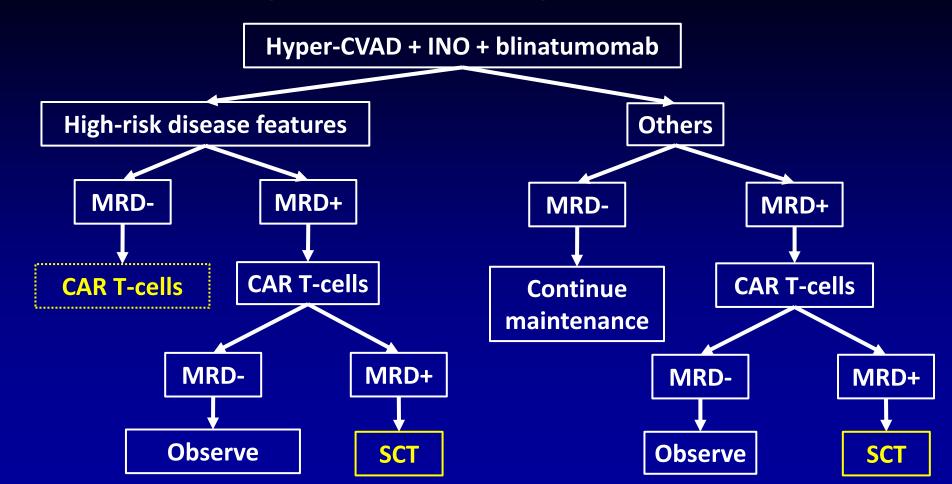
0

0

0

0

- 10 pts; median age 69 yrs (57–77); 40% ≥70 yrs
- 9/10 had molecular response after C1; 7/10 MRD-negative CR
- No Grade ≥3 CRS or ICAN


Jabbour E, et al. ASH 2022; Abstract 2732; NCT04994717. Available at https://clinicaltrials.gov/ct2/show/NCT04994717. Accessed January 2024.

# Frontline Blina and Inotuzumab Combinations in Newly Dx Older ALL

|                                                        | Agent                          | Ν   | Median Age,<br>yr (range) | CR, % | MRD<br>negativity, % | OS, %<br>(x yr) |
|--------------------------------------------------------|--------------------------------|-----|---------------------------|-------|----------------------|-----------------|
| Mini-HCVD–<br>inotuzumab–<br>blinatumomab <sup>1</sup> | Blinatumomab<br>and inotuzumab | 83  | 68 (60–87)                | 90    | 94                   | 49 (5 yr)       |
| SWOG 1318 <sup>2</sup>                                 | Blinatumomab                   | 31  | 73 (66–86)                | 66    | 92                   | 37 (3 yr)       |
| EWALL-INO <sup>3</sup>                                 | Inotuzumab                     | 131 | 69 (55–84)                | 88    | 57                   | 54 (2 yr)       |
| GMALL Bold <sup>4</sup>                                | Blinatumomab                   | 50  | 65 (56–76)                | 85    | 82                   | 67 (3 yr)       |
| INITIAL-1 <sup>5</sup>                                 | Inotuzumab                     | 43  | 64 (56–80)                | 100   | 71                   | 73 (3 yr)       |
| Alliance <sup>6</sup>                                  | Ino + Blina                    | 33  | 71 (60–84)                | 97    |                      | 67 (2 yr)       |

1. Jen WY, et al. *Blood.* 2023;140:abstract 2878; 2. Advani AS, et al. *J Clin Oncol.* 2022;40:1574-1582; 3. Chevallier P, et al. *Blood.* 2022;140:abstract 2724; 4. Goekbuget N, et al. *Blood.* 2023;140:abstract 964; 5. Stelljes M, et al. *J Clin Oncol.* 2023; 6. Wieduwilt M, et al. *HemaSphere.* 2023;7:abstract S117.

#### **Research Algorithm for Ph-Negative B-ALL in 2024+**



#### ALL 2024+: Conclusions

- Significant improvements across all ALL categories
- Ph-positive ALL
  - Ponatinib > imatinib --- evaluating newer TKI (olverembatinib, asciminib)
  - Blina-ponatinib: 3-year OS 90%, rarely allo-SCT
  - CNS relapses: 15 IT vs systemic chemotherapy in WBC >70K
- Incorporation of Blina/INO in FL therapy highly effective and improves survival
  - HCVAD-blina-ino: 3-year OS 88%
  - Mini-HCVD-INO in older ALL: 5-year OS 50%
  - Exploring chemotherapy-free approach to reduce death in CR in older ALL
- Early eradication of MRD predicts best overall survival
  - NGS > FCM in Ph-negative ALL, NGS > PCR in Ph-positive
- Antibody-based Rxs and CAR Ts both outstanding; not mutually exclusive/competitive (vs); rather complementary
  - CAR T as consolidation post Blina/Ino based regimen
- Future of ALL Rx
  - 1) less chemotherapy and shorter durations
  - 2) combinations with ADCs and BiTEs/TriTEs targeting CD19, CD20, CD22, CD79
  - 3) SQ blinatumomab
  - 4) CAR Ts CD19 and CD19 allo and auto in sequence in CR1 for MRD and replacing ASCT

# **Thank You**

Elias Jabbour MD Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX Email: ejabbour@mdanderson.org Cell: 001.713.498.2929



AYA patients with ALL : What is the current treatment approach for this diverse patient population?

Special considerations for adolescents and young adults and how we can use this experience in adult patients

**Roberta Demichelis** 



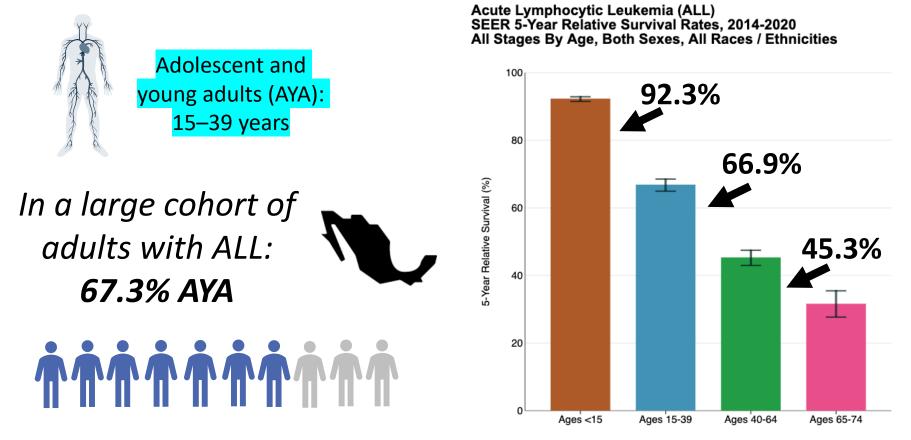


# Global Leukemia Academy 2024

## Adolescent and young adult patients with acute lymphoblastic leukemia

Roberta Demichelis

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán


México

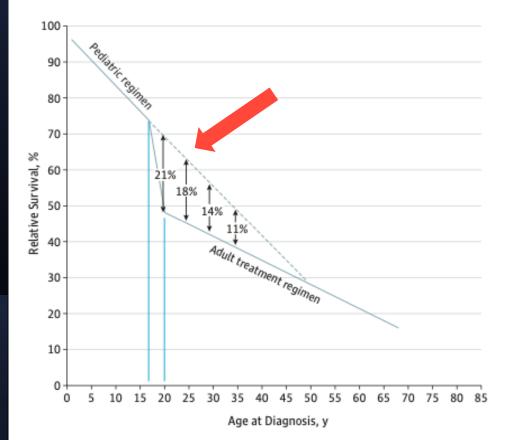




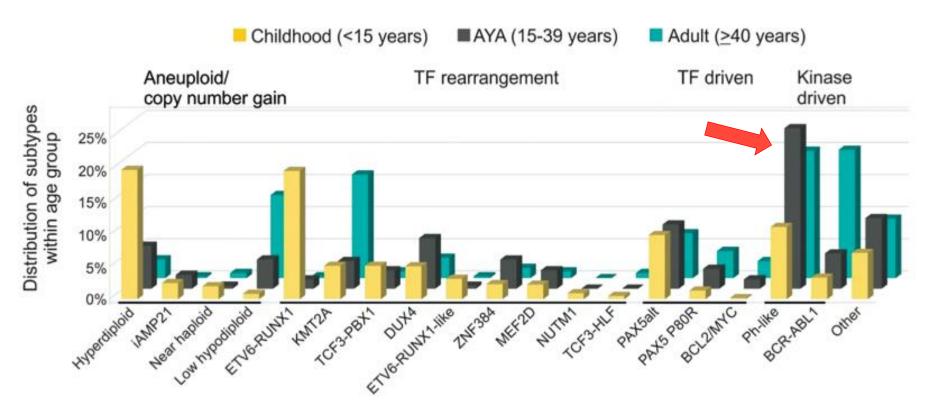
- Honoraria: AbbVie, Amgen, Bristol, Astellas, Pfizer, Servier, Teva
- Advisory board: Astellas, Chinoin, Pfizer, Servier, Teva

# Why is it important to talk about this?



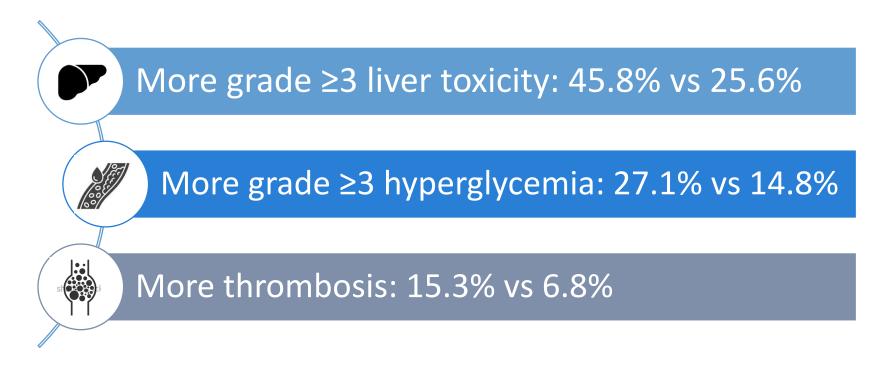

Crespo-Solis E, et al. Cancer Med. 2018;7:2423-2433; National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Updated April 17, 2024. <u>https://seer.cancer.gov/explorer/application.html</u>

# What is happening?


#### More high-risk genetics

#### Less tolerance of treatment

#### **Psychosocial factors**

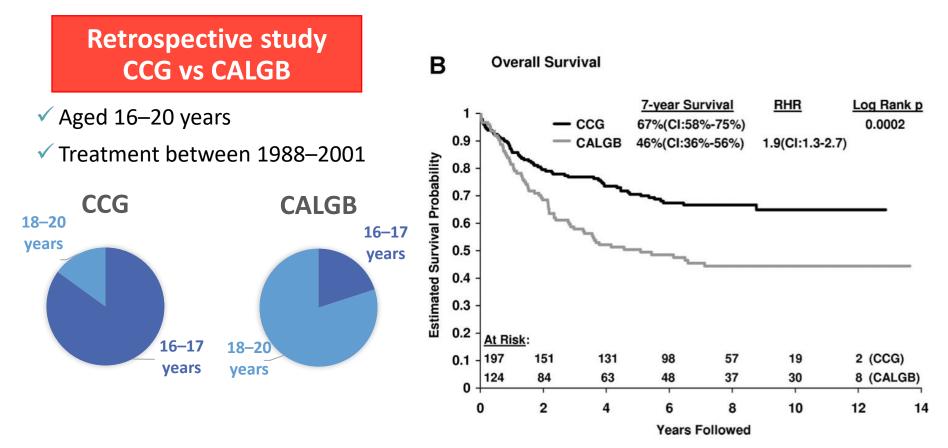



### **Genetic aberrations in ALL**

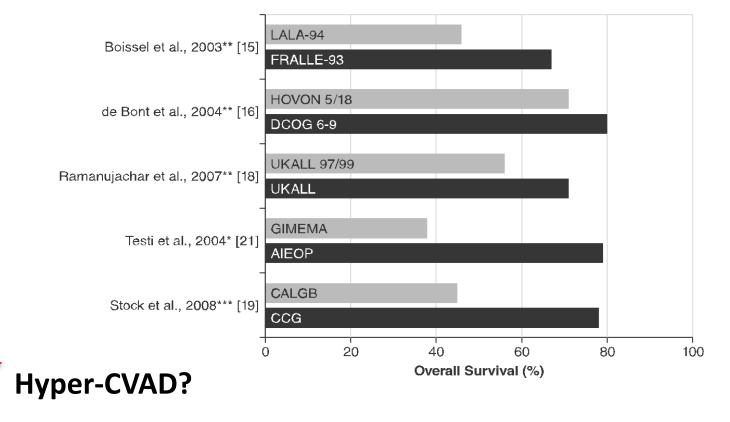


## More asparaginase-related toxicity in AYA vs children

Pediatric ALL cohort (up to 20 years)



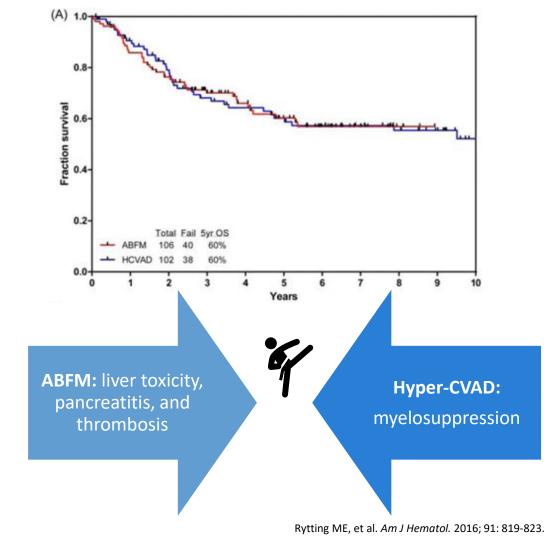

# **Psychosocial barriers**




Bhatia S, et al. J Clin Oncol. 2012;30:2094-2101.

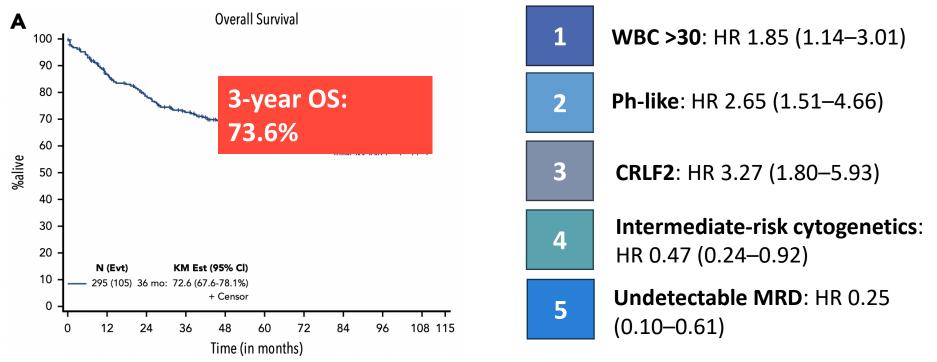
## More than 15 years ago . . .




# **Retrospective analysis by different groups**



# Hyper-CVAD?


MD Anderson, AYA up to 40 years

 ✓ Augmented-BFM (n = 106) vs
 ✓ Historical Hyper-CVAD (n = 102)



# CALGB 10403: a pediatric regimen for older AYAs with ALL

- Based on Children's Oncology Group study AALL0232
- N = 318

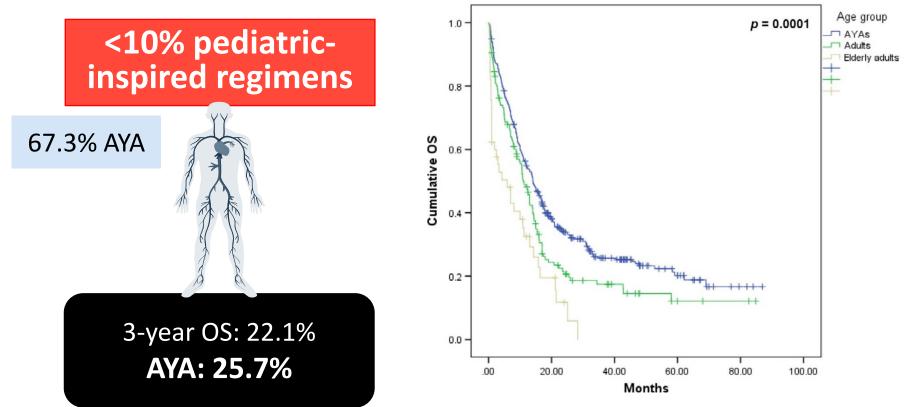


MRD, measurable residual disease.

Stock W, et al. *Blood*. 2019;133:1548-1559.

# Identified problems/barriers in LATAM?

- A lot of ALL in adults (some countries)
- Lack of use of pediatric-inspired regimens
- Treatment-related mortality


2

5

- Poor access to transplant
- Poor access to novel therapies
- More high-risk groups



#### Multicenter retrospective study of adults with ALL in Mexico City (GTLA) 2009–2015



Crespo-Solis E, et al. Cancer Med. 2018;7:2423-2433.

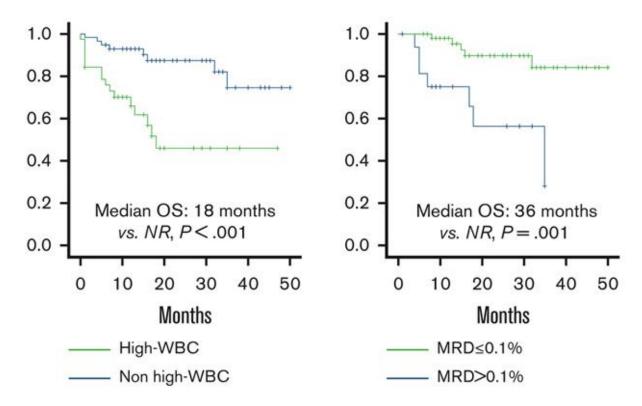




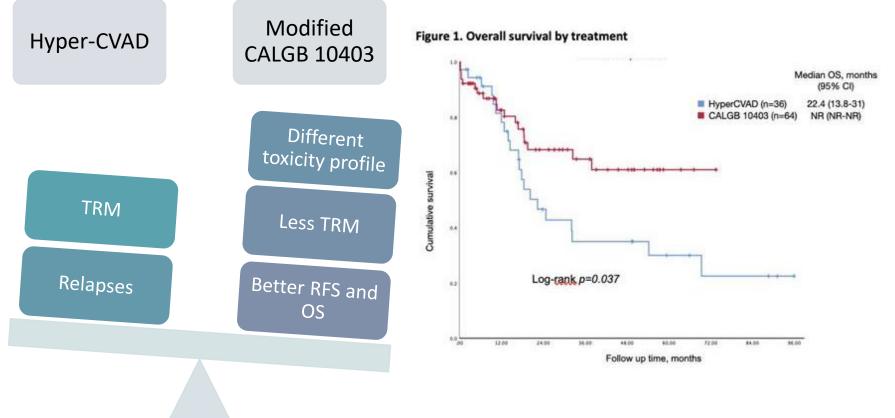
- Predominance of AYA
- Low rate of PIR use
- High infection-related mortality



Adaptation of CALGB 10403




## Educational program with virtual sessions to discuss clinical cases


# A modified CALGB 10403 in AYA with ALL: a multicenter experience in LATAM



# A modified CALGB 10403 in AYA with ALL: a multicenter experience in LATAM



#### In our experience



#### **Final messages**

Email: <u>roberta.demichelisg@incmnsz.mx</u> Twitter: @RobertaDemiche3

- ALL in AYAs is common in Mexico and Central America
  - Importance of local studies
- AYA: population with special biological and psychosocial characteristics
- Benefit of treatment with pediatricinspired regimens
  - Feasibility of implementation in our region
- Local challenges
  - Treatment-associated morbidity and mortality
  - Access to transplantation and novel therapies



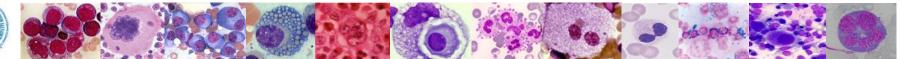
# ALL case-based panel discussion

**Roberta Demichelis** 





**Global Leukemia Academy 2024** 


## **ALL cases**

Fausto A. Rios-Olais

**Hematology Fellow** 

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán

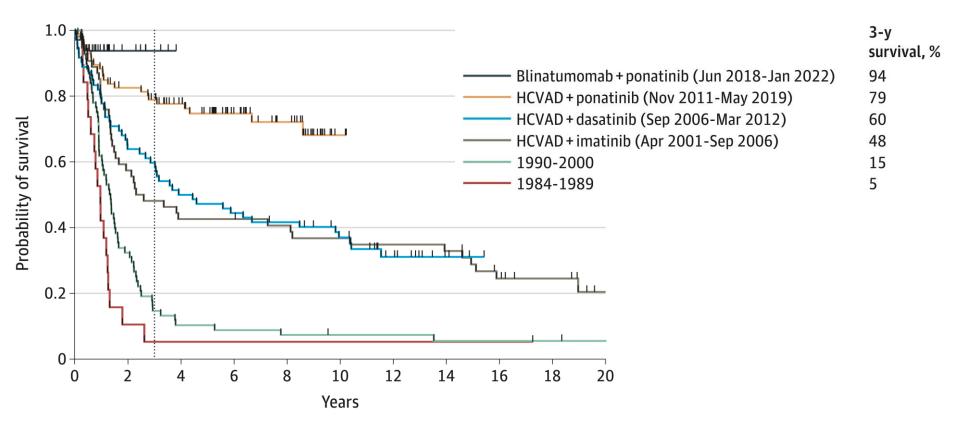




#### Disclosures

Nothing to disclose

#### **Case 1: Adult Ph-positive B-ALL**


September 2023 60-year-old male PMH: hypothyroidism MFC 88% blasts CD34, CD10, CD19, CD22 CD20 20% **RT-PCR** *BCR::ABL* 100% **High-risk cytogenetics** (complex karyotype) ECOG 1

| Parameter  | Value                     |
|------------|---------------------------|
| Hemoglobin | 5.8 g/dL                  |
| WBC        | 32.0 × 10 <sup>9</sup> /L |
| Blasts     | 56%                       |
| Platelets  | 38 × 10 <sup>9</sup> /L   |

Ph-positive CD20-positive B-cell ALL Adult

 $\begin{array}{l} 5=45, XY, t(2;12)(p21;q21), del(5)(q13q15), del(6)(q21q23), -7, t(9;22)(q34;q11.2), del(19)(q13.33)\\ 6=46, XY, der(1), t(9;22;1)(q34;q11.2;q23), t(2;12)(p21;q21), del(6)(q21q23), der(9)\\ (9pter \rightarrow q22::?::1q23 \rightarrow 1qter), der(16), del(19)(q13,33), add(20)(q13.1), add(\underline{22})(q13.1)\\ 3=46, XY, t(2;12)(p21;q21), del(6)(q21q23), t(9;22)(q34;q11.2), del(19)(q13.33)\\ 6=46, XY\end{array}$ 

#### Survival of Ph-positive B-ALL according to treatment



#### **Problems identified in Latin America**

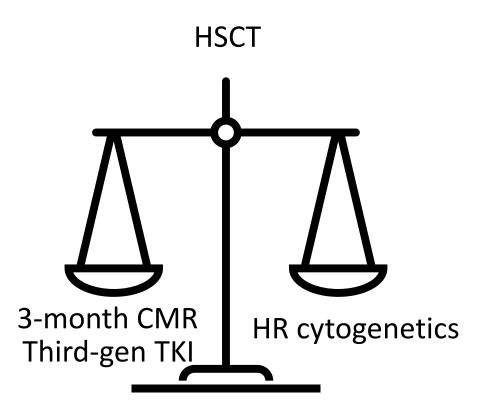
#### Access to second- and third-generation TKIs

- <u>Brazil</u>: n = 123 Ph-positive B-ALL, imatinib as first-line TKI in 97%
- <u>Mexico</u>: n = 119 Ph-positive B-ALL, imatinib as first-line TKI in 79%
- Access to chemotherapy-free regimens
- Early mortality (5.8%–14.6%)

#### **Case 1: Adult Ph-positive CD20-positive B-ALL**

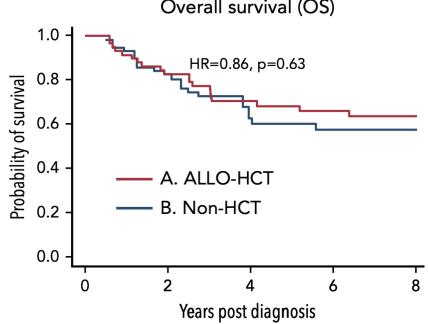
Treatment with Hyper-CVAD and imatinib

> Febrile neutropenia LP: CNS 0




Day 28 BMA: no blasts MRD by MFC 1.6% RT-PCR BCR::ABL 1.9%

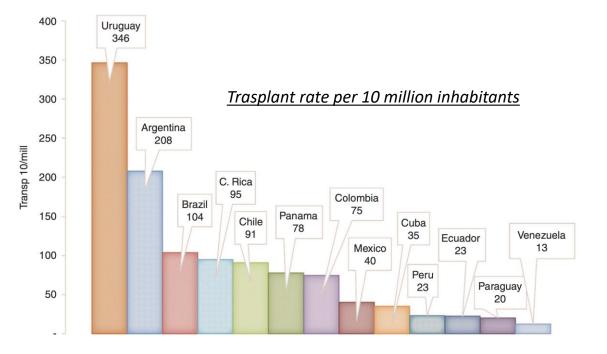
Completed 6 phases of intensive chemotherapy with Hyper-CVAD and imatinib
 4 episodes of febrile neutropenia
 3-month BM RT-PCR *BCR::ABL* 0% (MR4)
 No siblings; 3 haploidentical daughters


## Transplant in 1 CR?

- **3-month CMR** is a strong independent prognostic factor for OS and RFS
- HSCT in 1 CR may not be beneficial in this subgroup of patients with deep responses
- High-risk subset? Ponatinib vs other TKI-treated patients?



## **Transplant in 1 CR?**


- 116 propensity score-matched patients with Ph-positive B-ALL with a 3-month CMR
  - Number 1 TKI was dasatinib, followed by imatinib
  - 46% with additional cytogenetic changes
  - No difference between OS and RFS
  - Higher 5-year CIR in non-HCT (36% vs 16%)
  - Higher 5-year NRM in HCT (21% vs 11%)



**Overall survival (OS)** 

## **Challenges in Latin America**

#### Low transplant rate across many countries

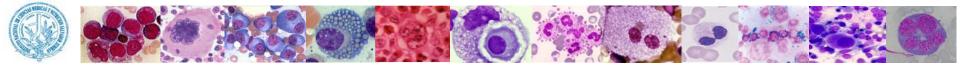


<u>Brazil</u>: n = 123 Ph-positive B-ALL, HSCT in CR1 of 28.8% <u>Mexico</u>: n = 119 Ph-positive B-ALL, HSCT in CR1 of 11.8%

Jaimovich G, et al. Bone Marrow Transplant. 2021;56:2382-2388; Silva WF, et al. Leuk Res. 2021;110:106666; Rodriguez-Rodriguez S, et al. Blood 2023;142(suppl 1):4204.

#### Discussion

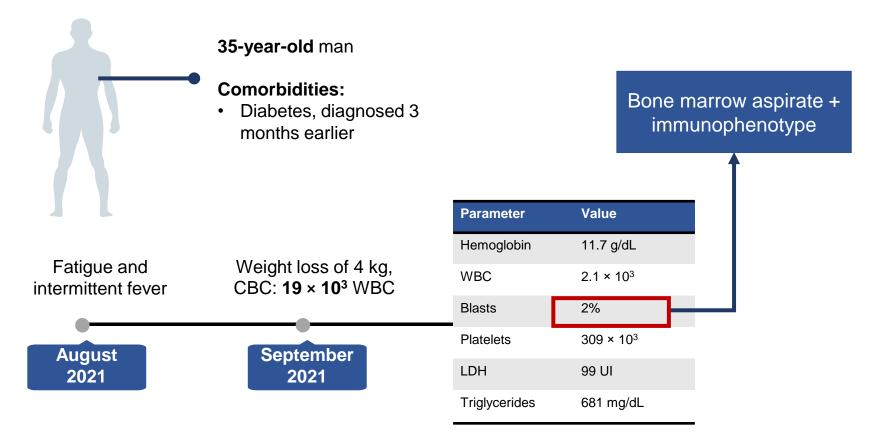
- Rituximab added to standard chemotherapy with a TKI in Phpositive CD20-positive B-ALL
- Impact of additional chromosomal abnormalities and/or complex karyotype in prognosis and treatment decisions in Phpositive B-ALL
- TKI treatment after SCT: how long is enough?

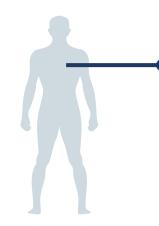



**Global Leukemia Academy 2024** 

## **ALL cases**

Jessica Zalapa

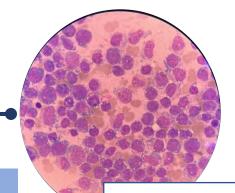

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán




#### **Disclosures**

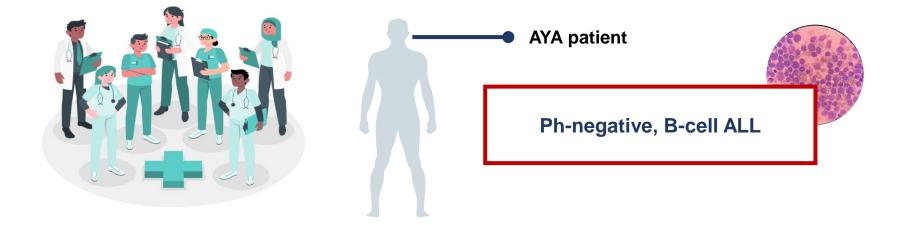
• Nothing to disclose








35-year-old man


Bone marrow aspirate + immunophenotype

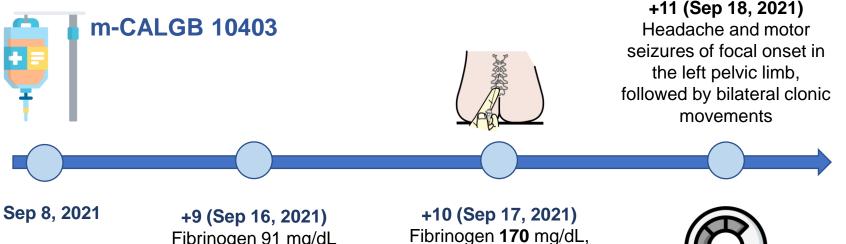
- Karyotype: 46, XY
- **FISH:** 11q23 and t(9;22) negative
- PCR BCR::ABL:
   negative




64.8% lymphoblasts IF: CD45wk, CD34+, CD10+, CD19+, CD20+

B-cell acute lymphoblastic leukemia




1. Best frontline treatment?





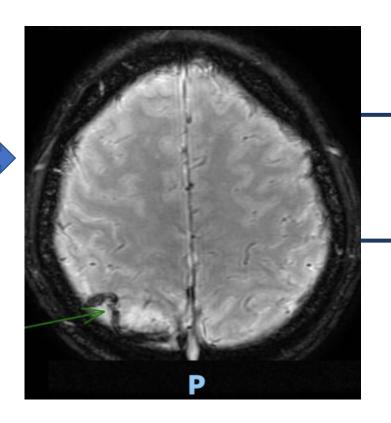
Pre-chemotherapy assessment:

- TTE: normal EF
- FibroScan: F0S3
- HIV and chronic hepatitis viruses: negative



To prepare lumbar puncture:

Fibrinogen 91 mg/dL


- Cryoprecipitate transfusion
- Thromboprophylaxis was suspended

Lumbar puncture; traumatic

platelets  $124 \times 10^3$ 







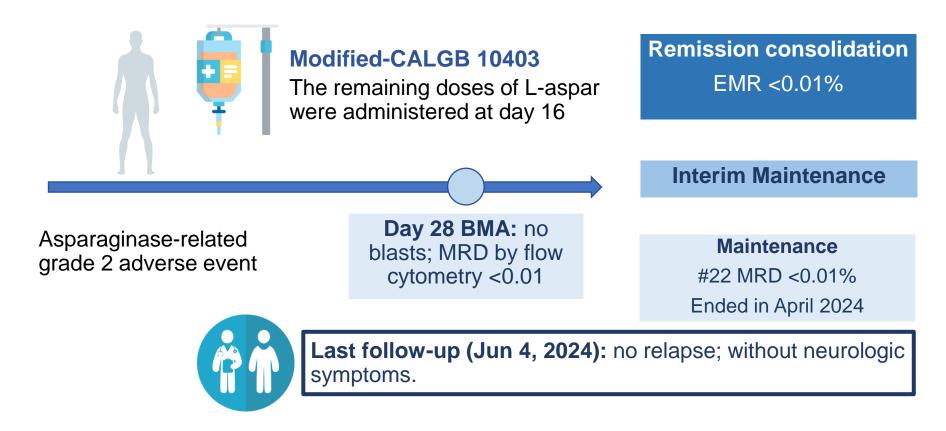
#### Right cortical vein thrombosis

## Anticoagulation with LMWH was started

- Testing for antiphospholipid antibody syndrome was negative
- Factor V Leiden, antithrombin III, and other causes of hereditary thrombophilia were ruled out



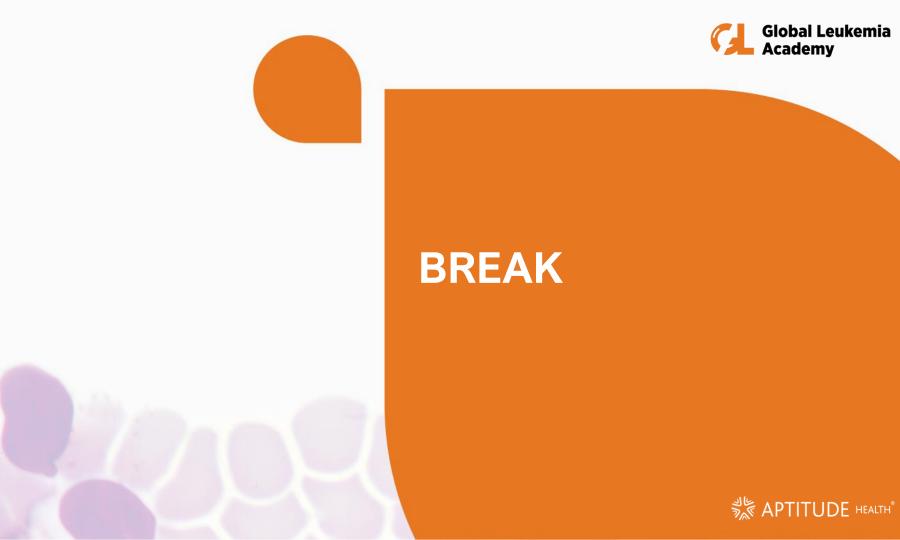
Remission of headache, without new events of seizures


## **Questions for the audience**






Would it be feasible for the patient to continue with an asparaginase-based regimen?


- Yes
- No



## **Questions for the audience**



- How to manage asparaginase-associated hypofibrinogenemia?
- Which are the main risk factors for asparaginase-associated thrombosis?
- When to restart asparaginase administration after associated thrombosis?
- Contraindications to resume asparaginase administration?
- Finally . . . what about thromboprophylaxis?



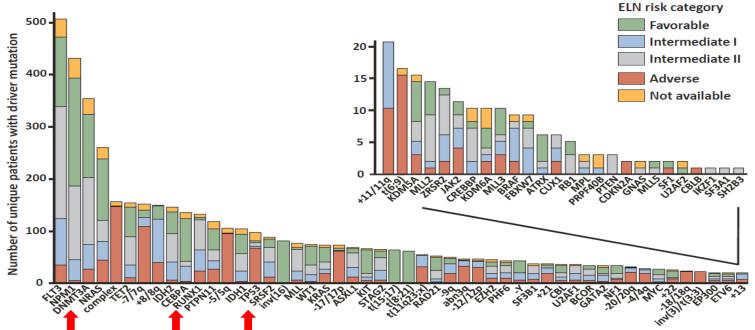


Genetic characterization and risk stratification of AML; role of *FLT3* and *IDH* in AML and special considerations for young and fit patients

Naval Daver





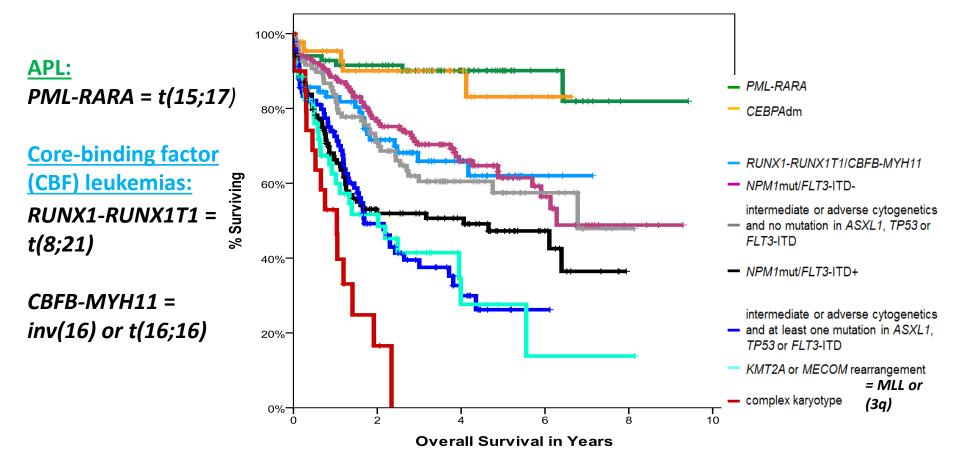



#### Optimizing the Incorporation of Targeted Therapies in the Treatment of AML

#### **GLA LATAM 2024**

Naval Daver, MD Director, Leukemia Research Alliance Program, Professor of Medicine Department of Leukemia MD Anderson Cancer Center

#### Major advances in understanding the cytogenetic and mutational landscape of AML



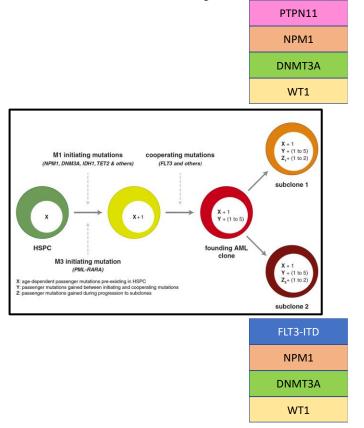

• Targeted resequencing of 111 myeloid cancer genes (combined with cytogenetic profiles) in 1540 AML

- 5236 driver mutations (i.e., fusion genes, copy number alterations, gene mutations) involving 77 loci
- 6 genes mutated in >10% pts; 13 genes 5–10% pts; 24 genes 2–5% pts; 37 genes <2% pts

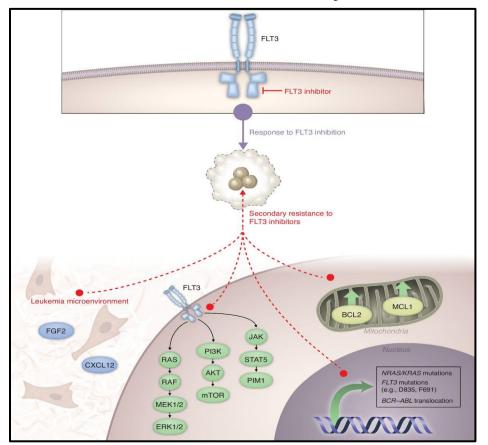
#### Papaemmanuil E, et al. N Engl J Med. 2016;374:2209-2221.

#### Using genomics to improve AML prognostication and AlloSCT decisions



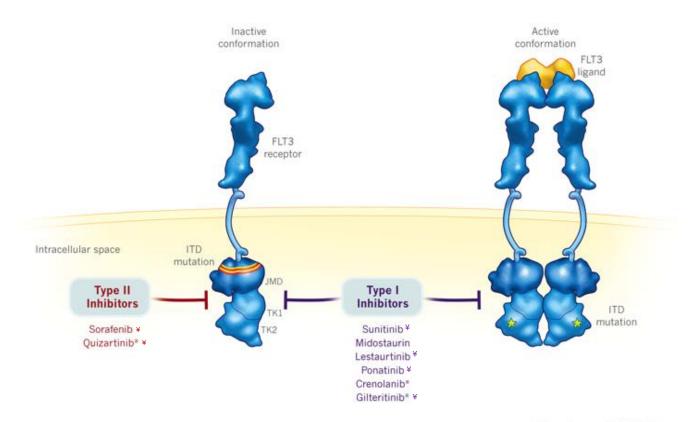

Haferlach C, et al. Blood. 2016;128(22):286.

#### Using genomics to improve AML therapy


- FLT3 mutations add FLT3 inhibitor (midostaurin, sorafenib, quizartinib, gilteritinib), consider allo-SCT
- IDH1/2 mutations add IDH inhibitor: enasidenib (AG-221/IDH2 inhibitor), ivosidenib or olutasidenib (IDH1 inhibitors)
- *MLL*r (*KMT2A*r) Menin inhibitors (Syndax, Kura, Sumitomo, J&J, BMF, and others)
- *NPM1* mutation in diploid CG Menin inhibitors, Ara-C sensitivity, VEN sensitivity
- TP53 mutation consider decitabine 10 days, new agents (APR, CD47), IO therapies, early referral to allo-SCT
- RAS mutations no targetable therapies in AML, common resistance pathway to VEN, FLT3i, IDHi therapies; consider clinical trials

## 1. Targeting FLT3 Mutations

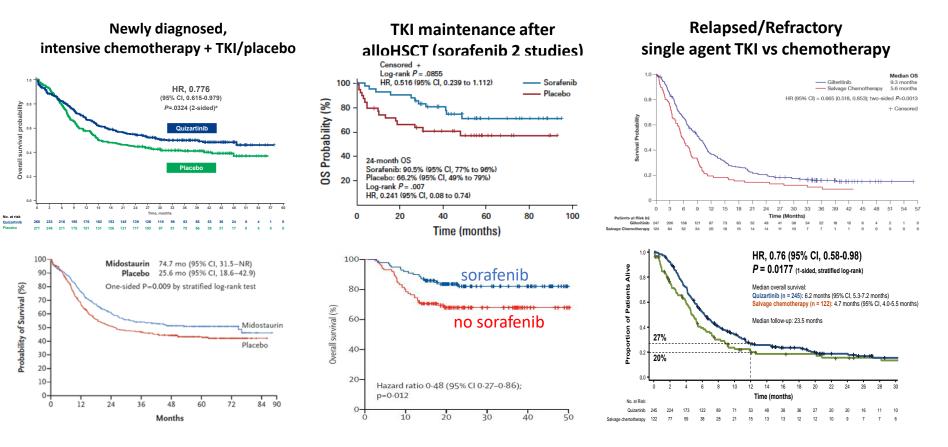
Combination approaches may help overcome heterogenous mechanisms of resistance: Many *FLT3* relapses are *FLT3*wt and *FLT3* is almost always a late hit




- *FLT3* mutations are late hits and frequently subclonal
- Can be gained or lost at relapse/progression



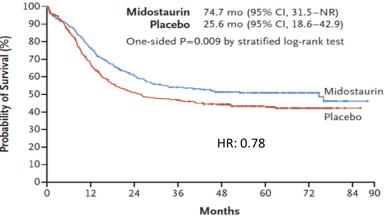
#### Short N....Daver N., Cancer Discov. 2020 Apr;10(4):506-525


Type 1: Bind receptor "active" conformation near ATP pocket or activation loop: ITD and TKD Type 2: Bind receptor "inactive" conformation near ATP pocket – ITD only

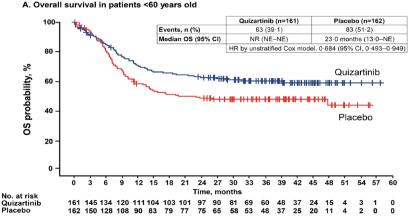


\* Second-generation FLT3 inhibitors

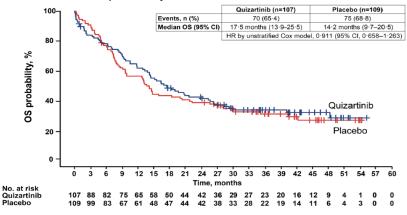
#### Daver N et al, Leukemia. 2019 Feb;33(2):299-312


#### FLT3 inhibition improves survival in fit patients across the treatment spectrum



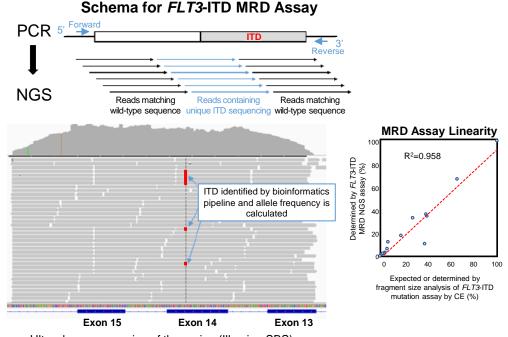

Erba HP, et al. EHA 2022, abstract S100; Stone RM, et al. N Engl J Med. 2017;377(5):454-464; Burchert A, et al. J Clin Oncol. 2020;38(26):2993-3002; Xuan Y, et al. Lancet Oncol. 2020;21(9):1201-1212; Perl AE, et al. Blood. 2022;139(23):3366-3375; Cortes JE, et al. Lancet Oncol. 2019;20(7):984-997.

#### Younger patients (<60 years) particularly benefit from quizartinib


#### RATIFY, all <60 years old and 25% FLT3-TKD: 4-yr OS 51%



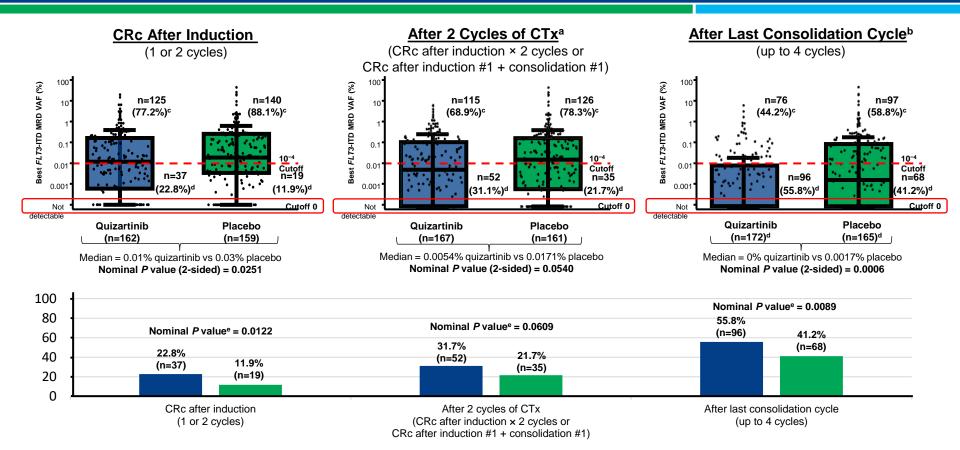
#### QuANTUM-First: <60 years old and all FLT3-ITD: 4-yr OS 60%




B. Overall survival in patients ≥60 years old



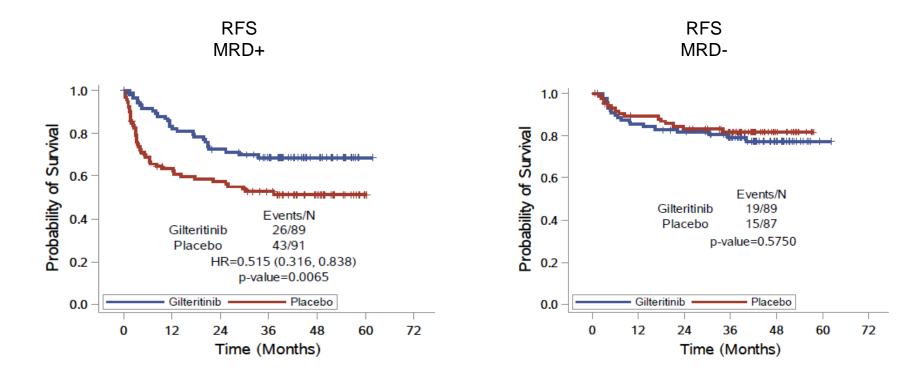
#### Measurable residual disease (MRD) and QuANTUM-First


- MRD
  - Key prognostic factor in AML<sup>1-3</sup>
  - Conventional PCR for *FLT3*-ITD less useful due to insensitivity (~1%)<sup>2</sup>
- PCR-NGS is sensitive and specific for FLT3-ITD MRD (targeting exons 14-15)<sup>2,4</sup>:
  - PCR amplification step<sup>2</sup>
  - Amplicons analyzed by NGS<sup>2</sup>
  - Developed specifically for this trial<sup>2,4</sup>
  - LLOQ = 10<sup>-4</sup>
  - LLOD = 2 × 10<sup>-6</sup>
  - Often identifies multiple ITD sequences



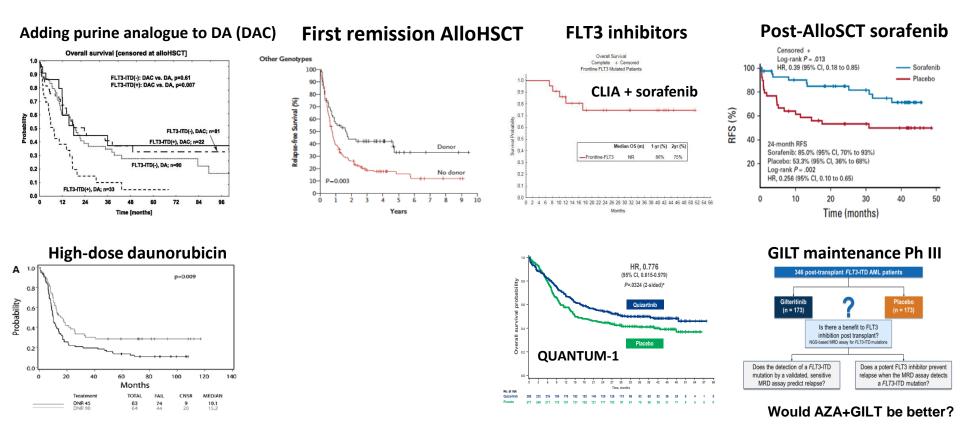
Ultra-deep sequencing of the region (Illumina SBS)

AML, acute myeloid leukemia; CE, capillary electrophoresis; CR, complete remission; CRc, composite complete remission; FLT3-ITD, FMS-like tyrosine kinase 3–internal tandem duplication; ITD, internal tandem duplication; LLOD, lower limit of detection; LLOQ, lower limit of quantification; MRD, measurable residual disease; NGS, next-generation sequencing; PCR, polymerase chain reaction. 1. Joncen-Lavencic M, et al. *N Enol J* Med. 2018;37(8):1189-1199. 2. Levis M, et al. Blood Adv, 2018;2(8):825-831, 3. Döhner H, et al. *Blood*, 2022;140(12):1345-1377, 4. Levis M, et al. *Blood*, 2020:135(1):75-78.


#### Across the treatment course, quizartinib leads to deeper responses and more frequently eliminates detectable MRD than placebo



Post hoc analysis. <sup>®</sup>Defined as 2 cycles of induction CTx or 1 cycle of induction CTx + 1 cycle of consolidation CTx. <sup>I</sup>Include samples up to end of consolidation, including from induction. <sup>C</sup>Percentage of patients with *FLT3*-ITD MRD VAF>0 among CRc patients with MRD data. <sup>d</sup>Percentage of patients with *FLT3*-ITD MRD VAF>0 among CRc patients with MRD data. <sup>e</sup>Fisher's exact test. CRc, composite complete remission; CTx, chemotherapy; *FLT3*-ITD, FMS-like tyrosine kinase 3-internal tandem duplication; MRD, measurable residual disease; VAF, variant allele frequency.



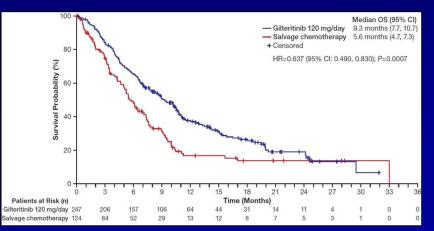

Effect of detectable MRD on RFS by study arm (51% had peri-HSCT MRD detectable using 10e6 *FLT3* assay

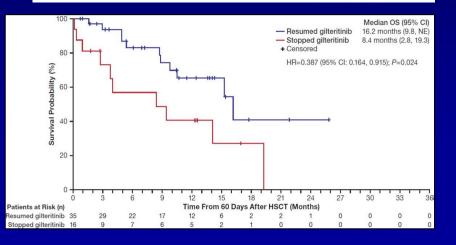


Levis M et al, LBA EHA 2023

## Improving outcomes in frontline young/fit *FLT3*-ITD+ AML progress over last 15 years: 3- to 5-year OS now 65%–75% compared with 20%– 25%




### **R/R AML**


#### ADMIRAL trial: Gilteritinib vs salvage chemo in relapsed AML

- 371 patients with relapsed *FLT3*-mutated AML randomized to
  - Gilteritinib 120 mg/day (N = 247)
  - Salvage chemotherapy (N = 124)

| Response                  | Gilteritinib      | Salvage<br>Chemotherapy |
|---------------------------|-------------------|-------------------------|
| CR, n (%)                 | 52 (21)           | 13 (11)                 |
| CRc [CR, CRi, CRp], n (%) | 134 ( <b>54</b> ) | 27 ( <b>22</b> )        |
| CR/CRh, n(%)              | 84 ( <b>34</b> )  | 19 ( <b>15</b> )        |

|                      |                                        | Gilteritinib 120 mg/day<br>Event/N | Salvage Chemotherapy<br>Event/N | Hazard Ratio | HR (95% CI)          |
|----------------------|----------------------------------------|------------------------------------|---------------------------------|--------------|----------------------|
|                      | FLT3-ITD alone                         | 145/215                            | 81/113                          |              | 0.623 (0.473, 0.820  |
| Central FLT3         | FLT3-TKD alone                         | 16/21                              | 8/10                            |              | 0.693 (0.293, 1.643  |
| Mutation Type        | FLT3-ITD and FLT3-TKD                  | 6/7                                | 0                               |              | NE (NE, NE)          |
| Prior Use of a       | Yes                                    | 26/32                              | 11/14                           |              | 0.705 (0.346, 1.438  |
| FLT3 Inhibitor       | No                                     | 145/215                            | 179/110                         |              | 0.620 (0.470, 0.818  |
| Cytogenetic Risk     | Intermediate                           | 119/182                            | 63/89                           |              | 0.605 (0.444, 0.824  |
| Status               | Unfavorable                            | 22/26                              | 7/11                            |              | 1.630 (0.690, 3.848  |
|                      | Other                                  | 27/35                              | 19/23                           |              | 0.462 (0.254, 0.843  |
|                      | Relapse ≤6 months after allogenic HSCT | 24/31                              | 16/17                           |              | 0.382 (0.195, 0.747) |
| Response to          | Relapse >6 months after allogenic HSCT | 10/17                              | 4/8                             |              | 0.860 (0.264, 2.803  |
| First-line Therapy   | Primary refractory without HSCT        | 70/98                              | 28/48                           |              | 0.990 (0.632, 1.550  |
| per IRT              | Relapse ≤6 months after CRc and no HSC | T 47/67                            | 28/34                           |              | 0.492 (0.304, 0.795  |
|                      | Relapse >6 months after CRc and no HSC | T 20/34                            | 14/17                           |              | 0.492 (0.247, 0.978) |
| Pre-selected         | High intensity                         | 96/149                             | 52/75                           |              | 0.663 (0.471, 0.932  |
| Chemotherapy per IRT | Low intensity                          | 75/98                              | 38/49                           |              | 0.563 (0.378, 0.839  |





Perl AE, et al. N Engl J Med. 2019;381:1728-1740.

## Gilteritinib outcomes following prior TKI therapy: ADMIRAL and CHRYSALIS trials

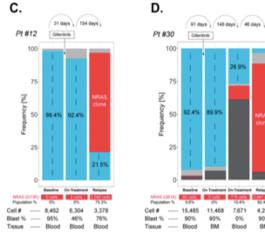
#### CLINICAL OUTCOMES IN PATIENTS WITH R/R *FLT3*+ AML BASED ON PRIOR TKI THERAPY: CHRYSALIS TRIAL

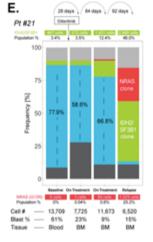
| 120-mg Gilteritinib        |                          |                             |  |  |
|----------------------------|--------------------------|-----------------------------|--|--|
| Response<br>Outcome, n (%) | With Prior TKI<br>(n=15) | Without Prior TKI<br>(n=41) |  |  |
| CR                         | 1 (7)                    | 6 (15)                      |  |  |
| CRp                        | 1 (7)                    | 1 (2)                       |  |  |
| CRi                        | 6 (40)                   | 11 (27)                     |  |  |
| PR                         | 1 (7)                    | 3 (7)                       |  |  |
| NR                         | 5 (33)                   | 18 (44)                     |  |  |
| NE                         | 1 (7)                    | 2 (5)                       |  |  |
| CRcª                       | 8 (53)                   | 18 (44)                     |  |  |

| 200-mg Gilteritinib        |                          |                             |  |  |
|----------------------------|--------------------------|-----------------------------|--|--|
| Response<br>Outcome, n (%) | With Prior TKI<br>(n=18) | Without Prior TKI<br>(n=71) |  |  |
| CR                         | 0                        | 10 (14)                     |  |  |
| CRp                        | 2 (11)                   | 6 (8)                       |  |  |
| CRi                        | 4 (22)                   | 14 (20)                     |  |  |
| PR                         | 1 (6)                    | 6 (8)                       |  |  |
| NR                         | 10 (56)                  | 25 (35)                     |  |  |
| NE                         | 1 (6)                    | 10 (14)                     |  |  |
| CRcª                       | 6 (33)                   | 30 (42)                     |  |  |

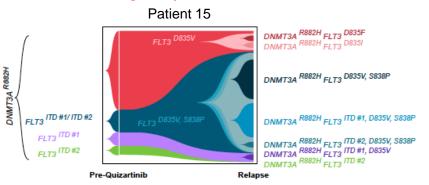
<sup>a</sup>Defined as the sum of the patients who achieved CR, Cri, and CRp

#### CLINICAL OUTCOMES IN PATIENTS WITH R/R FLT3+ AML BASED ON PRIOR TKI THERAPY: ADMIRAL TRIAL

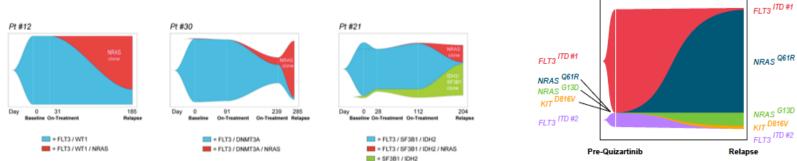

| Response<br>Outcome, n (%) | With Prior TKI<br>(n=45)GilteritinibChemotherapy<br>(n=31) |            | Without Prior TKI<br>(n=326) |                         |  |
|----------------------------|------------------------------------------------------------|------------|------------------------------|-------------------------|--|
|                            |                                                            |            | Gilteritinib<br>(n=216)      | Chemotherapy<br>(n=110) |  |
| CR                         | 6 (19)                                                     | 0          | 46 (21)                      | 13 (12)                 |  |
| CRp                        | 4 (13)                                                     | 0          | 15 (7)                       | 0                       |  |
| CRi                        | 5 (16)                                                     | 3 (21)     | 58 (27)                      | 11 (10)                 |  |
| PR                         | 5 (16)                                                     | 1 (7)      | 28 (13)                      | 4 (4)                   |  |
| NR                         | 9 (29)                                                     | 4 (29)     | 57 (26)                      | 39 (35)                 |  |
| NE                         | 2 (6)                                                      | 6 (43)     | 12 (6)                       | 43 (39)                 |  |
| CRcª                       | 15 (48)                                                    | 3 (21)     | 119 (55)                     | 24 (22)                 |  |
| Overall Survival, months   |                                                            |            |                              |                         |  |
| <u>Median</u>              | <u>6.5</u>                                                 | <u>4.7</u> | 9.6                          | 6.0                     |  |
| HR (95 % CI)               | 0.671 (0.328–1.376)                                        |            | 0.625 (0.474-0.824)          |                         |  |


<sup>a</sup>Defined as the sum of the patients who achieved CR, Cri, and CRp

- Retrospective analysis of CHRYSALIS and ADMIRAL trials
- Analysis showed patients with prior TKI use were able to achieve remission with gilteritinib, but OS appeared to be numerically lower: 6.5 months

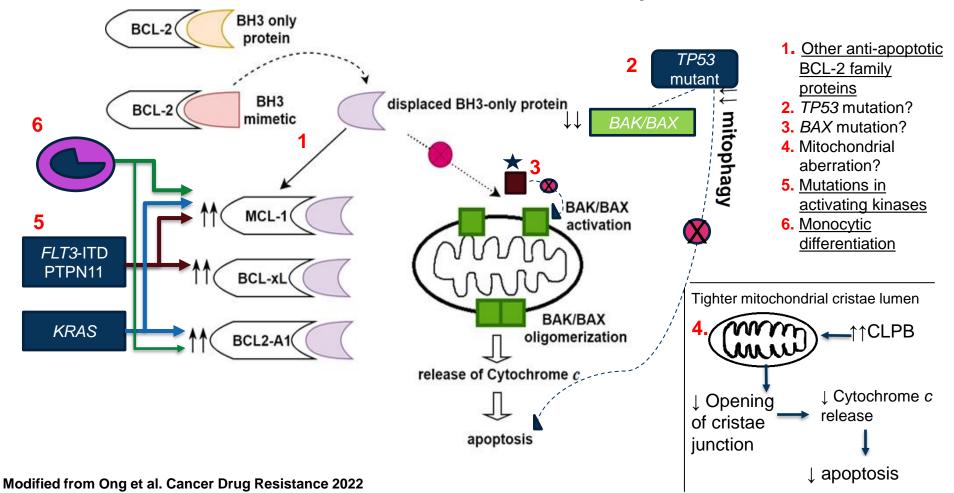

# Resistance to second-generation FLT3 TKIs is highly polyclonal: Single-agent FLT3is, no matter how potent, are unlikely to be curative

Gilteritinib (Type I): Activation of parallel prosurvival pathways (RAS/MAPK), BCR-ABL

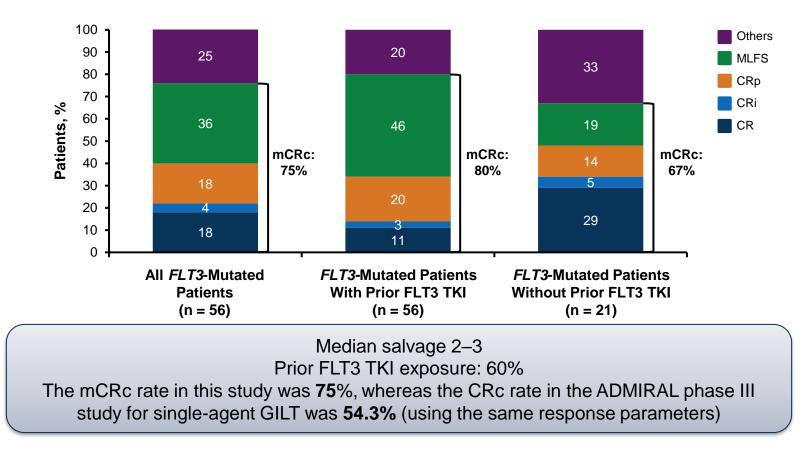





## Quizartinib (Type II): On target resistance through acquisition of *FLT3*-TKD




Patient 16




McMahon CM, et al. Cancer Discov. 2019 Aug;9(8):1050-1063; Peretz C, Catherine Smith, et al. Blood Adv. 2021 Mar 9;5(5):1437-1441

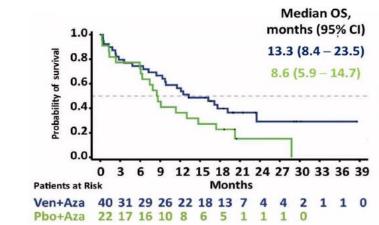
#### Venetoclax resistance: Road to "triplets"



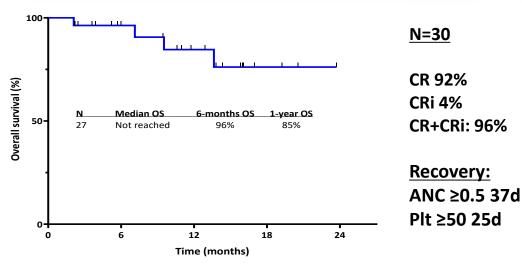
#### VEN + GILT: A backbone to build a frontline triplet<sup>1,2</sup>



1. Daver N et al. J Clin Oncol. 2022;40:4048-4059. 2. Perl AE et al. New Engl J Med. 2019;381:1728-1740.

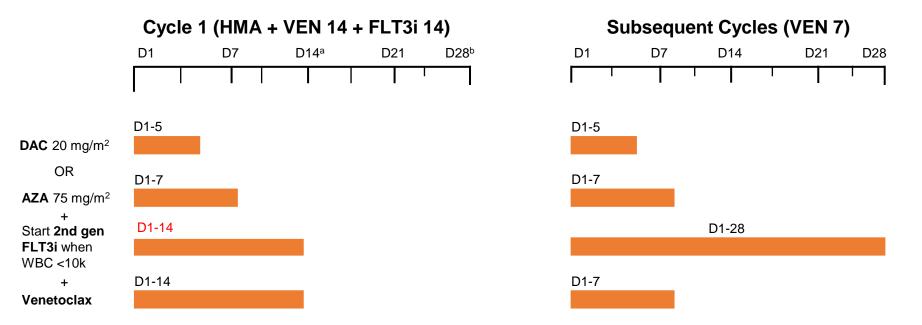

# Aza + Ven + Gilteritinib in frontline *FLT3*-mutated AML: Healthier marrow, potentially more curative, and better tolerated

#### Induction


Azacitidine 75 mg/m<sup>2</sup> IV/SC on D1-7 Venetoclax R/U to goal 400 mg D1-14 Gilteritinib 80 mg on D1-14 (if blasts <5% on D14, hold both GV; if blasts >5% on D14 continue GV and repeat BM in 1 week) **Consolidation (up to 24 cycles)** 

Azacitidine 75 mg/m<sup>2</sup> IV/SC on D1-5 Venetoclax 400 mg on D1-7 Gilteritinib 80 mg on D1-28

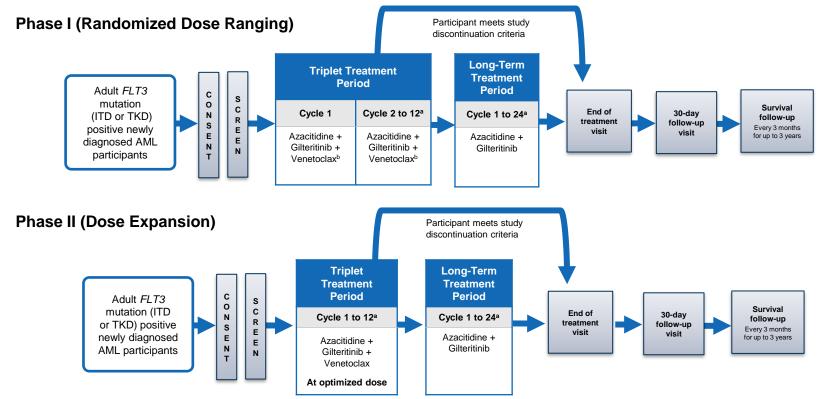
Historical perspective (Konopleva M et al CCR 2023) AZA+VEN in FLT3m frontline AML (N=40)




#### Short N, Daver N, et al, JCO Jan 2024



# Dosing, duration, and response evaluation timing with FLT3 triplets (dose optimization is <u>critical</u>)


**Ongoing Prospective Trial Dosing:** AZA + VEN + GILT; PI: Nick Short; DAC + VEN + Quiz; PI: Musa Yilmaz



<sup>a</sup> C1 D14: Perform bone marrow biopsy; if bone marrow shows <5% blasts and/or <5% cellularity/insufficient sample → stop venetoclax on D14. <sup>b</sup> Repeat a C1 D28 bone marrow on all patients to confirm remission. If C1 D28 bone marrow confirms remission and ANC <0.5 and/or platelet <50K, consider interrupting FLT3i and using filgrastim to enhance count recovery.

Daver N et al. Blood Cancer J. 2021;11:104.

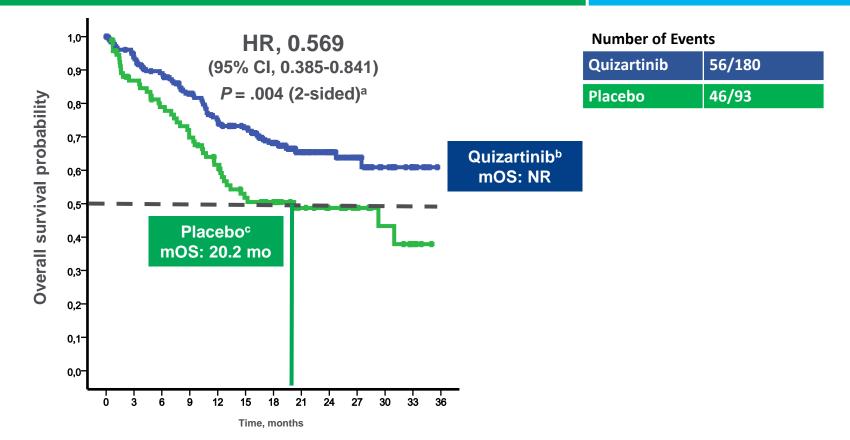
# VICEROY: Phase II multicenter frontline optimization trial of azacitidine, venetoclax, and gilteritinib (N = 80-100)



<sup>a</sup> Participants enrolled in phase I or phase II and receiving clinical benefit can continue treatment under the triplet treatment period beyond 12 cycles and under long-term treatment beyond 24 cycles. <sup>b</sup> The dose/duration of gilteritinib and venetoclax administration will depend on the dose level evaluated during phase I. The venetoclax dose will be either 200 mg or 400 mg.

#### **PIs : J Altman and N Daver**

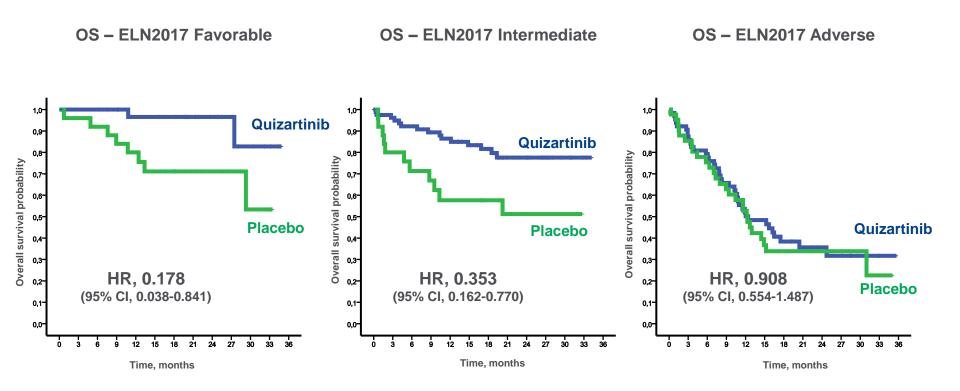
## Preliminary results of QUIWI: A double blinded, randomized clinical trial comparing standard chemotherapy plus quizartinib versus placebo in adult patients with newly diagnosed *FLT3*-ITD negative AML


Montesinos P<sup>1</sup>, Rodríguez-Veiga R<sup>1</sup>, Bergua JM<sup>2</sup>, Algarra Algarra JL<sup>3</sup>, Botella C<sup>4</sup>, Pérez-Simón JA<sup>5</sup>, Bernal T<sup>6</sup>, Tormo M<sup>7</sup>, Calbacho M<sup>8</sup>, Salamero O<sup>9</sup>, Serrano J<sup>10</sup>, Noriega V<sup>11</sup>, López-López JA<sup>12</sup>, Vives S<sup>13</sup>, Colorado M<sup>14</sup>, López-Lorenzo JL<sup>15</sup>, Vidriales MB<sup>16</sup>, García-Boyero R<sup>17</sup>, Olave MT<sup>18</sup>, Herrera P<sup>19</sup>, Arce O<sup>20</sup>, Barrios M<sup>21</sup>, Sayas MJ<sup>22</sup>, Polo M<sup>23</sup> Gómez-Roncero MI<sup>24</sup>, Barragan E<sup>1</sup>, Ayala R<sup>8</sup>, Chillon MC<sup>16</sup>, Calasanz MJ<sup>25</sup>, Boluda B<sup>1</sup>, Martínez-Cuadrón D<sup>1</sup>, Labrador J<sup>26</sup>.

<sup>1</sup>Hospital Universitari I Politécnic La Fe, Valencia, Spain; <sup>2</sup>Hospital San Pedro de Alcántara, Cáceres, Spain; <sup>3</sup>Hospital General Universitario de Albacete, Albacete, Albacete, Spain; <sup>4</sup>Hospital General Universitario de Alicante, Alicante, Spain; <sup>5</sup>Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS) / CISC, Universidad de Sevilla, Sevilla, Spain; <sup>6</sup>Hospital Universitario Central de Asturias, Oviedo, Spain; <sup>7</sup>Hospital Clínico Universitario de Valencia, Valencia, Spain; <sup>8</sup>Hospital Universitario 12 de Octubre, Madrid, Spain; <sup>9</sup>Hospital Universitari Vall d'Hebron, Barcelon, Spain; <sup>10</sup>Hospital Universitario Reina Sofía, Córdoba, Spain;



<sup>11</sup>Hospital Universitario de A Coruña, La Coruña, Spain; <sup>12</sup>Hospital Universitario de Jaen, Jaén, Spain; <sup>13</sup>Hospital Germans Trias i Pujol-ICO, Badalona, Spain; <sup>14</sup>Hospital Universitario Marqués de Valdecilla, Santander, Spain; <sup>15</sup>Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; <sup>16</sup>Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain; <sup>17</sup>Hospital General Universitario de Castellón, Castellón de la Plana, Spain; <sup>18</sup>Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain; <sup>19</sup>Hospital Universitario Ramón y Cajal, Madrid, Spain; <sup>20</sup>Hospital Universitario Basurto, Bilbao, Spain; <sup>21</sup>Hospital Universitario Regional de Málaga. Málaga. Spain; <sup>22</sup>Hospital Universitario Doctor Peset, Valencia, Spain; <sup>23</sup>Hospital Clínico San Carlos, Madrid, Spain; <sup>24</sup>Hospital Virgen de la Salud de Toledo, Toledo, Spain; <sup>25</sup>CIMA LAB Diagnostics, Universidad de Navarra, Pamplona, Spain; <sup>26</sup>Hospital Universitario de Burgos, Burgos, Spain.

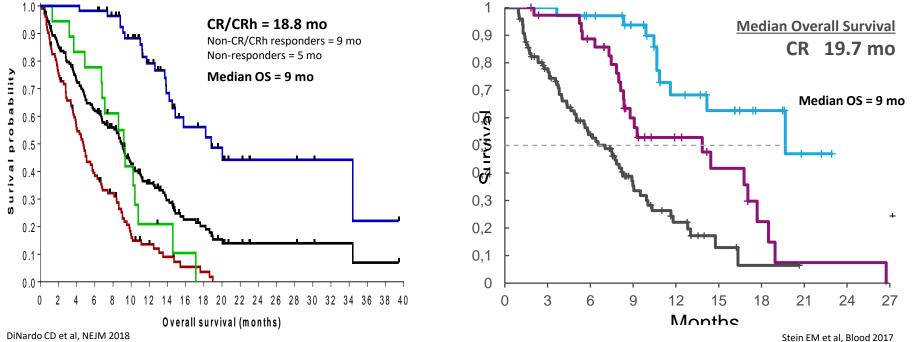

#### Secondary endpoint (interim analysis): Overall survival



HR, hazard ratio; mOS, median overall survival; NR, not reached.

<sup>a</sup> P value was calculated using a stratified log-rank test. <sup>b</sup> Median follow-up time for quizartinib arm, 21.5 months. <sup>c</sup> Median follow-up time for placebo arm, 20.3 months.

#### Sensitivity analysis: Overall survival according to ELN2017 risk




## 2. Targeting IDH1 and IDH2

## IDH inhibitor monotherapy in R/R AML: F1H phase I study outcomes

#### Ivosidenib (IDH1 inhibitor)

### CR rate ~20% CR/CRh rate ~30% Enasidenib (IDH2 inhibitor) ORR ~40%



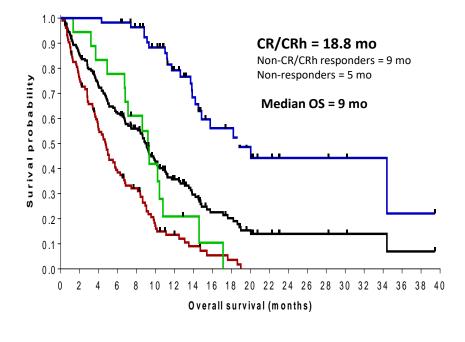
#### **OLUTA R/R monotherapy response rates**

| Response rates                                        | Efficacy evaluable population<br>(N = 147) |
|-------------------------------------------------------|--------------------------------------------|
| CR* or CRh                                            |                                            |
| n (%) [95% CI]                                        | 51 (35) [27.0-43.0]                        |
| Median time to CR/CRh, months (range)                 | 1.90 (0.9-5.6)                             |
| CR*                                                   |                                            |
| n (%) [95% CI]                                        | 47 (32) [24.5-40.2]                        |
| Median time to CR, months (range)                     | 2.80 (0.9-7.4)                             |
| Overall response                                      |                                            |
| n (%) [95% CI]                                        | 71 (48) [40.0-56.7]                        |
| Median time to first overall response, months (range) | 1.90 (0.9-10.2)                            |
| Best overall response, n (%)                          |                                            |
| CR*                                                   | 47 (32)                                    |
| CRh                                                   | 4 (3)                                      |
| CRi                                                   | 15 (10)                                    |
| PR                                                    | 3 (2)                                      |
| MLFS                                                  | 2 (1)                                      |
| SD**                                                  | 42 (29)                                    |
| Progressive disease                                   | 10 (7)                                     |
| Not evaluable / not done                              | 6 (4) / 18 (12)                            |
|                                                       |                                            |

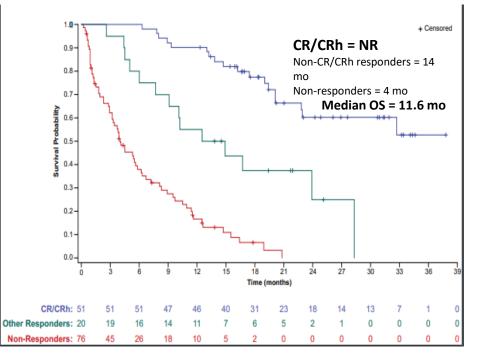
CR/CRh rate of 35% (compared to ~30% with IVO)

ORR rate of 48% (compared to 42% with IVO)

Median Duration of CR/CRh ~26 mo (compared to ~8 mo w/ IVO)


Median Duration of Response ~12 mo (compared to ~6.5 mo w/ IVO)

\*17 patients had received prior VEN: CR/CRh rate 30%, CR rate 24%, and DOR 18.5 mo.


De Botton S et al, Blood Adv 2023

#### IDH1 OS with IVO and OLUTA from phase I study approval populations

#### Ivosidenib (IDH1 inhibitor)

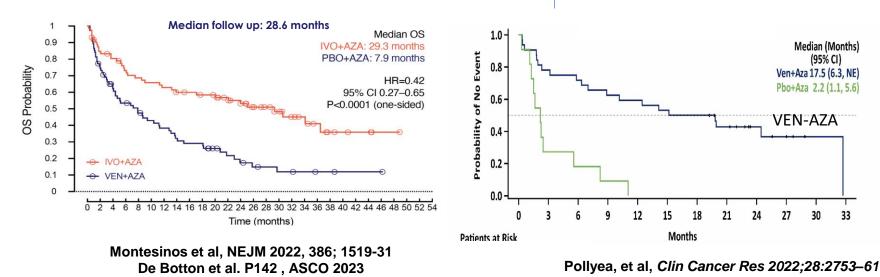


#### **Olutasidenib (IDH1 inhibitor)**



### Safety/anticipated IDH inhibitor adverse effects

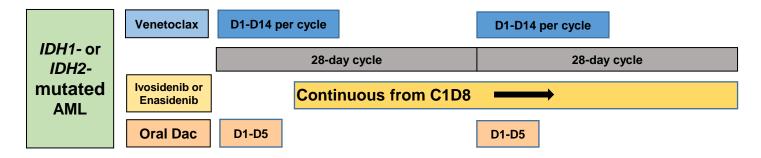
| <b>Grade 3/4 TEAEs</b><br>in ≥2% of pts, n (%) | Enasidenib<br>100 mg/day<br>(n = 153) | lvosidenib<br>500 mg/day<br>(n = 179) | Olutasidenib<br>150 mg BID<br>(n = 147) |
|------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|
| Hyperbilirubinemia                             | 13 (8)                                | > NR                                  | NR                                      |
| Prolonged QT interval                          |                                       | 14 (8)                                | > 1 (<1)                                |
| IDH differentiation<br>syndrome                | 11 (7)                                | 7 (4)                                 | 12 (7)                                  |
| Anemia                                         | 10 (7)                                | 4 (2)                                 | 7 (5)                                   |
| Thrombocytopenia                               | 8 (5)                                 | 3 (2)                                 | 6 (4)                                   |
| Tumor lysis syndrome                           | 5 (3)                                 |                                       | 3 (2)                                   |
| Decreased appetite                             | 3 (2)                                 |                                       |                                         |
| Leukocytosis                                   |                                       | 3 (2)                                 | 7 (5)                                   |
| Hepatic AESI (transaminitis)                   |                                       | (                                     | 23 (15)                                 |


## DS manifestations typically include

- Fever
- Dyspnea
- Pulmonary infiltrates
- Hypoxia
- Rash
- Edema

Stein EM, et al. *Blood*. 2017;130:722-731. DiNardo CD, et al. *N Engl J Med*. 2018;378:2386-2398. De Botton S et al, *Blood Adv*. 2023

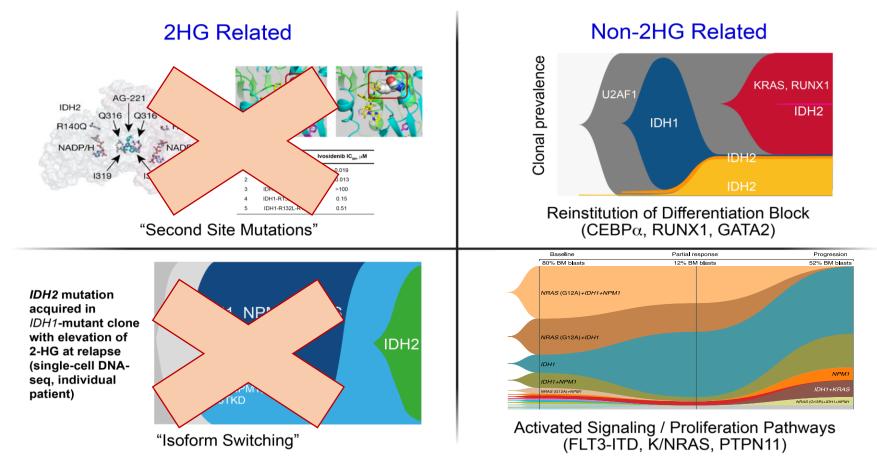
### IVO-AZA or VEN-AZA for *IDH1*m AML?


| <i>IDH1</i> m         | IVO + AZA | AZA   | VEN-AZA                      | AZA   |
|-----------------------|-----------|-------|------------------------------|-------|
| Ν                     | 72        | 74    | 32                           | 11    |
| Median age            | 76        | 76    | 76                           | 76    |
| ORR (CR/CRi)          | 54%       | 16%   | 66%                          | 9%    |
| CR                    | 47%       | 15%   | 28%                          | 0%    |
| Median time to CR/CRi | 4.3 m     | 3.8 m | 1.1 m                        | 3.4 m |
| Median OS             | 29.3 m    | 7.9 m | 17.5 m (in <i>IDH1:</i> 15m) | 2.2 m |



### New <u>all-oral triplet</u> study for *IDH1-* or *IDH2-*Mutated AML

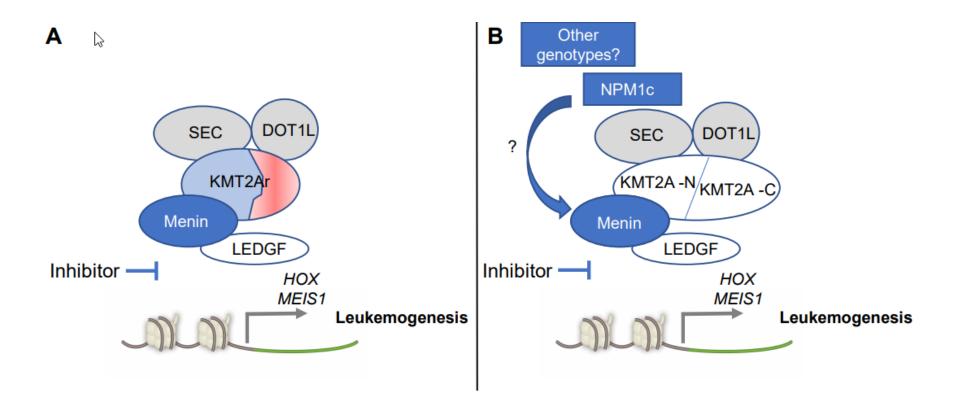
**Phase Ib:** To determine the safety and tolerability, maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of the combination of oral decitabine/cedazuridine, venetoclax, and ivosidenib or enasidenib


Phase II: To confirm efficacy based on composite remission rate (CR, CRh, CRi)

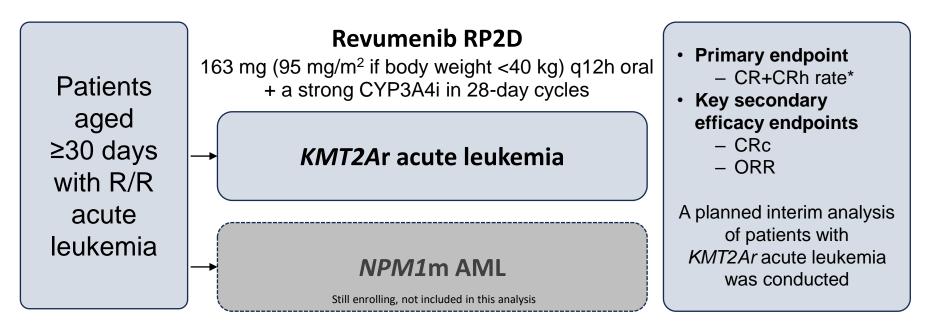


| Response, % |                      |                      | R/R (n = 26) |      |
|-------------|----------------------|----------------------|--------------|------|
|             | <i>IDH1</i> (n = 10) | <i>IDH2</i> (n = 14) | IDH1         | IDH2 |
|             |                      |                      |              |      |
| CRc         | 90                   | 100                  | 50           | 44   |
| MRD neg     | 80                   | 93                   | 50           | 19   |

\*Most pts in R/R setting received prior VEN and/or IDH inhibitor exposure, different from most studies that exclude prior VEN or IDHi therapy.


#### How does this compare with IDH inhibitor monotx resistance?




Quek L et al, Nature Med 2018, Intlekofer AM et al, Nature 2018, Harding JJ et al, Cancer Discov 2018, Choe S et al, Blood Adv 2020

## 3. Targeting *KMT2A*r and *NPM1*m AML with HMA + VEN with menin inhibitor

#### Menin inhibition – MOA in leukemia



### AUGMENT-101 phase II study design



\*CR+CRh rate >10% in adult evaluable population considered lower efficacy bound.

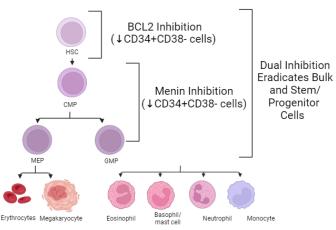
AML, acute myeloid leukemia; CR, complete remission; CRc, CR composite (CR+CRh+CRp+CRi); CRh, CR with partial hematologic recovery; CRi, CR with incomplete platelet recovery; CYP3A4i, cytochrome P450 3A4 inhibitor; *KMT2Ar*, histone-lysine N-methyltransferase 2A rearrangements; *NPM1m*, nucleophosmin 1–mutated; ORR, overall response rate; q12h, every 12 hours; RP2D, recommended phase 2 dose; R/R, relapsed/refractory.

#### Response

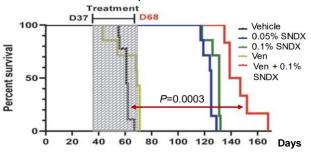
| Parameter                        | Efficacy Population<br>(n = 57) | Parameter            | Efficacy Population<br>(n = 57) |
|----------------------------------|---------------------------------|----------------------|---------------------------------|
| ORR, n (%)                       | 36 (63)                         | Best response, n (%) |                                 |
| CR+CRh rate, n (%)               | 13 (23)                         | CR                   | 10 (18)                         |
| 95% CI                           | 12.7–35.8                       | CRh                  | 3 (5)                           |
|                                  | 0.0036                          | CRi                  | 1 (1.8)                         |
| P value, 1-sided                 | 0.0030                          | CRp                  | 11 (19)                         |
| CRc                              | 25 (44)                         | MLFS                 | 10 (18)                         |
| 95% CI                           | 30.7–57.6                       | PR                   | 1 (1.8)                         |
| Negative MRD status <sup>a</sup> |                                 | PD                   | 4 (7)                           |
| CR+CRh                           | 7/10 (70)                       | No response          | 14 (25)                         |
| CRc                              | 15/22 (68)                      | Other <sup>b</sup>   | 3 (5)                           |

Data cutoff: July 24, 2023. <sup>a</sup>MRD done locally; not all patients had MRD status reported. <sup>b</sup>Includes patients without postbaseline disease assessment.

CR, complete remission; CRc, composite CR (CR+CRh+CRp+CRi); CRh, CR with partial hematologic recovery; CRi, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; MLFS, morphological leukemia-free state; MRD, minimal residual disease; ORR, overall response rate (CRc+MLFS+PR); PD, progressive disease; PR, partial remission.


## Rationale for SAVE combination




Making Cancer History\*

#### Abstract #58 SAVE

- HMA + venetoclax is standard for older/unfit AML
- Oral decitabine-cedazuridine (ASTX727) is approved, has equivalent efficacy as IV decitabine<sup>1</sup>
- *KMT2A*r or *NPM1*m leukemias are susceptible to apoptosis through BCL2 inhibition<sup>2-5</sup>
- BCL2 + menin inhibition → eradication of bulk and stem/progenitor cells and improved survival in preclinical models<sup>6,7</sup>
- All-oral combination of <u>SNDX-5613 + ASTX727 +</u> <u>VE</u>netoclax (SAVE)



PDX: NPM1, FLT3 ITD/TKD6



1. Garcia-Manero G et al. Blood 2020;136:674-83. 2. Benito JM et al. Cell Reports 2015;13:2715-27. 3. Tiong IS et al. Br J Haematol. 2021;192(6):1026-1030.

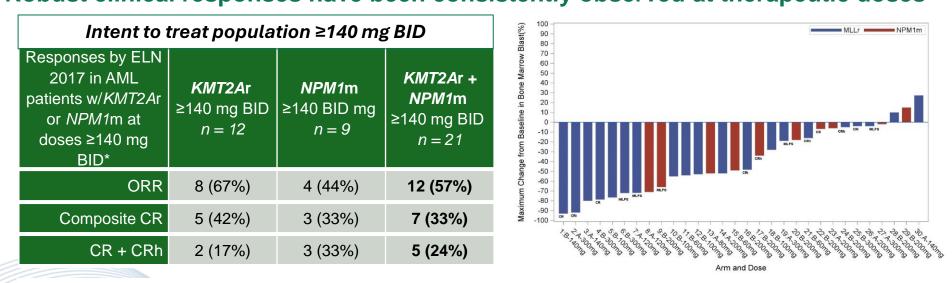
4. Lachowiez CA et al. Blood Adv. 2020;4(7):1311-1320. 5. Issa GC et al. Blood Adv. 2023;7(6):933-942. 6. Carter BZ et al. Blood. 2021;138(17):1637-1641.

7. Fiskus W et al . Blood cancer journal 2022;12:5

### SAVE (SNDX-5613+ASTX727 +Ven) in R/R AML

- All oral combination: Oral DAC D1-5, VEN D1-14, revumenib) 113–163 mg Q12h D1–28
- 9 pts Rx: 5 KMT2Ar, 3 NUP98r, 1 NPM1m
- Median 3 prior lines (range 1–6)
- DLT: prolonged ↓ plts
- ORR 100%. CRc 78%. 3 CR, 1 CRh, 3 CRp, 1 PR, 1 MLFS. MRD– 6/9; 4/4 MRD- CR/CRh
- Most clearance by D14 BM
- Plan: explore intermittent revumenib (hold if BM blast <5%)

Issa. Blood 142: abst 58; 2023


### JNJ-75276617 (menin inhibitor) in R/R KMT2A AML/ALL

- 86 pts Rx with JNJ-6617 orally daily; 78 AML KMT2A 58%, NPM1 42%
- DS 12%; QTc 1%
- CR-CRh-CRi 27%; ORR 53% (33 pts Rx 45-130 mg BID)
- *KMT2A* (n = 19) ORR 42%
- *NPM1* (n = 14) ORR 50%
- 8 (53%) ongoing response; Median DOR 6.5+ mo



Jabbour. Blood 142: abst 57; 2023

### Sumitomo DSP-5336 (menin inhibitor) in R/R *KMT2A* AML/ALL Robust clinical responses have been consistently observed at therapeutic doses

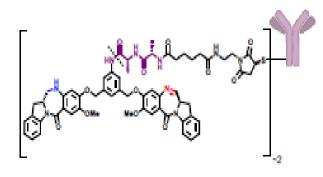


- In patients treated at lower doses, 1 CRh at 60 mg BID Arm B and 1 MLFS at 120 mg BID Arm A were observed
- 4 patients who achieved an objective response then underwent allogeneic stem cell transplantation
- Median time to CR or CRh of 1.4 months (range: 1 to 4 months)

\*Included patients with no prior menin inhibitor treatment. Gene alteration status (eg, *KMT2A*r or *NPM1*m) as determined based upon local laboratory documented results.

Composite CR: CR + CRh + CRi (If CRh was achieved, it was counted as this and not as CRi)

Objective Response Rate: CR + CRh + CRi + MLFS (If CRh was achieved, it was counted as this and not as CRi or MLFS)

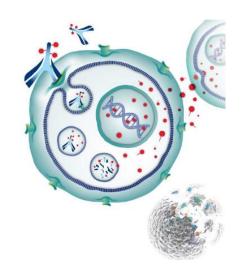

### Daver N. EHA 2024 Abst S411

4. Adding a targeted or immunotherapy to prevent resistance/relapse: mutation agnostic

Genotype-agnostic: Immunotherapy Venetoclax and <u>anti-CD123 ADC</u>

### Beyond single pathway inhibition in AML: Blockade of apoptosis/targeting CD123

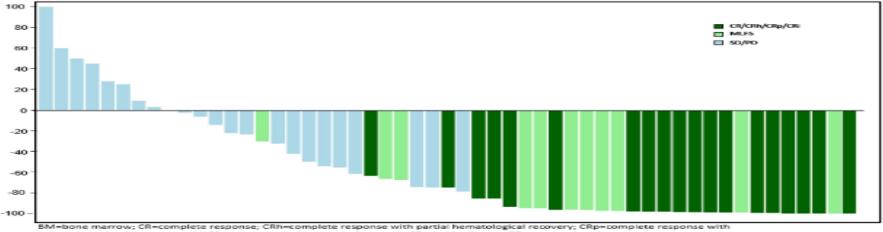
- CD123 (α subunit of IL-3 receptor) is highly expressed on leukemic blast and stem cells compared with normal HSC
- IMGN632 CD123 targeting ADC (pivekimab sunirine, PVEK)
  - Conjugate of a unique anti-CD123 antibody and a novel IGN payload
  - Antibody is humanized IgG1 and binds to CD123
  - Payload works by alkylating DNA without cross-linking
  - Well tolerated: no CLS, CRS, VOD in AML at RP2D
  - Single-agent CR/CRi 20%-22%




Red: imine (site of DNA alkylation)

Blue: amine (noncovalently binds DNA)

Purple: peptide linker


Dashed line: Site of catabolism



### Triplet pivekimab (IMGN632), azacitidine and venetoclax in HR R/R AML

### • 71 pts with R/R AML. Median age 68 yr (25–82). 52% 2+ Rxs

| Group         | No | ORR, % | CR, % |
|---------------|----|--------|-------|
| Total         | 61 | 51     | 31    |
| VEN-naive     | 34 | 62     | 47    |
| Prior VEN     | 27 | 37     | 11    |
| Prior HMA-VEN | 22 | 32     | 11    |
| FLT3-ITD      | 11 | 82     | 64    |



incomplete platelet recovery; MLFS-morphological leukemia-free state; SD-stable disease; PD-progressive disease

Daver. Blood 140: abst 62; 2022

### Conclusions

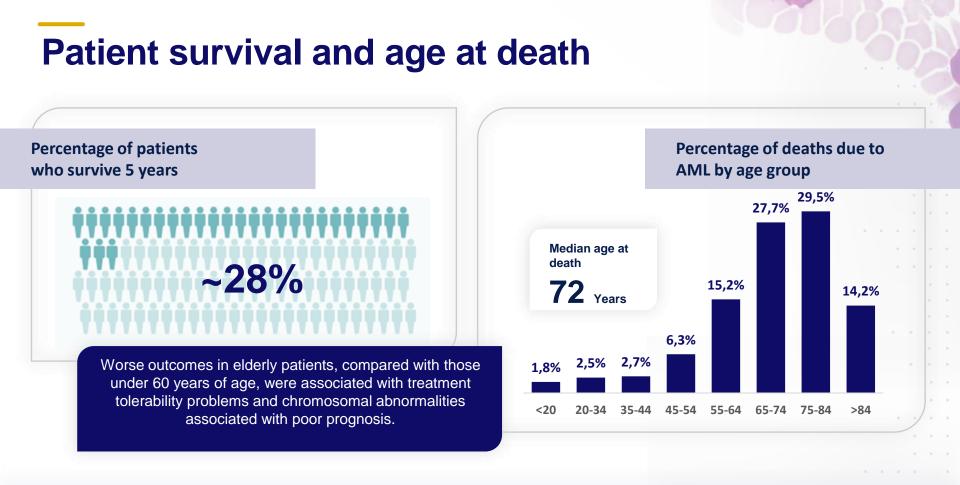
- Rational combinations of targeted therapy with venetoclax or with HMA + venetoclax appear to enhance efficacy (response, molecular clearance, early survival) and overcome resistance
- <u>Dose optimization (overcoming urge to overdose VEN!)</u>, early assessment with bone marrow, and use of growth factors to safely deliver combination regimens need to be very carefully evaluated and implemented
- Use of molecular clearance may be a useful early surrogate of efficacy in certain combinations such as with *FLT3, NPM1, KMT2A* clearance, but maybe not all mutations
- Careful assessment and long-term follow-up of ongoing single-arm studies, backed up by rapidly performed focused confirmatory clinical trials, are needed to fully confirm benefit



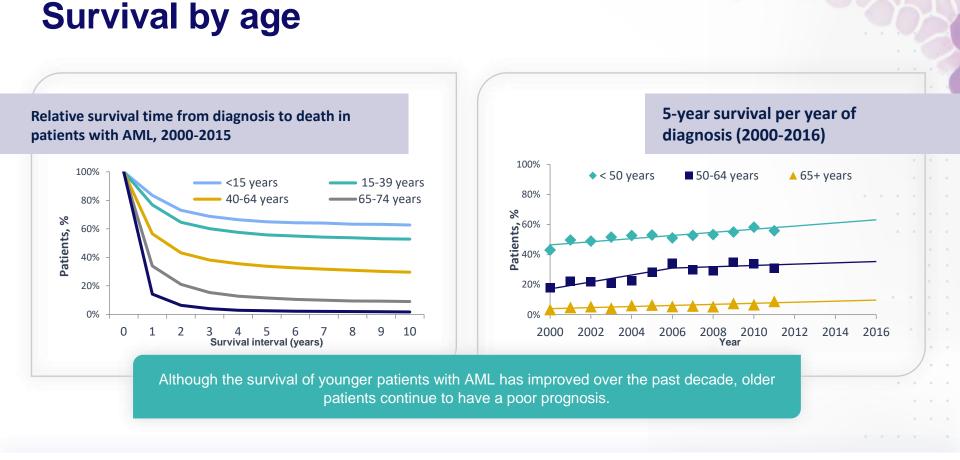
## Therapeutic approaches in high-risk and frail patients with AML

**Phillip Scheinberg** 






## **Disclosures**


- Clinical Research as Investigator: Roche, Novartis, Viracta
- Scientific Presentations: Novartis, Amgen, Roche, Alexion, Janssen, AstraZeneca
- **Grants/Research Support**: Alnylam, Pfizer
- **Consultant/Advisory:** Roche, Alexion, Pfizer, BioCryst, Novartis, Astellas
- Speaker: Novartis, Pfizer, Alexion

• I declare **no** equity, stock options, patents, or royalties from any companies.





1. National Cancer Institute. Cancer Stat Facts: Acute Myeloid Leukemia (AML). https://seer.cancer.gov/statfacts/html/amyl.html. Acesso em julho de 2019. 2. Ma E, et al. Clin Lymphoma Myeloma Leuk. 2016;16:625-636. 3. Almeida AM et al. Leuk Res Rep. 2016;6:1-7.



1. National Cancer Institute. SEER\*Explorer: Acute Myeloid Leukemia. Sobrevivência. https://seer.cancer.gov/explorer/index.html. Acesso em julho de 2019. 2. Almeida AM et al. Leuk Res Rep. 2016;6:1-7.

## **Clinical challenges of elderly patients with AML**



### Poor performance status



Higher incidence of comorbidities



Low white blood cell count at diagnosis



Low percentage of medullary blasts



Increased likelihood of multi-drug resistance



Lower incidence of "favorable" cytogenetics



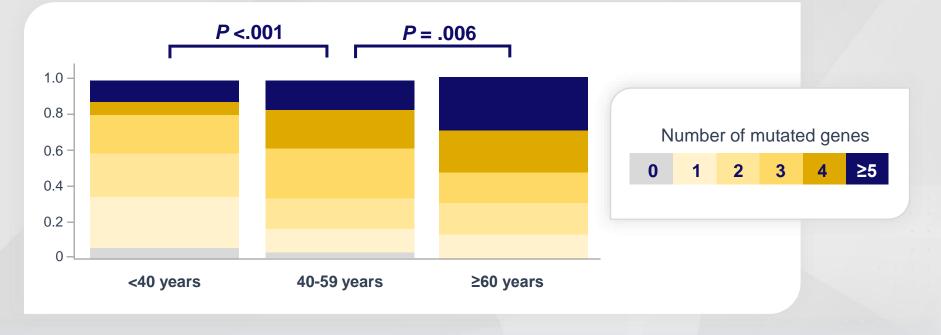
Less likely to achieve remission



Increased likelihood of treatment-related morbidity/mortality



Lower probability of survival



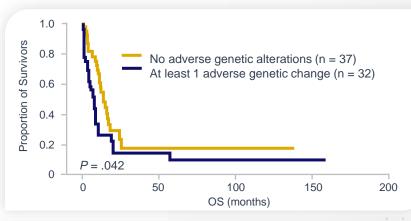

Higher incidence of secondary (s-AML) and treatment-related (t-AML) AML



## Number of mutations increases with age in patients with AML

Number of genes mutated by patient, by age group




Metzeler KH, et al. Blood. 2016;128:686-698

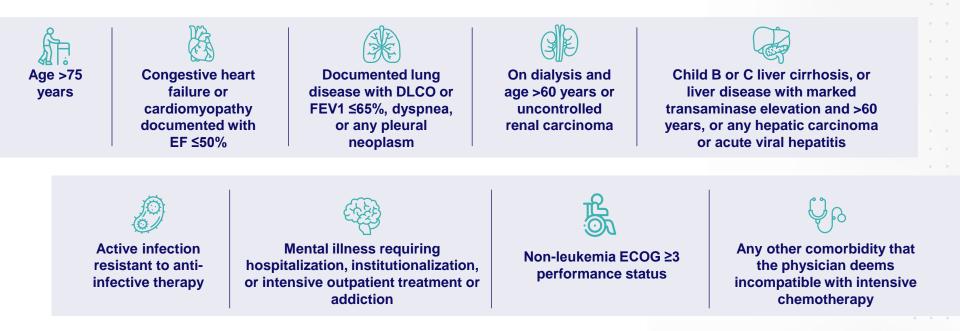
Material destinado exclusivamente a profissionais da saúde prescritores – ão pode ser utilizado separadamente.

## Worse prognostic mutations are more prevalent in elderly patients with AML

|                  | Pts  |         |       |         |
|------------------|------|---------|-------|---------|
| Variations*      | All  | Elderly | Young | P Value |
| FLT3/ITD         | 22.5 | 22.6    | 22.5  | > .999  |
| <i>FLT3</i> /TKD | 6.5  | 6.8     | 6.3   | .848    |
| NRAS             | 12.1 | 13.0    | 11.6  | .662    |
| KRAS             | 3.2  | 2.3     | 3.9   | .426    |
| PTPN11           | 3.9  | 6.2     | 2.5   | .050    |
| KIT              | 3.2  | 2.3     | 3.9   | .426    |
| JAK2             | 0.6  | 0.6     | 0.7   | > .999  |
| WTI              | 6.9  | 3.4     | 9.1   | .023    |
| NPM1             | 22.3 | 28.2    | 18.6  | .021    |
| CEBPA            | 14.3 | 10.2    | 16.8  | .055    |
| RUNX1            | 13.4 | 19.8    | 9.5   | .002    |
| <i>MLL</i> /PTD  | 5.8  | 6.8     | 5.3   | .543    |
| ASXL1            | 10.9 | 17.6    | 6.7   | < .001  |
| IDH1             | 5.8  | 6.8     | 5.3   | .543    |
| IDH2             | 11.9 | 14.7    | 10.2  | .183    |

| Verietiene* | Pts  | <i>P</i> Value |       |                |  |
|-------------|------|----------------|-------|----------------|--|
| Variations* | All  | Elderly        | Young | <i>P</i> value |  |
| TET2        | 14.3 | 24.3           | 8.1   | < .001         |  |
| DNMT3A      | 15.2 | 20.9           | 11.6  | .008           |  |
| TP53        | 7.6  | 13.0           | 4.2   | .001           |  |
| Cohesin     | 10.0 | 9.6            | 10.2  | > .999         |  |



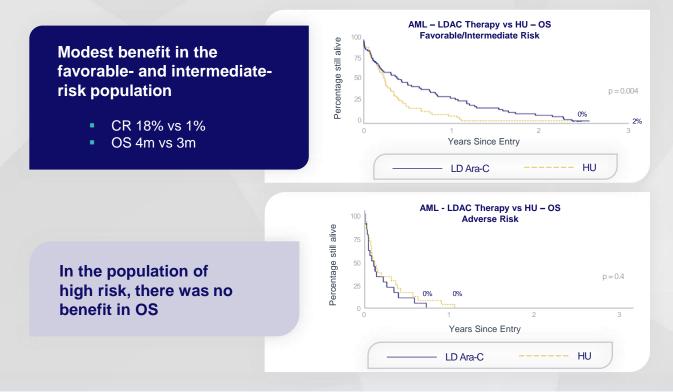

\*For all variables except Cohesin, n = 462; for Cohesin, n = 411.

Tsai CH, et al. Leukemia. 2016;30:1485-1492.

Material destinado exclusivamente a profissionais da saúde prescritores – ão pode ser utilizado separadamente.

## Ineligibility criteria – Ferrara

Criteria for defining non-eligibility for intensive chemotherapy in AML




## **Options for those ineligible for intensive CT by 2018**



## LDAC vs hydroxyurea

Study of 217 CT-Ineligible Patients Randomized to LDAC/HU (With and Without ATRA)

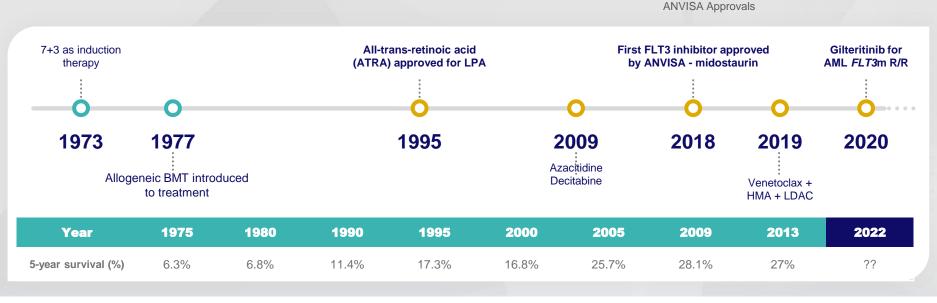


Burnett AK et al, Cancer 2007;109:1114-24

Material destinado exclusivamente a profissionais da saúde prescritores – ião pode ser utilizado separadamente.

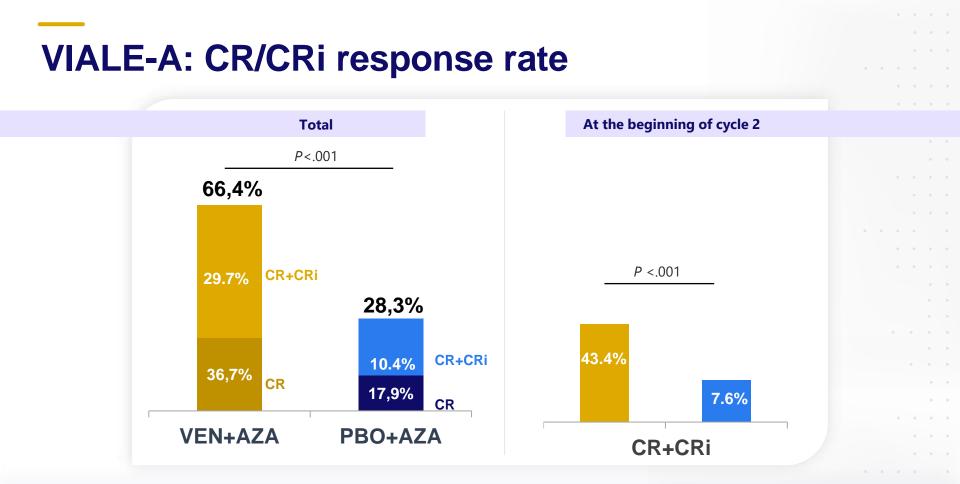
### Dombret H, et al 2015 Azacitidine monotherapy for elderly patients with AML

Azacitidine monotherapy has modest CR/CRi rates when compared with conventional treatment (CT/LDAC/BSC)




\*Conventional: conventional support regimen (intensive induction CT, LDAC, or palliative support) Dombret H, et al. Blood. 2015/ 36126(3)?291-299

Material destinado exclusivamente a profissionais da saúde prescritores – não pode ser utilizado separadamente.

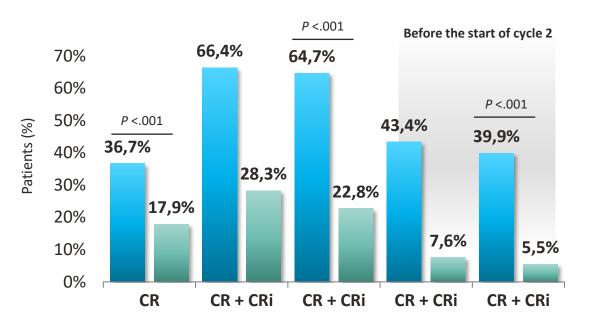

## Treatment of AML (accelerated progress 2018-2020): History

Since its introduction in the 1970s, 7+3 therapy has been the standard of care in AML



Portal ANVISA - https://consultas.anvisa.gov.br acessado em Abril 2021

Material destinado exclusivamente a profissionais da saúde prescritores – ão pode ser utilizado separadamente.




Material destinado exclusivamente profissionais da saúde prescritores ão pode ser utilizado separadamente

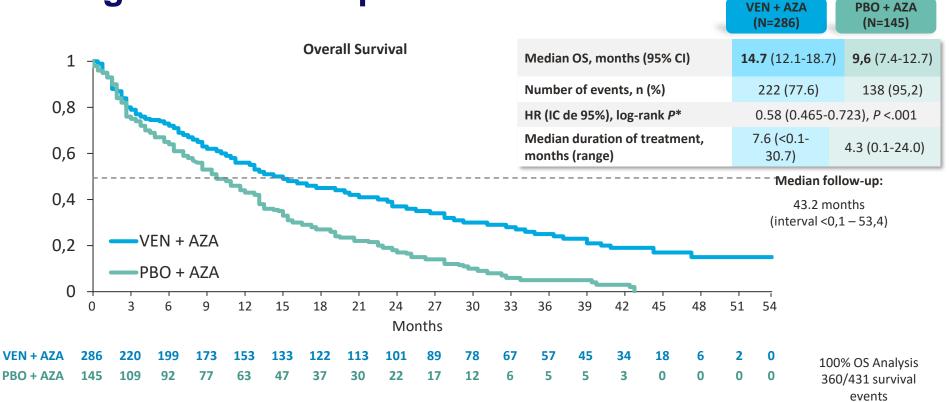
## **Response rates and response time**

**Response Rates** 

VEN + AZA



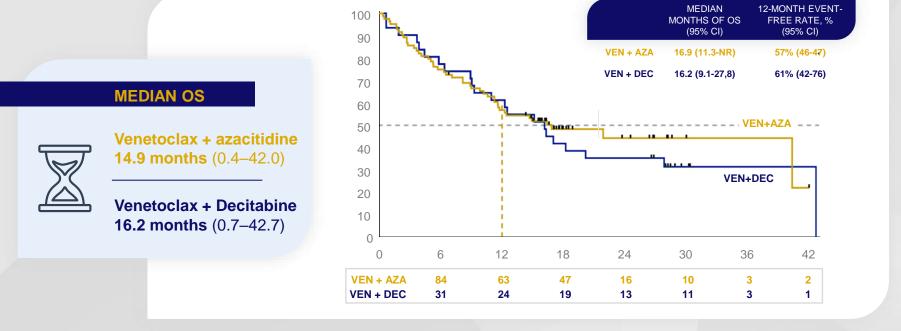
| Median months          | VEN + AZA  | PBO + AZA  |
|------------------------|------------|------------|
| (track)                | (N=286)    | (N=145)    |
| Time to first response | <b>1.3</b> | <b>2.8</b> |
| (CR or CRi)            | (0.6-9.9)  | (0.8-13.2) |


In patients with CR+CRi, MRD negativity occurred in:

23.4% receiving VEN + AZA vs

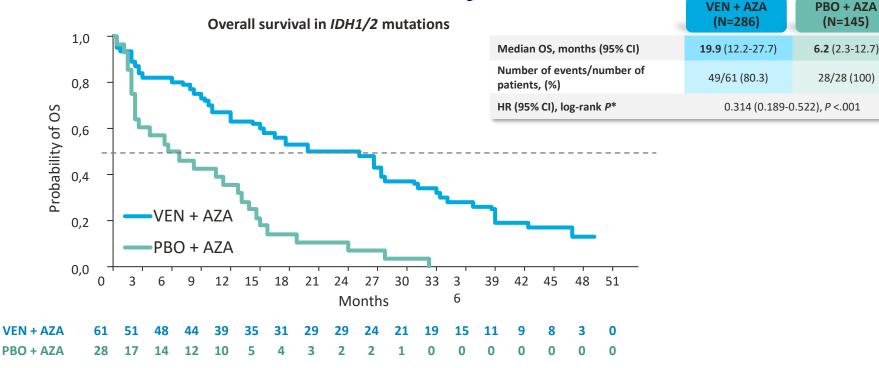
7.6% receiving PBO + AZA

AZA=Azacitidine. CI=Confidence Interval. CR=Complete remission. CRi=CR with Incomplete Recovery of Blood Count. CRh=CR with Partial Hematologic Recovery. MRD=Measurable Residual Disease. NR=Not Reached. PBO=Placebo. VEN=Venetoclax. Primary Outcome Data cutoff: January 4, 2020. DiNardo CD, et al. N Engl J Med. 2020;383(7):617-29.


## Long-term follow-up: Overall survival



\*Distributions were estimated for each treatment arm using the Kaplan-Meier methodology and compared using the log-rank test stratified by age (18-<75, ≥75 years) and cytogenetic risk (intermediate risk, high risk). HR between treatment arms was estimated using the Cox proportional hazards model with the same stratification factors used in the log-rank test. AZA=Azacitidine. CI=Confidence Interval. HR=Risk Ratio. OS=Overall Survival. PBO=Placebo. VEN=Venetoclax.


### Primary Outcome Data cutoff: December 1, 2021. Pratz KW, et al. Oral 219. 64th ASH. Dec 10-13, 2022. New Orleans, LA.

## M14-358: Overall survival – combined analysis



Material destinado exclusivamente a profissionais da saúde prescritores – ão pode ser utilizado separadamente.

## Long-term follow-up: Patients with *IDH1/2* mutations achieved median OS in the analysis of 100% OS

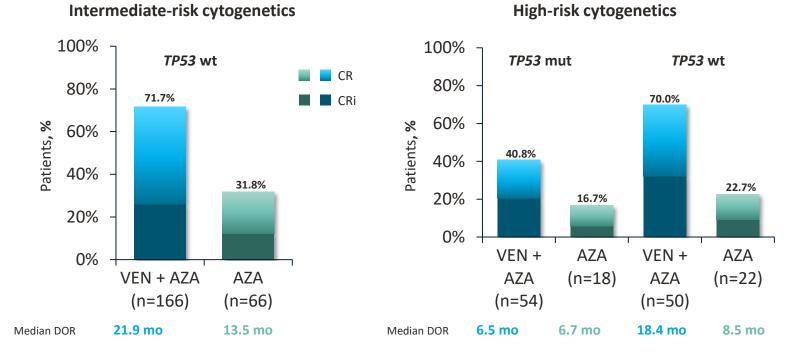


### Post-hoc analysis

Subgroup analyses were not designed to demonstrate a statistically significant difference in OS or response rates.

Small numbers of patients in these subgroups may be a limitation of this analysis.

No conclusions of efficacy or safety can be drawn from these data.


The unstratified log-rank test and hazard ratio were estimated using the unstratified Cox model. The HDI1/2 data comes from the CDX method. AZA=Azacitidine. CI=Confidence Interval. HR=Risk Ratio. OS=Overall Survival. PBO=Placebo. VEN=Venetoclax.

\*Distributions were estimated for each treatment arm using the Kaplan-Meier methodology.

Data cutoff: December 1, 2021.

Pratz KW, et al. Oral 219. 64th ASH. December 10-13, 2022. New Orleans, LA.

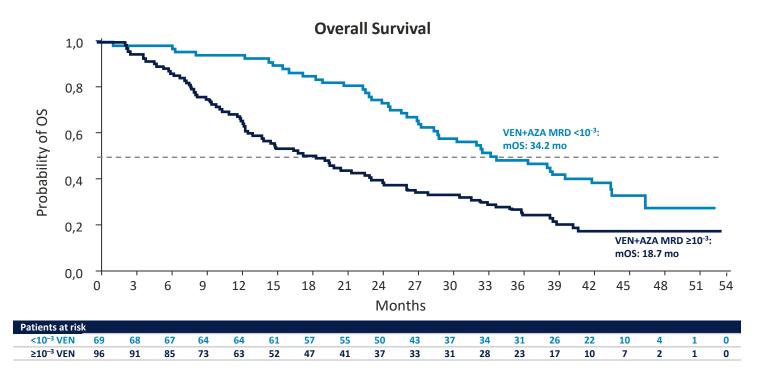
## In a pooled analysis of patients from VIALE-A and the phase Ib study, remission rates were high in intermediate- or high-risk cytogenetics and *TP53*wt patients treated with VEN+AZA



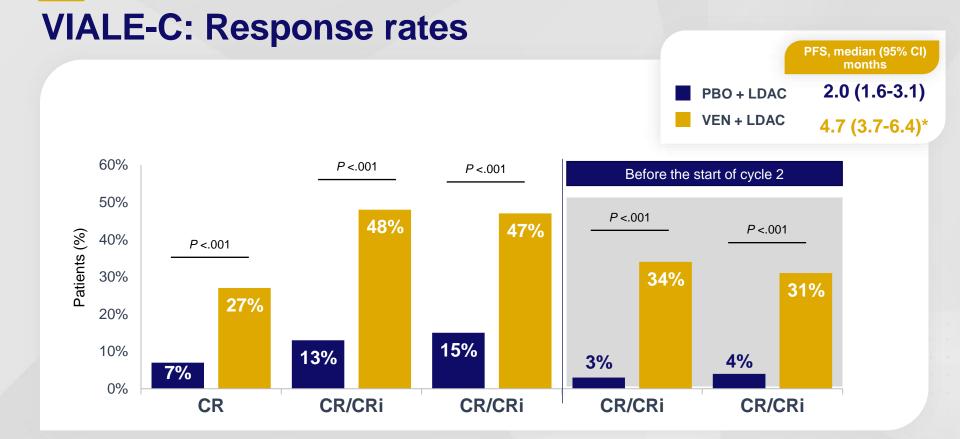
Post-hoc analysis

Subgroup analyses were not designed to demonstrate a statistically significant difference in OS or response rates.

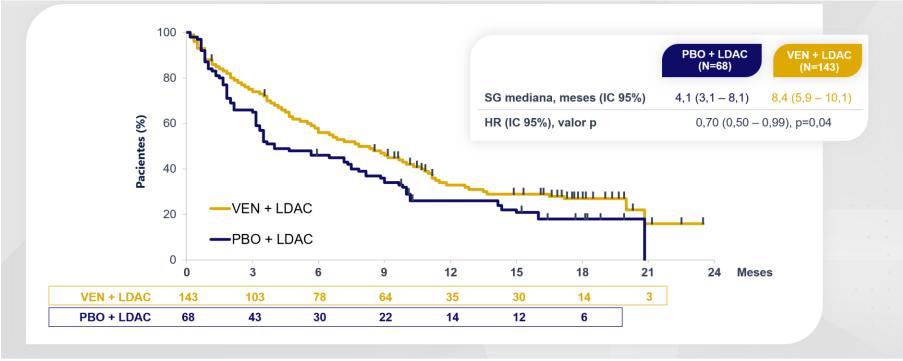
Small numbers of patients in these subgroups may be a limitation of this analysis.


No conclusions of efficacy or safety can be drawn from these data.

CRi=CR with Incomplete Hematologic Recovery. Mut=Mutation. Ven=Venetoclax. wt=Wild-type.


Aza=Azacitidine. CR=Complete remission.

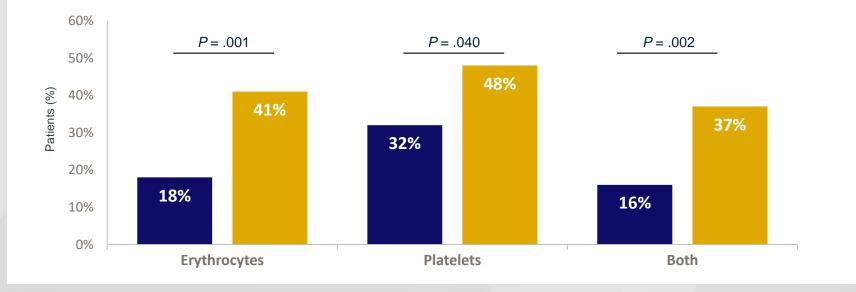
pe. Pollyea DA, et al. Clin Cancer Res. 2022 Aug 25;CCR-22-1183. doi: 10.1158/1078-0432.CCR-22-1183. Online ahead of print.


### Long-term follow-up: Overall survival by MRD response



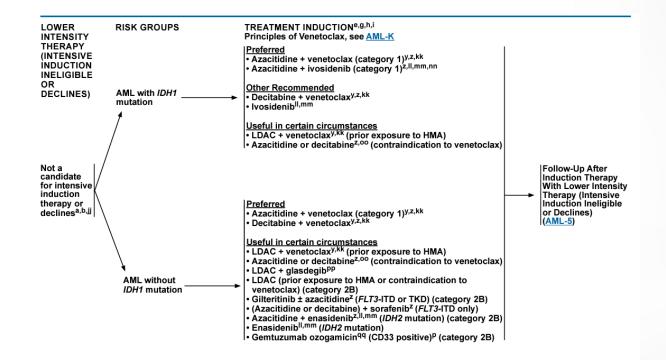
\*Distributions were estimated for each treatment arm using the Kaplan-Meier methodology. AZA=Azacitidine. Cl=Confidence Interval. HR=Risk Ratio. OS=Overall Survival. PBO=Placebo. VEN=Venetoclax.




## VIALE-C: Overall survival in the preplanned primary analysis



Wei AH et al, Blood 2020 Jun 11;135(24): 2137-2145. doi: 10.1182

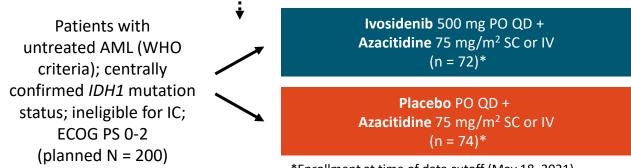

## **VIALE-C: Transfusion independence\***

■ PBO + LDAC ■ VEN + LDAC



estinado exclusivamente a

## NCCN Guidelines prioritize venetoclax combinations as the first line of treatment for patients ineligible for CT




Material destinado exclusivamente a profissionais da saúde prescritores – ão pode ser utilizado separadamente.



## **AGILE: Study design**

 Multicenter, double-blind, randomized phase III trial Stratified by region (US/Canada vs Western Europe, Israel, and Australia vs Japan vs rest of world) and disease history (de novo vs secondary AML)



\*Enrollment at time of data cutoff (May 18, 2021).

- Enrollment halted based on efficacy as of May 12, 2021 (N = 148)
- Primary endpoint: EFS with ~173 events (52 mo)
- Secondary endpoints: CRR, OS, CR + CRh rate, ORR

## **AGILE: Baseline characteristics**

| Characteristic                                                                | IVO + AZA<br>(n = 72)               | PBO + AZA<br>(n = 74)               |
|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|
| Median age, yr (range)                                                        | 76.0 (58-<br>84)                    | 75.5 (45-<br>94)                    |
| Sex, n (%)<br>Male<br>Female                                                  | 42 (58.3)<br>30 (41.7)              | 38 (51.4)<br>36 (48.6)              |
| ECOG PS, n (%)<br>• 0<br>• 1<br>• 2                                           | 14 (19.4)<br>32 (44.4)<br>26 (36.1) | 10 (13.5)<br>40 (54.1)<br>24 (32.4) |
| Disease history, n (%) <ul> <li>De novo AML</li> <li>Secondary AML</li> </ul> | 54 (75.0)<br>18 (25.0)              | 53 (71.6)<br>21 (28.4)              |

| Characteristic                                               | IVO + AZA<br>(n = 72)             | PBO + AZA<br>(n = 74)             |
|--------------------------------------------------------------|-----------------------------------|-----------------------------------|
| Median m <i>IDH1</i> VAF in<br>BMA, % (range)                | 36.7<br>(3.1-50.5)                | 35.5<br>(3.0-48.6)                |
| Cytogenetic risk, n (%)<br>Favorable<br>Intermediate<br>Poor | 3 (4.2)<br>48 (66.7)<br>16 (22.2) | 7 (9.5)<br>44 (59.5)<br>20 (27.0) |
| Median bone marrow<br>blasts, % (range)                      | 54.0 (20-95)                      | 48.0 (17-100)                     |

## **AGILE: EFS and other efficacy outcomes**

| Survival Outcome                                          | IVO + AZA    | PBO + AZA     | HR (95% CI)      | P Value |
|-----------------------------------------------------------|--------------|---------------|------------------|---------|
| Median EFS in ITT population                              | NR           | NR            | 0.33 (0.16-0.69) | .0011   |
| Median EFS in patients achieving CR by Wk 24, mo (95% CI) | NE (14.8-NE) | 17.8 (9.3-NE) | NR               | NR      |
| Median OS, mo                                             | 24.0         | 7.9           | 0.44 (0.27-0.73) | .0005   |

- EFS benefit associated with IVO consistent across subgroups: de novo status, region, age, ECOG PS at BL, sex, race, BL cytogenetic risk, WHO AML classification, WBC at BL, percentage of BM blasts at BL
- OS benefit associated with IVO consistent against same subgroups
- Change in markers of health-related QOL favored IVO + AZA over PBO + AZA

## **AGILE: TEAEs**

|                                                                                                                                             | IVO + AZA (n = 71)                                                         |                                                      | PBO + AZA (n = 73)                                                         |                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|
| TEAEs, n (%)                                                                                                                                | Any Grade                                                                  | Grade ≥3                                             | Any Grade                                                                  | Grade ≥3                                                         |
| Any TEAE                                                                                                                                    | 70 (98.6)                                                                  | 66 (93.0)                                            | 73 (100)                                                                   | 69 (94.5)                                                        |
| Any hematologic TEAE                                                                                                                        | 55 (77.5)                                                                  | 50 (70.4)                                            | 48 (65.8)                                                                  | 47 (64.4)                                                        |
| Most common hematologic<br>TEAEs* <ul> <li>Anemia</li> <li>Febrile neutropenia</li> <li>Neutropenia</li> <li>Thrombocytopenia</li> </ul>    | 22 (31.0)<br>20 (28.2)<br>20 (28.2)<br>20 (28.2)<br>20 (28.2)              | 18 (25.4)<br>20 (28.2)<br>19 (26.8)<br>17 (23.9)     | 21 (28.8)<br>25 (34.2)<br>12 (16.4)<br>15 (20.5)                           | 19 (26.0)<br>25 (34.2)<br>12 (16.4)<br>15 (20.5)                 |
| Most common TEAEs* <ul> <li>Nausea</li> <li>Vomiting</li> <li>Diarrhea</li> <li>Pyrexia</li> <li>Constipation</li> <li>Pneumonia</li> </ul> | 30 (42.3)<br>29 (40.8)<br>25 (35.2)<br>24 (33.8)<br>19 (26.8)<br>17 (23.9) | 2 (3.8)<br>0<br>1 (1.4)<br>1 (1.4)<br>0<br>16 (22.5) | 28 (38.4)<br>19 (36.0)<br>26 (35.6)<br>29 (39.7)<br>38 (52.1)<br>23 (31.5) | 3 (4.1)<br>1 (1.4)<br>5 (6.8)<br>2 (2.7)<br>1 (1.4)<br>21 (28.8) |
| Bleeding                                                                                                                                    | 29 (40.8)                                                                  | 4 (5.6)                                              | 21 (28.8)                                                                  | 5 (6.8)                                                          |
| Infections                                                                                                                                  | 20 (28.2)                                                                  | 15 (21.1)                                            | 36 (49.3)                                                                  | 22 (30.1)                                                        |

- AEs of special interest (IVO + AZA vs PBO + AZA):
  - Grade ≥2 differentiation syndrome: 14.1% vs 8.2%
  - Grade ≥3 QT prolongation: 9.9% vs 4.1%
- Fewer infections with IVO + AZA vs PBO + AZA (28.2% vs 49.3%)
- No treatment-related deaths

\*Occurring in >20% of patients.

Montesinos. ASH 2021. Abstr 697.

#### The NEW ENGLAND JOURNAL of MEDICINE

### RESEARCH SUMMARY

### Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia

Montesinos P et al. DOI: 10.1056/NEJMoa2117344

#### CLINICAL PROBLEM

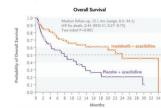
Approximately 6 to 10% of patients with acute meloid leakmin have somatic mutations in the gene encoding isocirate dehydrogenase 1 (0HH). Novidernik, an inhibitor of matant IDH1, showed promise when combined with azacitidine in a phase 1b trial involving patients with IDH1-mutated acute myeloid leukemia, but additional data are needed.

#### CLINICAL TRIAL

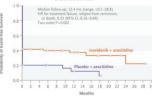
Design: A phase 3 global, double-blind, randomized trial examined the efficacy and safety of ivosidenib and azacitidine as compared with placebo and azacitidine in patients with previously untreated, *IDH1*-mutated acute myeloid leukemia who were ineligible for intensive induction chemotherapy.

Intervention: 146 adult patients were randomly assigned to receive oral iosidenib (500 mg once daily) and intravenous or subcutaneous azacitidine (75 mg per square meter of body-surface area for 7 days in 28-day cycles) or to receive placebo and azacitidine, for at least six cycles. The primary end point was event-free survival, defined as the time from randomization to treatment failure, relapse from remission, or death from any cause.

#### RESULTS


Efficacy: During a median follow-up of 12.4 months, event-free survival was significantly longer with ivosidenib and azacitidine than with placebo and azacitidine.

Safety: More than 90% of the patients in each group had adverse events of grade 3 or higher; common events included febrile neutropenia, anemia, thrombocytopenia, pneumonia, and infection.


#### LIMITATIONS AND REMAINING QUESTIONS

- A data monitoring committee stopped enrollment early owing to an observed overall survival benefit with ivosidenib and azacitidine; accordingly, subgroup analyses were limited.
- How combination therapy with ivosidenib and azacitidine compares with current venetoclax-based regimens is unknown.

#### Links: Full Article | NEJM Quick Take





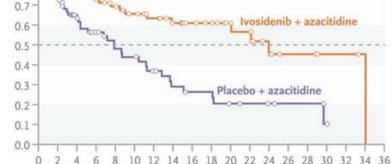






#### ONCLUSIONS

100-


Among patients with newly diagnosed IDH1-mutated acute myeloid leukemia, the combination of ivosidenib and azaciti dine extended event-free survival as compared with placebo and azacitidine, without an increase in adverse events.

# Probability of Overall Survival

1.0

0.9

0.8



### **Overall Survival**

Two-sided P=0.001

Median follow-up, 15.1 mo (range, 0.2-34.1)

Months

HR for death, 0.44 (95% CI, 0.27-0.73)

Montesinos P et al. N Engl J Med 2022;386:1519-1531

## **High-risk AML**

- Highly unmet need
- HSCT may not be the answer for all patients
- Relapse post-HSCT still a problem maintenance?
- High-dose decitabine [*N Engl J Med* 2016; 375:2023-2036]
- APR-246 (eprenetapopt) [*J Clin Oncol* 2021 May 10;39(14):1584-1594]
- Magrolimab (anti-CD 47) do not "eat me" signal [*J Clin Oncol* 2023 Sep 13]
- Sabatolimab (anti-TIM-3)
- IDH1/IDH2 inhibitors





## **Panel discussion**





## **Session close**

**Elias Jabbour** 





## **Question 3 [REPEATED]**

If an elderly patient with Ph-negative ALL tests positive for MRD after doseadjusted Hyper-CVAD induction chemotherapy, what would you advise?

Please assume that you have access to all of these options.

- A. Proceed directly to transplant
- B. Consolidation chemotherapy
- C. Blinatumomab
- D. Inotuzumab ozogamicin
- E. CAR T-cell therapy
- F. Other





### Which of the following factors are important in assessing patients with AML at diagnosis?

Select all that apply.

- A. Adverse genetic alterations
- B. Age
- C. Comorbidities
- Performance status
- E. | Prior cytotoxic therapy
- Prior myelodysplasia F. |



Day 2: Virtual Plenary Sessions Thursday, June 20, 2024 5.00 PM – 8.00 PM UTC -5 (Houston) 7.00 PM – 10.00 PM UTC -3 (Brasilia/Buenos Aires)

| Time (UTC -3)      | Title                                                                                                                                                                                                                                                                                                                                            | Speaker                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 7.00 рм – 7.10 рм  | Welcome to Day 2                                                                                                                                                                                                                                                                                                                                 | Naval Daver                                              |
| 7.10 рм – 7.30 рм  | Current treatment options for relapsed ALL in adult and elderly patients                                                                                                                                                                                                                                                                         | Elias Jabbour                                            |
| 7.30 рм – 7.50 рм  | Long-term safety considerations for leukemias (focus on ALL)                                                                                                                                                                                                                                                                                     | Jae Park                                                 |
| 7.50 рм – 8.10 рм  | Current and future role of transplantation in acute leukemias in LATAM                                                                                                                                                                                                                                                                           | Phillip Scheinberg                                       |
| 8.10 рм – 8.20 рм  | Break                                                                                                                                                                                                                                                                                                                                            |                                                          |
| 8.20 рм – 8.40 рм  | Current treatment options for relapsed AML in adult and elderly patients                                                                                                                                                                                                                                                                         | Fabio Santos                                             |
| 8.40 pm – 9.10 pm  | <ul> <li>AML case-based panel discussion</li> <li>Case AML: young high-risk (8 min + 5-min discussion)</li> <li>Case AML: elderly (10 min) (8 min + 5-min discussion)</li> </ul>                                                                                                                                                                 | Fabio Santos and<br>TBD (case presenters)<br>All faculty |
| 9.10 рм – 9.50 рм  | <ul> <li>Panel discussion: How treatment in first line influences further therapy approaches in ALL and AML</li> <li>Will CAR T and bispecifics change the treatment landscape?</li> <li>Role of HSCT – is it still necessary?</li> <li>What does the future look like? Adoption of therapies and evolving standards of care in LATAM</li> </ul> | Naval Daver and all faculty                              |
| 9.50 рм – 10.00 рм | Session close                                                                                                                                                                                                                                                                                                                                    | Naval Daver                                              |





## GLOBAL LEUKEMIA ACADEMY

Bridging Science and Practice: From Newest Clinical Approaches to Real-World Clinical Cases

June 19–20, 2023 – Latin America

Meeting sponsors



SAPTITUDE HEALTH