

Bridging Science and Practice: From Newest Clinical Approaches to Real-World Clinical Cases

August 23 and 24, 2024 – Asia-Pacific

APTITUDE HEALTH

Welcome to Day 2

Naval Daver

Meet the Faculty

CHAIR

Elias Jabbour, MD MD Anderson Cancer Center, Houston, TX, USA

CO-CHAIR

Naval Daver, MD MD Anderson Cancer Center, Houston, TX, USA

Jae Park, MD Memorial Sloan Kettering Cancer Center, New York, NY, USA

FACULTY

Junichiro Yuda, MD, PhD, Department of Hematology and Experimental Therapeutics, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Japan

Shaun Fleming, MBBS(Hons), FRACP, FRCPA Alfred Hospital, Melbourne, VIC, Australia

Objectives of the program

Understand current treatment patterns for acute leukemias including incorporation of new technologies Uncover when genomic testing is being done for acute leukemias, and how these tests are interpreted and utilized Understand the role of stem cell transplantation in acute leukemias as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring acute leukemias Gain insights into antibodies and bispecifics in ALL: what are they? When and how should they be used? Where is the science going? Discuss the evolving role of ADC therapies in acute leukemias Review promising novel and emerging therapies in acute leukemias

Explore regional challenges in the treatment of acute leukemias across JAPAC

Agenda: Day 2

Time (UTC +8)	Title	Speaker
8.00 AM – 8.10 AM	Welcome to Day 2	Naval Daver
8.10 AM – 8.30 AM	Current treatment options for relapsed ALL in adult and elderly patients	Elias Jabbour
8.30 AM – 8.50 AM	Long-term safety considerations for leukemias (focus on ALL)	Jae Park
8.50 AM – 9.10 AM	Current and future role of transplantation in acute leukemias in Asia-Pacific	Shaun Fleming
9.10 AM - 9.20 AM	Break	
9.20 AM - 9.40 AM	Current treatment options for relapsed AML in adult and elderly patients	Junichiro Yuda
9.40 am - 10.10 am	AML case-based panel discussion • Case 1 AML: Ane Veu (Fiji) • Case 2 AML: Feng-Ming Tien (Taiwan)	Naval Daver and Patient case presenters And all faculty
10.10 am – 10.50 am	 Panel discussion: How treatment in first line influences further therapy approaches in ALL and AML Will CAR T and bispecifics change the treatment landscape? Role of HSCT – is it still necessary? What does the future look like? Adoption of therapies and evolving standards of care in Asia-Pacific 	Naval Daver and all faculty
10.50 AM – 11.00 AM	Session close	Naval Daver

What age group is considered elderly for patients with AML?

- A. ≥50 years
- B. ≥55 years
- C. ≥60 years
- D. ≥65 years
- E. ≥70 years

How do you assess minimal residual disease (MRD) for ALL?

- A. Multicolor flow
- B. Molecular PCR
- C. Next-generation sequencing platform
- D. We do not check for MRD

Which of the following is NOT true for ALL?

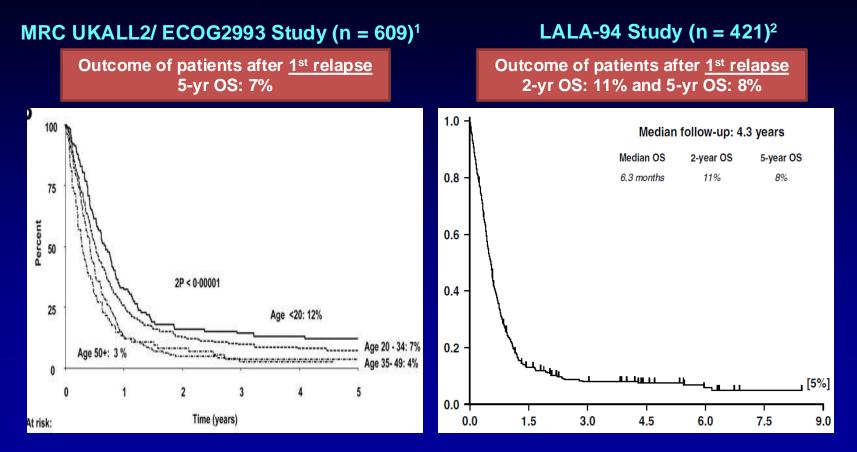
- A. Inotuzumab and blinatumomab + chemotherapy is active in both front line and salvage for ALL
- B. Kinase inhibitors can be combined with other therapy modalities in Ph-positive ALL
- C. MRD is highly prognostic for relapse and survival in Ph-negative ALL
- D. There are no effective consolidation treatments for patients who remain MRD positive after induction therapy

The prognosis of patients with R/R AML depends on:

- A. Age
- B. Prior therapy (eg, HSCT)
- C. Timing of relapse
- D. The mutational and cytogenetic profile of the disease
- E. All of the above
- F. A and D

Current treatment options for relapsed ALL in adult and elderly patients

Elias Jabbour



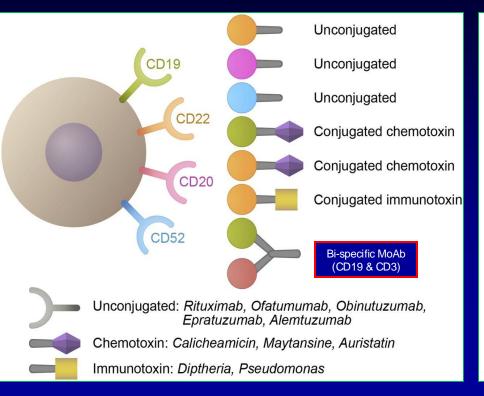
Adults With R/R Acute Lymphocytic Leukemia in 2024: Immunotherapies and Sequencing of CD19-Targeted Therapies

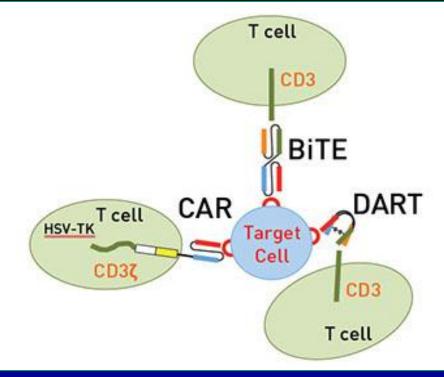
> Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center, Houston, USA

> > **Summer 2024**

ALL – Historical Survival Rates After First Relapse

1. Fielding AK, et al. Blood. 2007;109:944-950; 2. Tavernier E, et al. Leukemia. 2007;21:1907-1914.

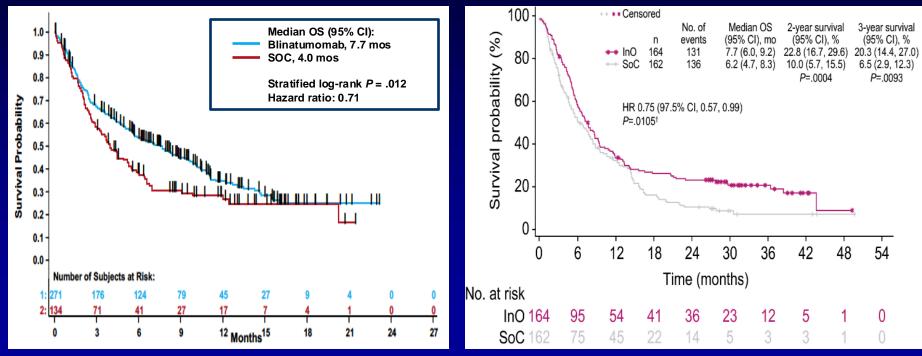

Historical Results in R/R ALL


• Poor prognosis in R/R ALL Tx with standard of care (SOC) chemotherapy

Rate (95% CI)	No Prior Salvage (S1)	One Prior Salvage (S2)	≥2 Prior Salvages (S3)
Rate of CR, %	40	21	11
Median OS, months	5.7	3.4	2.9

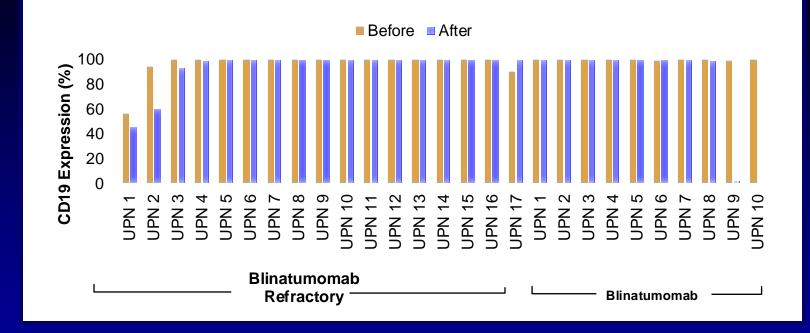
Immuno-Oncology in ALL

Antibodies, ADCs, immunotoxins, BiTEs, DARTs, CAR T cells



Jabbour E, et al. *Blood.* 2015;125:4010-4016.

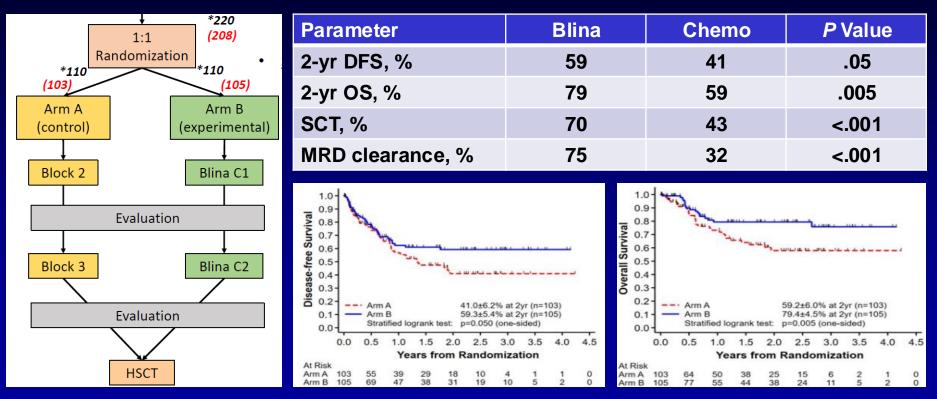
Blinatumomab/Inotuzumab vs ChemoRx in R/R ALL


Marrow CR Blina vs SOC: 44% vs 25%¹

Ino vs SOC: 74% vs 31%^{2,3}

1. Kantarjian H, et al. N Engl J Med. 2017;376:836-847; 2. Kantarjian H, et al. N Engl J Med. 2016;375:740; 3. Kantarjian H, et al. Cancer. 2019;125(14):2474-2487.

CD19 (%) Expression Before and After Blinatumomab Therapy



- 61 patients evaluated for immunophenotype; 56 (92%) had CD19-positive disease
 - 5 (8%) had ALL recurrence with CD19-negative disease
 - 2 patients experienced progression with lower CD19-positive disease

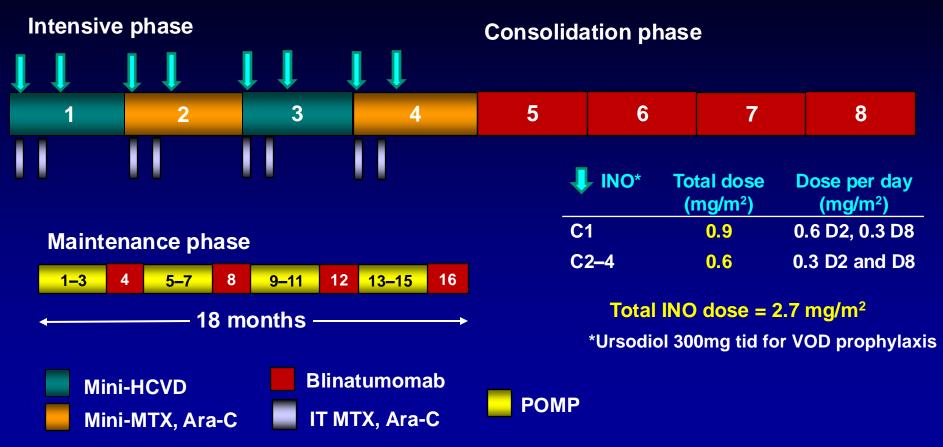
Jabbour E, et al. Am J Hematol. 2018;93:371-374.

Phase III Study of Blinatumomab vs ChemoRx in Children/AYA in Salvage 1

• 208 pts HR/IR randomized 1:1 to blina (n = 105) vs chemoRx (n = 103) post Block 1 reinduction

Brown PA, et al. JAMA. 2021;325:833-842; Brown PA, et al. ASH 2019. Abstract LBA-1 and oral presentation.

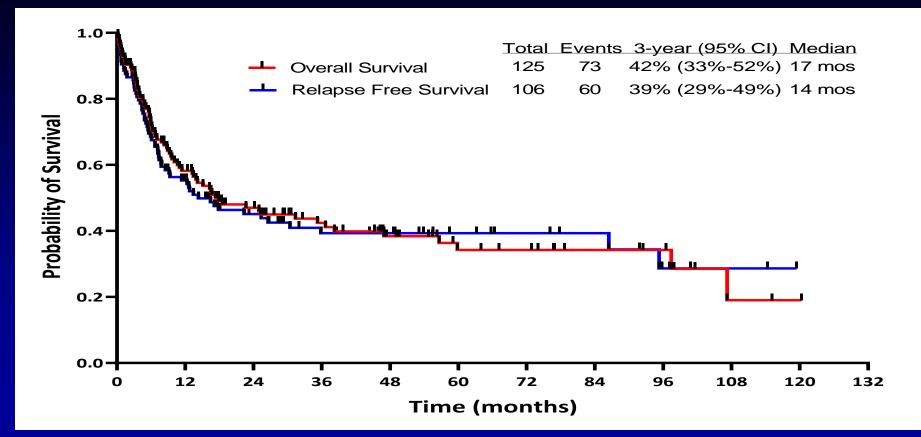
Mini-HCVD + INO ± Blina in R/R B-ALL: Original Design (Pts #1–67)


Intensive phase

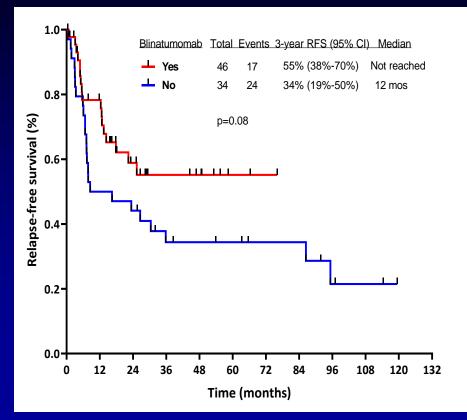
Maintenance phase

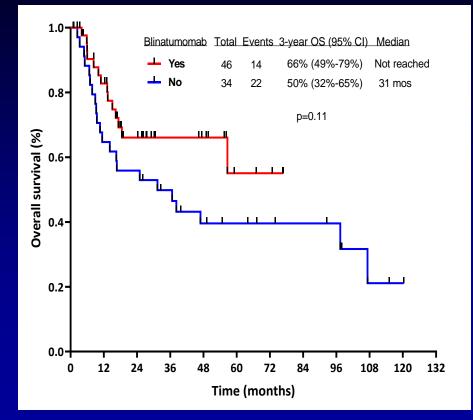
← 36 months				
Mini-HCVD	Mini-MTX, Ara-C IT MTX, Ara-C		POMP	
INO	First 6 pts	7 to 34	35+	
C1 (mg/m²)	1.3	1.8	1.3	
C2–4 (mg/m²)	0.8	1.3	1.0	

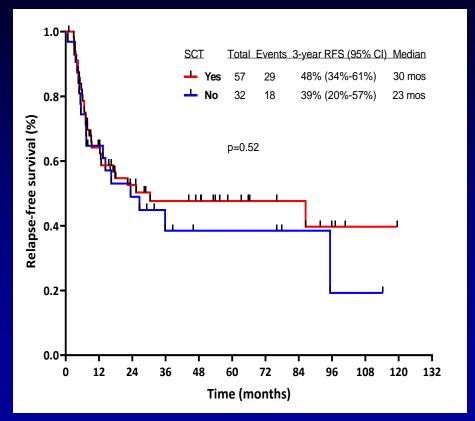
Mini-HCVD + INO ± Blina in R/R B-ALL: Modified Design (Pts #68–110)

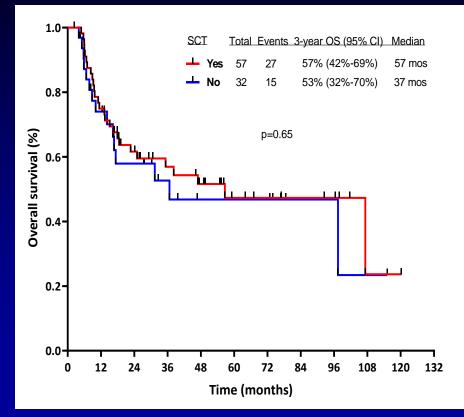

Mini-HCVD + INO ± Blina in R/R B-ALL: "Dose-Dense" Design (Pts #111–125+)

Mini-HCVD + INO ± Blina in R/R B-ALL: MRD Negativity Rates

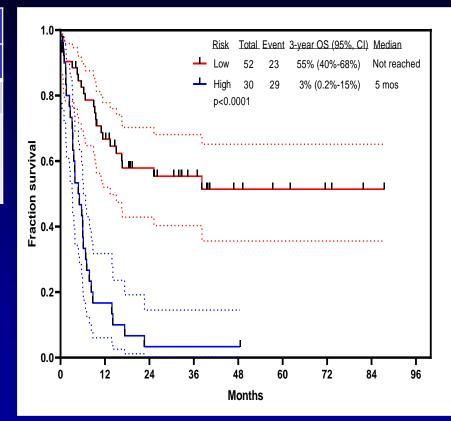

	N (%)			
MRD Negativity by Flow Cytometry	Overall (N = 125)	Before Blinatumomab (n = 67)	After Blinatumomab (n = 43)	Dose Dense (n = 15)
All patients				
End of cycle 1	53/100 (53)	25/49 (51)	18/38 (47)	10/13 (77)
Overall	87/102 (85)	41/50 (82)	34/39 (87)	12/13 (92)
Salvage 1				
End of cycle 1	45/82 (55)	22/34 (65)	17/37 (46)	8/11 (73)
Overall	73/83 (88)	31/35 (89)	32/37 (86)	10/11 (91)
Salvage 2+				
End of cycle 1	6/18 (33)	3/15 (20)	1/1 (100)	2/2 (100)
Overall	14/19 (74)	10/15 (67)	2/2 (100)	2/2 (100)


Mini-HCVD + INO ± Blina in R/R B-ALL: RFS and OS (Entire Cohort)


Short N, et al. EHA 2023; Abstract S119 and oral presentation.


Mini-HCVD + INO ± Blina in R/R B-ALL: OS and RFS by Receipt of Blinatumomab (Salvage 1 Only)

Mini-HCVD + INO ± Blina in R/R B-ALL: OS and RFS by HSCT (Landmark Analysis)



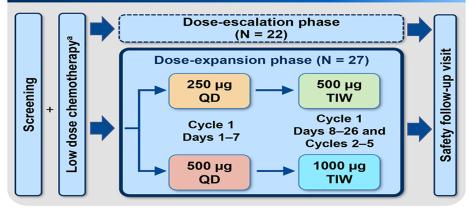
Model: mHCVD + INO ± Blina in R/R ALL – a Prognostic Model for Survival

Variable	Risk Classification		
Variable	Low*	High**	
% CD22	≥70%	<70%	
Cytogenetic	Diploid, complex, others	11q23 rearrangements Ho-Tr	

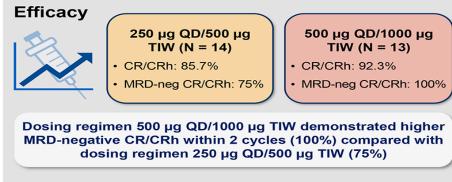
*Low risk required all low-risk criteria. **High risk required any one of high-risk criteria.

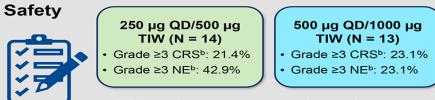
Sasaki Y, et al. Blood. 2020;136(suppl 1):abstract 1899.

Single Agent Subcutaneous Blinatumomab for Advanced Acute Lymphoblastic Leukemia


Results from the expansion phase of a phase 1b trial

Objective

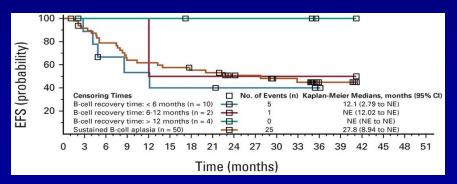


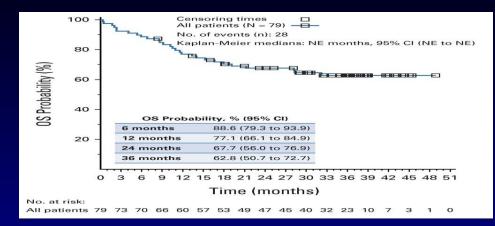

To assess the efficacy and safety of subcutaneous blinatumomab in heavily pretreated adults with R/R B-ALL at two doses

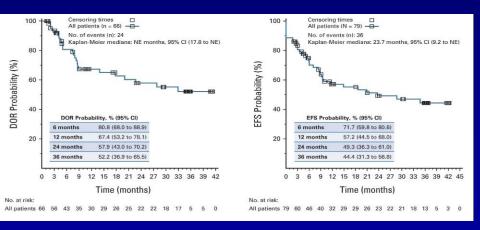
Study Schema

Results

- · SC injections were well tolerated
- No treatment-related grade 4 CRS or NE


Conclusion


Treatment with single agent SC blinatumomab resulted in a high CR rate, high MRD-negativity rate, and an acceptable safety profile in heavily pretreated adults with R/R B-ALL


Jabbour E, et al. Am J Hematol. 2024;99(4):586-595.

3-Year Update of Tisagenlecleucel in R/R ALL

- 97 pts ≤26 yrs old enrolled
 - 79 (81%) received tisa
- Median age 11 yrs (3–24)
- Median prior Tx 3 (1–8)
- Marrow CR 66 = 82%
 - 66% of denominator
- Median F/U 38.8 mos
- 5-yr RFS 49% in pts in CR/CRi
- 3-yr EFS 44%; 3-yr OS 63%
- Grade 3/4 AE 29%

Laetsch TW, et al. J Clin Oncol. 2023;41(9):1664-1669.

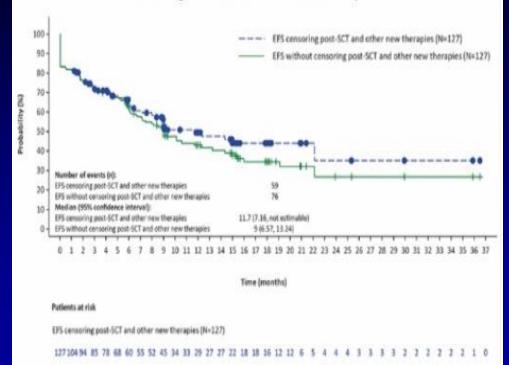
Brexucabtagene Autoleucel (CD19 CAR T) in R/R ALL (ZUMA)

- 78 pts Rx with brexu-cel. Median FU 54 mos
- CR/CRi 57/78 = 73%

ALL Subset	Νο	Median OS (mos)	% 4-yr OS
Total	78	25.6	40
Prior Rx			
1	15	60.4	57
2+	63	25.4	36
Prior blina			
Yes	38	15.9	55
No	40	60.4	24
Later allo SCT			
Yes	14	36.3	-
Νο	43	60.4	-

Oluwole. J Clin Oncol. 2024;24:S6531.

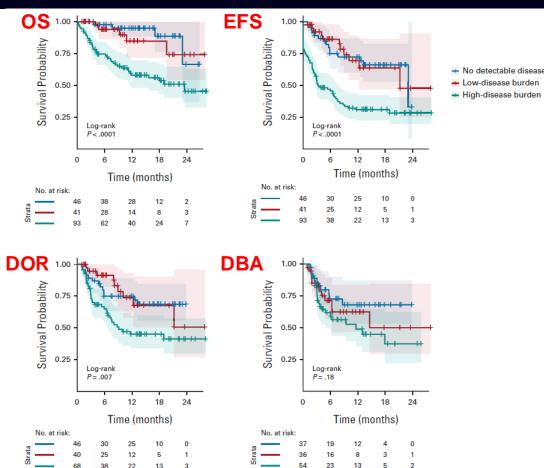
Toxicities of Brexu-Cel in R/R ALL: ROCCA Results


- Retrospective analysis of adults (N = 152) with R/R B-ALL receiving commercial brexu-cel
- Grade 3 CRS higher in ZUMA-3 than seen in the ROCCA dataset, but ICANS rates were comparable
- Grade 3+ CRS showed a numerical increase in patients with active disease at apheresis (>5% marrow blasts and/or EMD); OR: 2.35, 95% CI: 0.69–8.0, P = .17
- Grade 3+ ICANS more likely in pts with active disease at apheresis; OR: 2.63, 95% CI: 1.28–5.38,
 P = .008

Factor	ROCCA	ZUMA-3
Patients infused, n	152	55
Any CRS	82%	89%
Grade ≥3 CRS	9%	24%
Time to onset, days	5 (0–14)	-
Any ICANS	56%	60%
Grade ≥3 ICANS	31%	25%
Time to onset, days	7 (0–21)	-
Early death by day 28, n (%)	9 (6)	-

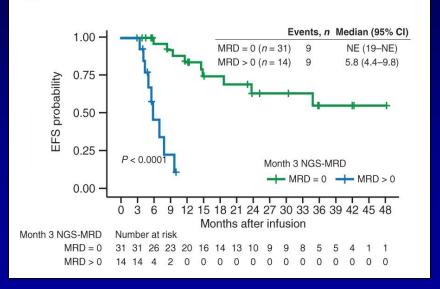
Obecaptagene Autoleucel (OBE-CEL) in Adult R/R ALL (FELIX)

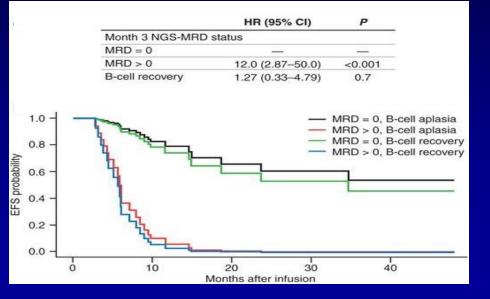
- AUTO 1 fast off-rate CD19 binder CAR T
- 153 enrolled, 127 (83%) infused.
 Median age 47 yrs
- Prior blina 42%, ino 31%, allo SCT 44%
- cCR-CRi 99/127 = 78% (99/153 = 65%). 19/77 allo SCT
- Loss of CAR T = HR 2.9
- 12-mos EFS 49%, 12-mos OS 61%


Kaplan–Meier plot of EFS in patients with or without censoring for consolidative SCT or new therapies

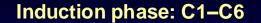
EFS without censoring post-SCT and other new therapies (tix127)

Real-World CAR Consortium and Disease Burden


- 200 pts (185 pts infused)
- Median age: 12 yrs (0–26 yrs)
- CR: 85%
- Disease burden
 - HBD: n = 94 (51%)
 - LBD: n = 41 (22%)
 - ND: n = 46 (25%)
- Survival outcomes
 - 12-mo EFS: 50%
 - 12 mo OS: 72%
- Safety
 - G3 CRS: 21% (35% in HBD)
 - G3 NE: 7% (9% in HBD)



Schultz LM, et al. J Clin Oncol. 2022;40(9):945-955.


NGS MRD Negativity After CAR T-Cell Therapy for ALL

- Detectable MRD after tisagenlecleucel by NGS independently predicted for EFS and OS on multivariate analysis
- NGS MRD status at 3 months was superior to B-cell aplasia/recovery at predicting relapse/survival

Dose-Dense Mini-HCVD + INO + Blina + CAR T Cells in ALL: The CURE

ALL 2024: Conclusions

- Significant improvements across all ALL categories
- Incorporation of Blina-InO in FL therapy highly effective and improves survival
- Early eradication of MRD predicts best overall survival
- Antibody-based Txs and CAR Ts both outstanding; not mutually exclusive/competitive (vs); rather, complementary (together)
- Future of ALL Tx
 - 1) Less chemotherapy and shorter durations
 - 2) Combinations with ADCs and BiTEs/TriTEs targeting CD19, CD20, CD22
 - 3) SQ blinatumomab
 - 4) CAR Ts CD19 and CD19 allo and auto in sequence in CR1 for MRD and replacing ASCT

Thank You

Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX Email: ejabbour@mdanderson.org Cell: 001.713.498.2929

Long-term safety considerations for leukemias (focus on ALL)

Jae Park

ALL in Adults Is Becoming Highly Curable

Subtype	Treatment	Curability
Mature B (Burkitt)	Specific chemotherapy + rituximab DA-R-EPOCH	70%–80%
Ph-pos	TKI ± CHT ± immunotherapy ± HSCT ± maintenance TKI	>50%, >70%
T-ALL, non-ETP T-ALL ETP	Chemotherapy (HDMTX, HDARAC, Asp) ± nelarabine? Chemotherapy (HDMTX, HDARAC, Asp) + Allo-HSCT	60% 30%
ALL in AYA	Pediatric-based or -inspired chemotherapy	70%
CD20-pos ALL	Chemotherapy + rituximab	50%
Ph-like ALL	Chemotherapy + TKI? or JAK inhibitors? + Allo-HSCT	??
Any ALL MRD positivity	Chemotherapy + immunotherapy + Allo-HSCT in CR1	~40%

Lack of systematic approach to analyze the health condition of long-term survivors of adult ALL

Consensus Identification of Long-Term Severe Toxicities (n = 21) (Ponte di Legno Working Group)

- Hearing loss
- Blindness
- Heart failure
- Coronary artery disease
- Arrythmia
- Heart valve disease
- Gastrointestinal failure
- Hepatic failure
- Insulin-dependent diabetes
- Renal failure
- Pulmonary failure

- Osteonecrosis
- Amputation and physical deformations
- Cognitive dysfunction
- Seizures
- Psychiatric disease
- Neuropathy, myopathy, and movement disorders
- Vocal cord paralysis
- Cytopenia
- Immunodeficiency
- Solid malignant neoplasms

Severe toxicity free survival: physician-derived definitions of unacceptable long-term toxicities following acute lymphocytic leukaemia

Liv Andrés-Jensen, Andishe Attarbaschi, Edit Bardi, Shlomit Barzilai-Birenboim, Deepa Bhojwani, Melanie M Hagleitner, Christina Halsey, Arja Harila-Saari, Raphaele R L van Litsenburg, Melissa M Hudson, Sima Jeha, Motohiro Kato, Leontien Kremer, Wojciech Mlynarski, Anja Möricke, Rob Pieters, Caroline Piette, Elizabeth Raetz, Leila Ronceray, Claudia Toro, Maria Grazia Valsecchi, Lynda M Vrooman, Sigal Weinreb, Naomi Winick, Kjeld Schmiegelow, on behalf of the Ponte di Legno Severe Toxicity Working Group*

Andrés-Jensen L, et al. Lancet Haematol. 2021;8:e513-e523; Nielsen CG, et al. Front Pediatr. 2023;11:1155449.

Limitations for Safety Considerations in Adult ALL

- Toxicities defined according to pediatric trials
- Other toxicities not considered
 - Infertility
 - Sexual dysfunction
 - Chronic pain
 - Fatigue
 - Work impairment
 - Social function impairment
 - ... / ...

General Condition and Comorbidity of Long-Term Survivors of Adult ALL

- 1,413 long-term survivors from databases of GMALL trials (1984–2003)
- 584 questionnaires from 538 patients eligible
- Median f/u: 7.5 years (range, 3–24)
- Age at Dx: <25 years (n = 191, 36%), >55 years (n = 26, 5%)
- Median age at f/u: 39 years (range, 19–74)
- Alive >5 years from Dx (416, 78%), >10 years 35%
- HSCT: 168 (31%) (allo/auto 147/21)
- ≥4-year f/u after HSCT: 73%

Questionnaire

• Part 1

 Comorbidity in 1 of 8 organ systems (skin, lung, neurologic, endocrine, kidney/liver, cardiac, gastrointestinal, eyes)

• Part 2

 Specific syndromes (eg, fatigue, GvHD, secondary malignancies, infections, osteonecrosis, hyperthyroidism/hypothyroidism)

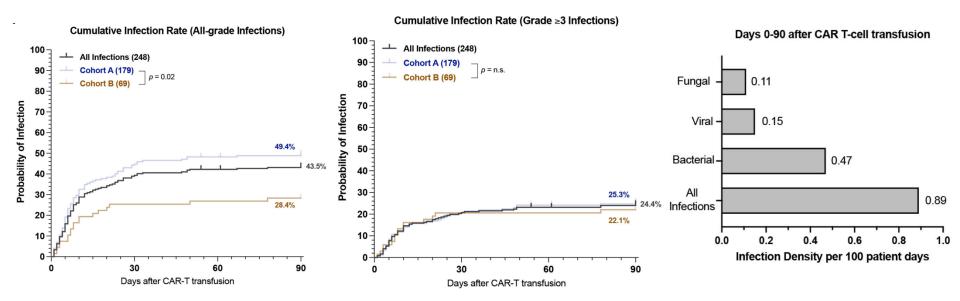
• Part 3

- General health condition (ECOG performance status at last visit)
- Classification of severity according to CTCAE

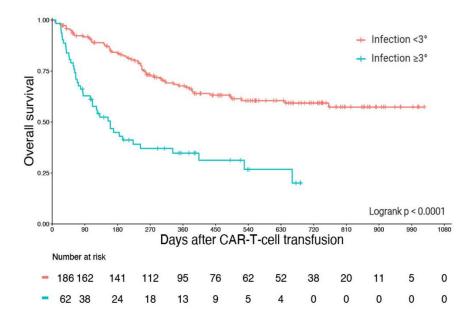
Overall Incidences of Comorbidities and Specific Syndromes

Incidences	Comorbidity		Evaluable per item
	N	%	N
No comorbidity	355	66	538
Comorbidities according			
to organ classes			
Skin	97	18	538
Lung	41	8	538
Cardiac system	70	13	538
Gastrointestinal system	30	6	537
Neurologic system	147	27	538
Kidney/liver	56	10	538
Eyes	65	12	537
Endocrine system			
Women	50	24	211
Men	55	17	327
Specific syndromes			
Infection (in past 12 months)	64	12	533
Fatigue	71	13	533
GvHD	79	15	538
Osteonecrosis	41	8	538
Secondary malignancy	21	4	538
Hypothyreodism	26	5	537
Hyperthyreodism	7	1	538

GvHD: graft-*versus*-host disease.


Predictive Factors for Comorbidities

	HSCT vs CHT	Male vs Female	Aged ≤55 Yr vs >55 Yr
ECOG 0–1	<.0001		.02
Skin	<.0001	.02	
Lung	<.0001		
Cardiac	.03		.02
GI system	.02		
Neurologic	.002	.02	
Kidney/liver	<.0001		
Endocrine	.001		
Eye	<.0001		.04
Infection	.0001	.01	
Fatigue	.007		
Sec. malignancies			.03


Remarks

- Incorporation of recommendations for long-term follow-up in the design of specific trials in ALL
- Multidisciplinary approach of f/u of long-term survivors
- Need for studies of long-term safety with the incorporation of immunotherapies (MoAb, CAR T) and new targeted therapies (TKI and others)
- Prophylaxis of long-term toxicity during the development of trials

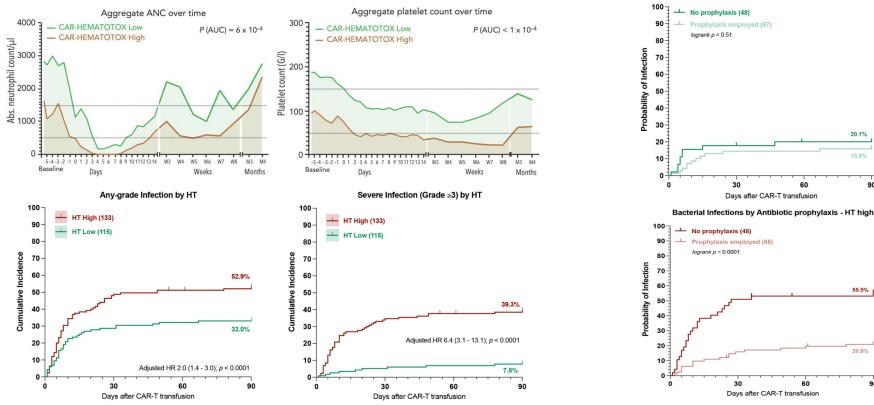
Infections After CAR T-Cell Therapy Are Common and Associated With Increased Mortality

Infections After CAR T-Cell Therapy Are Common and Associated With Increased Mortality

Etiologies of infections are multifactorial

- Lymphodepleting chemotherapy
- Pre-existing disease and prior chemotherapies
- Baseline cytopenia
- Prolonged post-treatment cytopenia
- Persistent disease following CAR T

Cytopenia After CAR T-Cell Therapy Can Be Prolonged



CAR-HEMATOTOX Score

Baseline Features	0 Point	1 Point	2 Points
Platelet Count	> 175,000/µl	75,000 – 175,000/µl	< 75,000/µl
Absolute Neutrophil Count (ANC)	> 1200/µl	< 1200/µl	-
Hemoglobin	> 9.0 g/dl	< 9.0 g/dl	-
C-reactive protein (CRP)	< 3.0 mg/dl	> 3.0 mg/dl	-
Ferritin	< 650 ng/ml	650 – 2000 ng/ml	> 2000 ng/ml
Low: 0-1 High: ≥ 2			

Rajeski K, et al. Blood. 2021;138(24):2499-2513.

CAR-HEMATOTOX Score Can Predict High-Risk Patients for Cytopenia and Infections Bacterial Infections by Antibiotic prophylaxis - HT low

Rajeski K, et al. J Immunother Cancer. 2022;10(5):e004475; Rajeski K, et al. Blood. 2021;138(24):2499-2513.

20.1%

90

55.5%

20.9%

90

Current and future role of transplantation in acute leukemias in Asia-Pacific

Shaun Fleming

Current and Future Role of Transplantation in Acute Leukemias

A/Prof Shaun Fleming, MBBS(Hons), PhD, FRACP, FRCPA

Head of Myeloid Diseases Service

Alfred Hospital, Melbourne, Australia

Conjoint Associate Professor, Australian Centre for Blood Diseases, Monash University


Disclosures

Consultancy/advisory board participation/honoraria

- Amgen
- Novartis
- Servier
- AbbVie
- Pfizer
- Gilead
- BMS

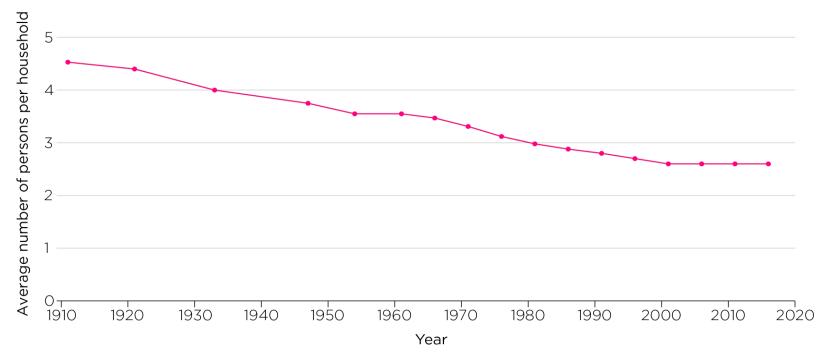
Research grants

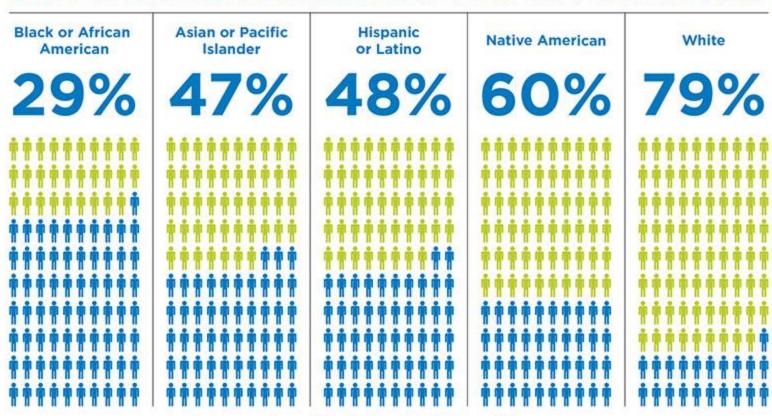
• Amgen

The Balance Is Shifting in Allo-HSCT, but Not Universally

- Ongoing impact of TRM
- Availability of new drugs in frontline and relapsed disease

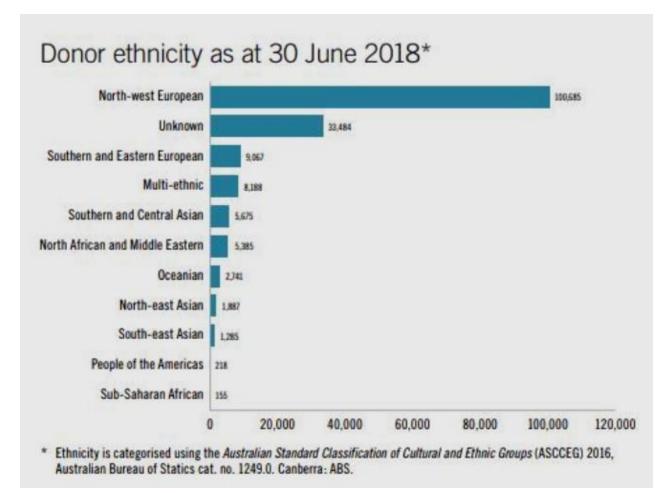
CAR T


- Remains highly effective at controlling leukemia – can we make that even better?
- More access to donors through haploidentical transplantation
 - New approaches to GVHD
 prophylaxis


Expanding the Donor Pool: Haploidentical Transplantation

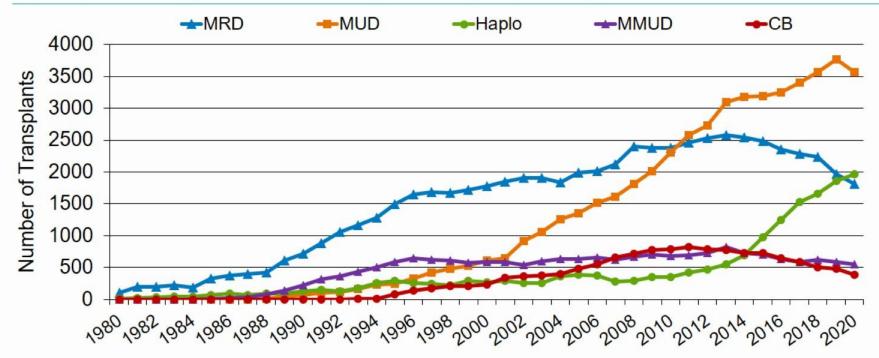
Families Are Getting Smaller – Fewer Sibling Donors

Average household size, 1911–2016


Australian Institute of Family Studies. Population and Households. Accessed Sep 7, 2023. https://aifs.gov.au/research/facts-and-figures/population-and-households

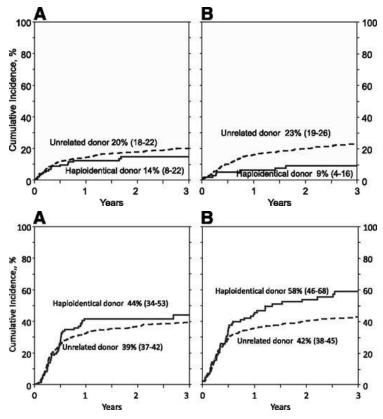
ODDS OF FINDING A MATCH BASED ON ETHNIC BACKGROUND

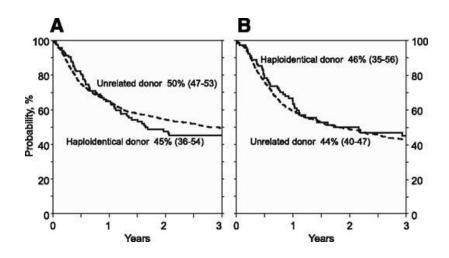
Source: IT-Ideation Department, February 2021


Be the Match. Accessed Sep 7, 2023. https://www.bethematchhosa.org/

Miles D. ABC News. Oct 1, 2019. Accessed Sep 7, 2023.

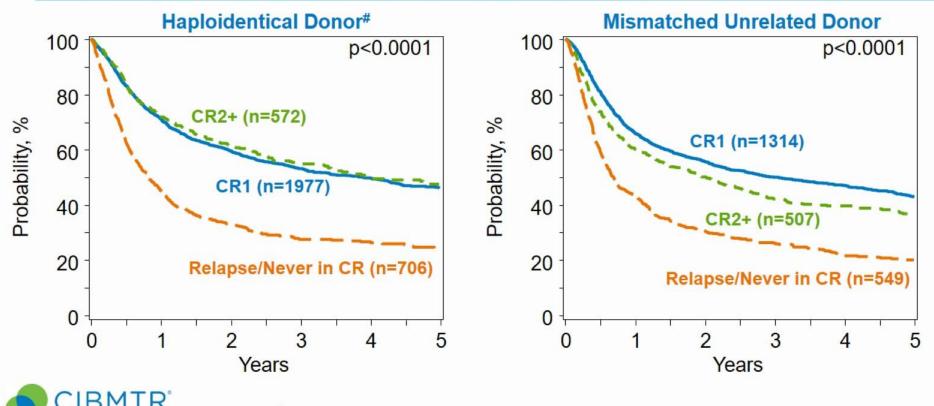
https://www.abc.net.au/news/2019-10-02/donor-registry-plea-for-ethnic-diversity-to-save-cancer-patients/11563250


Number of Allogeneic HCTs in the US by Donor Type



Abbreviations - MRD: Matched related donor; MUD: Matched unrelated donor; Haplo: Haploidentical donor (includes all mismatched related donors); MMUD: Mismatched unrelated donor; CB: Cord blood

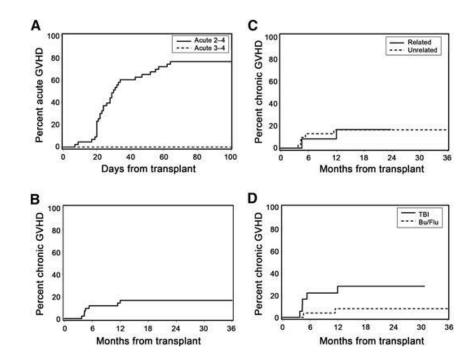
Haplo vs VUD Donors in Acute Leukemia

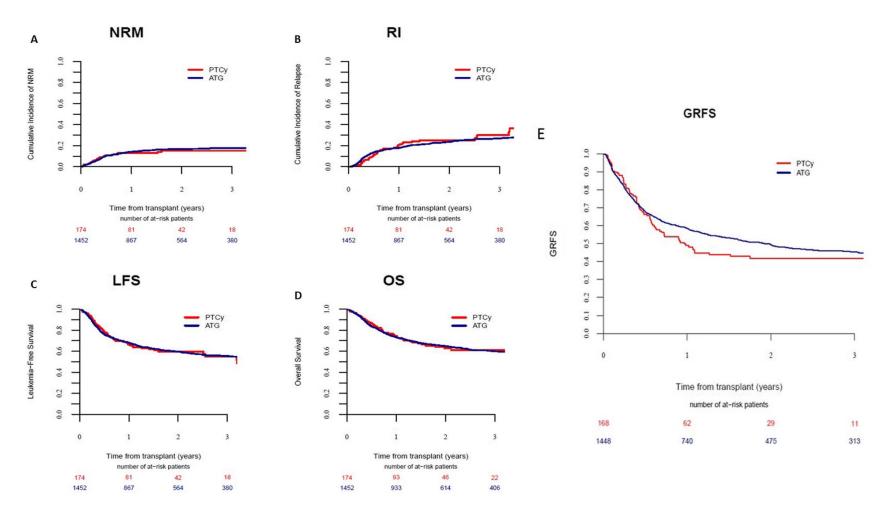


- Ciurea et al compared patients receiving haploidentical transplants with unrelated donor transplants
 - 192 haplos vs 1982 VUDs

Ciurea SO, et al. Blood. 2015;126:1033-1040.

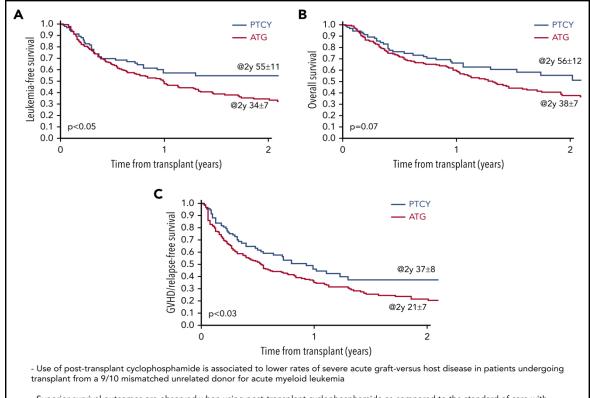
Survival after Allogeneic HCTs for Acute Myelogenous Leukemia (AML), Using Mismatched Donors, Age ≥18 Years, in the US, 2009-2019



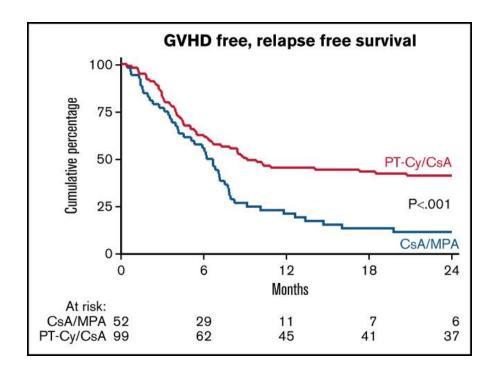

#includes all mismatched related donors; Abbreviation - CR: Complete remission

Post-Transplant Cyclophosphamide (PTCy) in Non-Haplo Transplants

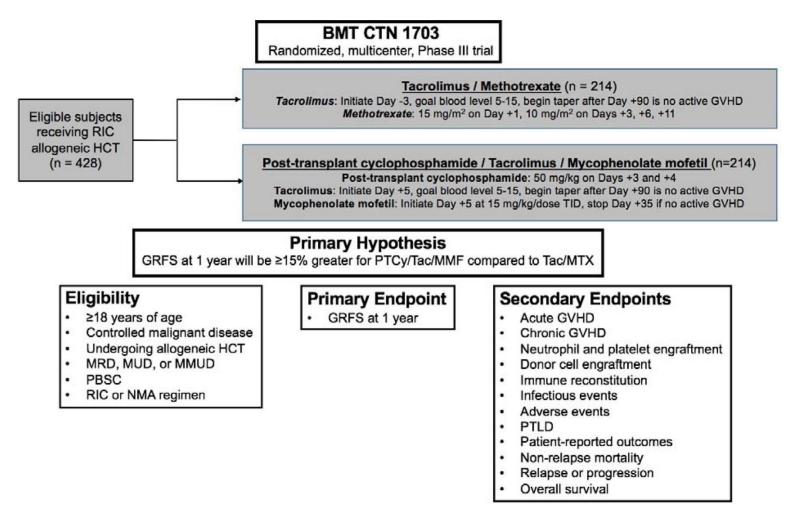
Use of PTCy With Matched Grafts


- Mielcarek et al explored the use of PTCy with matched grafts (either sib or 10/10 VUD)
 - Demonstrated deliverability of PTCy with non-haplo transplants
 - Low rates of acute graft-versushost disease (GVHD) and chronic GVHD
 - Survival outcomes were good, suggesting this is a valid strategy for further evaluation

Brissot E, et al. J Hematol Oncol. 2020;13:87.


If PTCy Allows Overcoming Haplotype Mismatched, What About 9/10 VUDs?

Battipaglia B, et al. *Blood*. 2021;134:892-899.


- Superior survival outcomes are observed when using post-transplant cyclophosphamide as compared to the standard of care with antithymocyte globulin in patients undergoing transplant from a 9/10 mismatched unrelated donor for acute myeloid leukemia

HOVON-96 Study: PTCy vs SOC

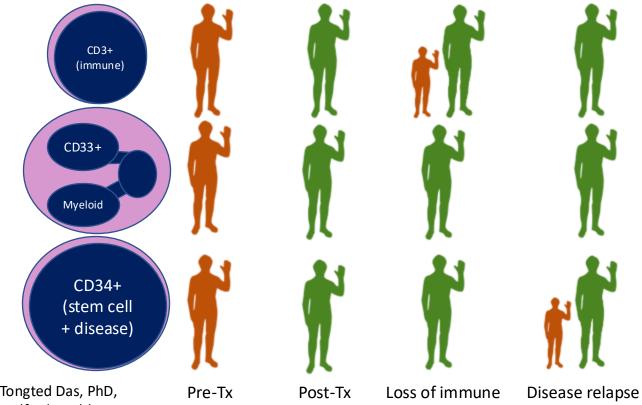
- HOVON-96 study randomized 151 patients to receive PTCy + CsA vs SOC (MTX + CsA) immunosuppression
 - Lower rates of Gr II–IV aGVHD (30% vs 48%, P = .007)
 - Lower rates of extensive cGVHD (16% vs 48%, P <.001)
 - Similar EFS, OS across both modalities

Broers AEC, et al. Blood Adv. 2022;6:3378-3385.

Bolaños-Meade J, et al. N Engl J Med. 2023;388:2338-2348.

CAST Study: ALLG BM12

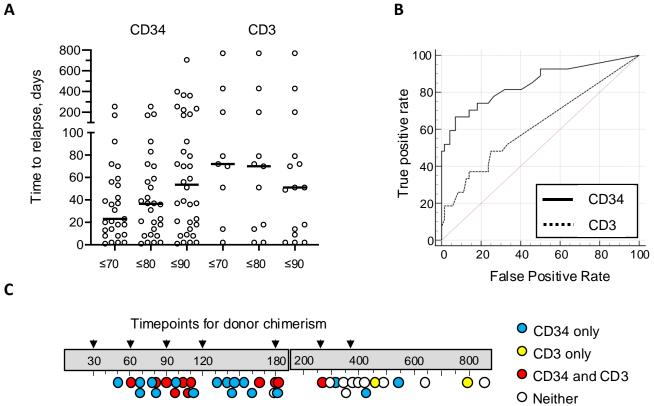
- Randomized study
 - 134 adult patients with AML, ALL, or MDS
 - Available sibling donor
 - Receiving either MAC or RIC transplant with defined regimens
- Currently enrolling in 8 Australian and 2 NZ sites
- 73 patients randomized to January 2022
- Plan to complete accrual by 2023


Conclusion: PTCy

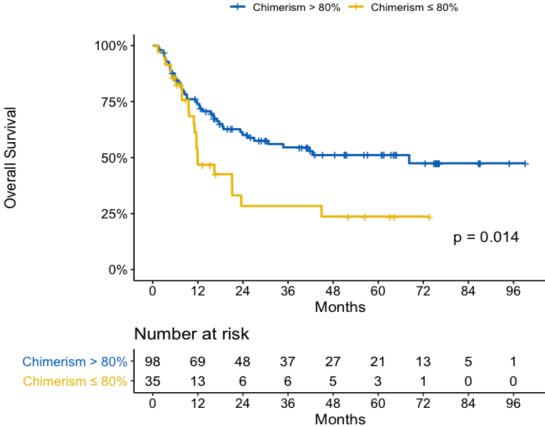
- PTCy reduces rates of severe GVHD when compared with standard immunosuppression in non-haplo transplants
 - Caveat of the possible impact of in vivo T-cell depletion with ATG
 - Outcomes at least equivalent; however, most data here are based on BM as donor source, where GVHD rates are lower
- Current trials overseas and in Australia are exploring the use of PTCy as immunosuppression

CD34+ Chimerism

Chimerism Analysis

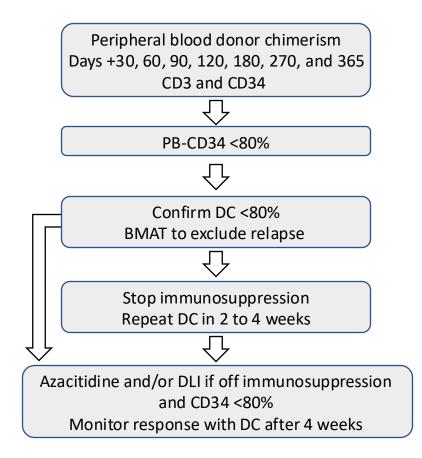


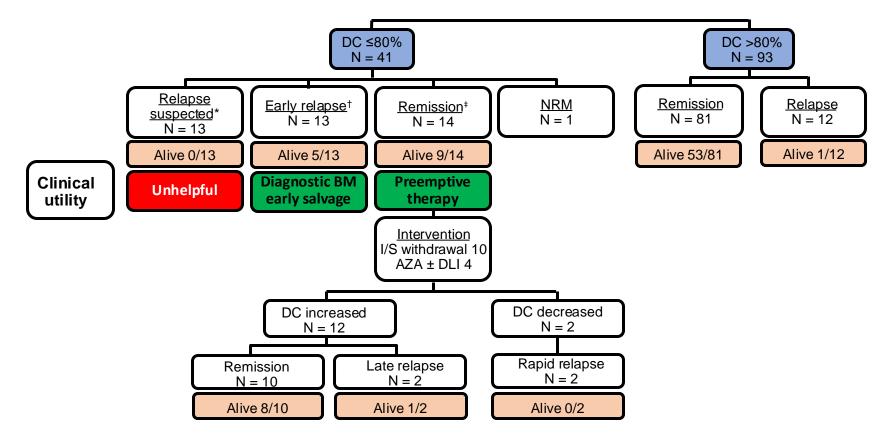
Chimerism analysis: Tongted Das, PhD, Clinical Haematology, Alfred Health


Total, n	134
Median age, yr (range)	52 (19–70)
Male, n (%)	75 (56)
Indication, n	
AML (Fav, Int, Adv, Unk)	115 (19, 56, 39, 1)
MDS	19
CD34 expression, n (%)	98 (85)
Stage of AML at BMT, n (%)	
CR	98 (85)
Conditioning, n (%)	
MAC	68 (51)
RIC	51 (38)
NMA	15 (11)
Donor, n (%)	
Matched related	56 (42)
Matched unrelated	72 (54)
Cord/mismatch	6 (4)
TCD (%)	76 (57)
ATG/Campath/PTCy, n	40/13/23
Median follow-up, d (range)	508 (41–2973)
Relapse, n	40
Death, n	66
Infection/GVHD, n	34
Disease, n	27
Other, n	5

Unpublished data

Α




Unpublished data

.

Unpublished data

*Circulating blasts and/or new cytopenias attributable to morphologic relapse; [†]Normal peripheral blood counts, but either morphologic relapse or MRD in the bone marrow; [‡]Morphologic remission and no MRD where available.

Das et al. Transplant Cell Ther. 2023.

Conclusion: CD34+ Chimerism

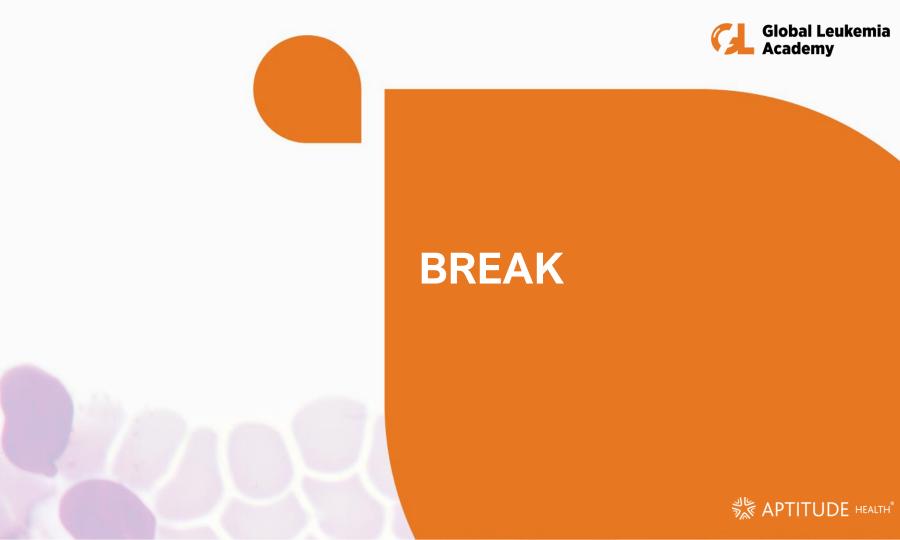
- CD34+ chimerism provides a reliable and broadly applicable method to detect imminent relapse following allogeneic stem cell transplant
- The 80% cutoff maximizes sensitivity and specificity for detection of disease relapse
- Most relapses are detected by earlier timepoints calls into question the need for later chimerism monitoring
- Withdrawal of immunosuppression and intervention with azacitidine ± donor lymphocyte infusion may salvage a proportion of patients

Conclusion

- Transplantation numbers continue to increase globally as the access to donors, advancing age of eligibility for transplant, and increased indications for transplant all lead to increasing numbers
- Haploidentical transplantation has expanded the number of patients who are eligible for transplant and is particularly important in our culturally diverse community with smaller family sizes
- PTCy has allowed us to overcome the HLA-mismatch barrier and may be a superior method of immunoprophylaxis in matched transplants
- CD34+ chimerism monitoring allows early detection of imminent relapse, allowing time for interventions to avert relapse

Thank you

Questions?


- Martin Martin Andrews

VICTO

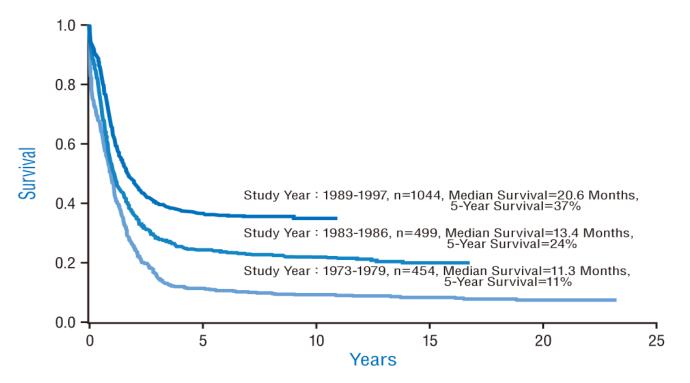
RST

Current treatment options for relapsed AML in adult and elderly patients

Junichiro Yuda

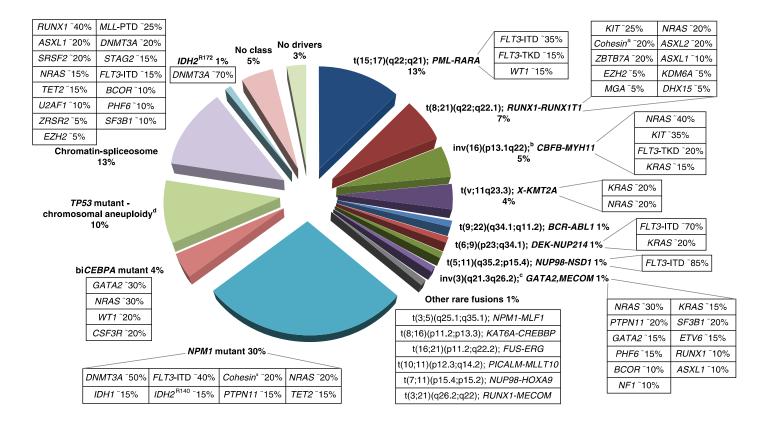
Current treatment options for relapsed AML in adult and elderly patients

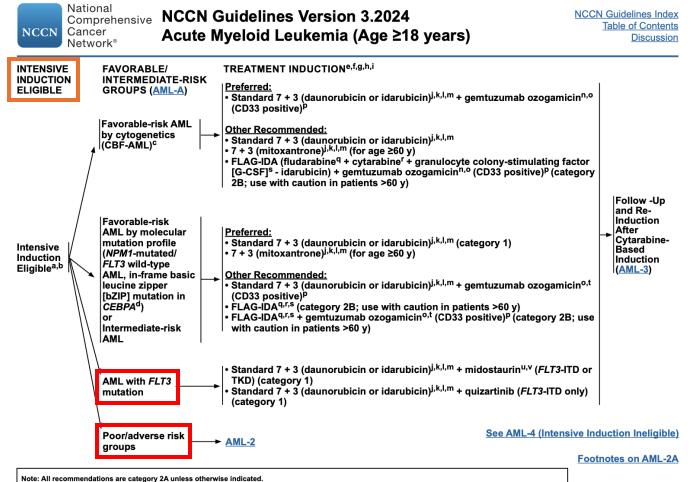
Junichiro Yuda, MD, PhD


National Cancer Center Hospital East Department of Hematology and Experimental Therapeutics Hematological Treatment Development Promotion Office, Department for the Promotion of Drug and Diagnostic Development

2020s

2030s

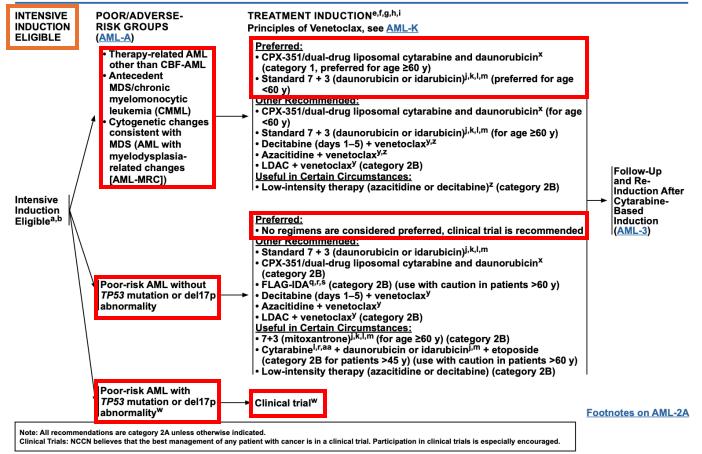



Frederick, R., et al. : Hematology (Am Soc Hematol Edue Program) ., : 62-86, 2001

Genetic mutations in adult patients with AML

ELN stratification system (2022)

Risk Category [♭]	Genetic Abnormality
Favorable	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1^{b,c} inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11^{b,c} Mutated NPM1^{b,d} without FLT3-ITD bZIP in-frame mutated CEBPA^e
Intermediate	 Mutated NPM1^{b,d} with FLT3-ITD Wild-type NPM1 with FLT3-ITD t(9;11)(p21.3;q23.3)/MLLT3::KMT2A^{b,f} Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Adverse	 t(6;9)(p23;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged⁹ t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11;p13)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,^h monosomal karyotypeⁱ Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2ⁱ Mutated TP53^k

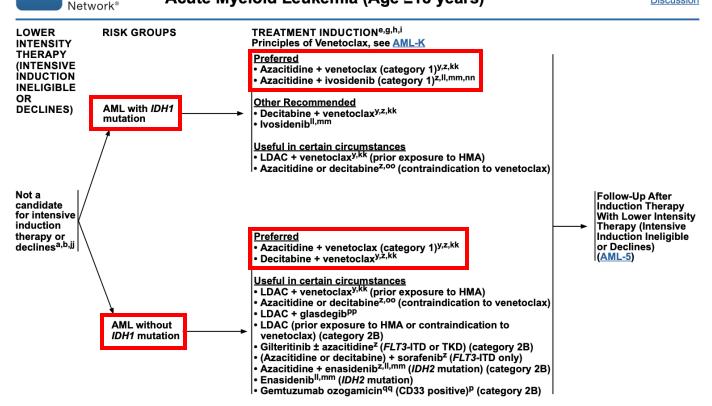


Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

National Comprehensive Cancer

Network[®]

NCCN Guidelines Version 3.2024 Acute Myeloid Leukemia (Age ≥18 years)

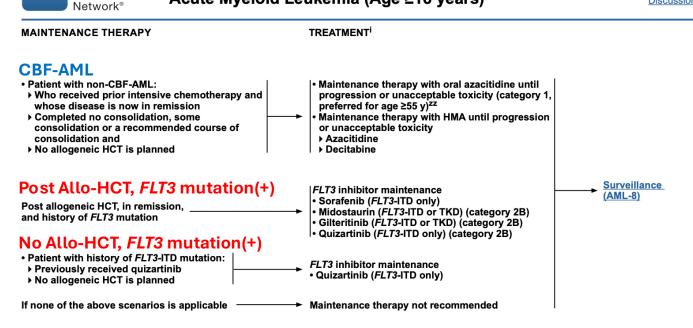


National Comprehensive Cancer

NCCN

NCCN Guidelines Version 3.2024 Acute Myeloid Leukemia (Age ≥18 years)

Footnotes on AML-4A

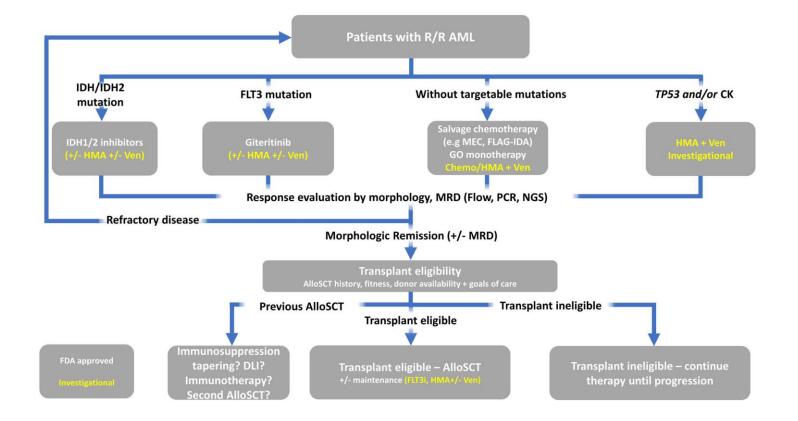

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 3.2024, 05/17/2024 © 2024 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN.

National Comprehensive NCCN Cancer

NCCN Guidelines Version 3.2024
 Acute Myeloid Leukemia (Age ≥18 years)

NCCN Guidelines Index Table of Contents Discussion



ⁱ See Principles of Systemic Therapy (AML-E).

^{ZZ} This is not intended to replace consolidation chemotherapy. In addition, patients who are fit may benefit from HCT in first CR, and there are no data to suggest that maintenance therapy with oral azacitidine can replace HCT. The panel also notes that the trial did not include patients <55 years of age or those with CBF-AML; it was restricted to patients <55 years of age with AML with intermediate or adverse cytogenetics who were not felt to be candidates for HCT. Most patients received at least 1 cycle of consolidation prior to starting oral azacitidine. Wei AH, et al. N Engl J Med 2020;383:2526-2537.</p>

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Treatment algorithm for patients with relapsed or refractory AML

Selected investigational drugs for AML

Target	Drug	Regimens	Population	Early efficacy outcomes	Ongoing trials
-	SNDX-5613 (revumenib)	Monotherapy ¹⁸³		44% composite CR	•••
Menin	KO-539 (ziftomenib)	Monotherapy ¹⁸⁴	R/R MLL rearranged or mutated NPM1	25% CR rates	Phase I-II AUGMENT-101, NCT04065399 Phase I-II KOMET-001, NCT04067336
	KO-539 (zittomenib)	мопошегару	AML	25% CR fales	Phase 1-11 KOME 1-001, NC 104067336
CD 47	Magrolimab	Magrolimab + HMA ^{185,186}	ND-AML (enriched for TP53 and high risk)	ORR 69%, 50% CR/CRi	Phase III, TP53 mutated AML ENHANCE-2, NCT04778397
			TP53 mutated AML	ORR 49%, CR 33%, median OS 10.8 months	
		Magrolimab + HMA + ven. ¹⁸⁷	ND + R/R AML	CR/CRi 94% in ND CR/CRi 63% in ven naïve; 27% in ven failure	Phase III, ND-AML ENHANCE-3, NCT05079230
TIM-3	Sabatolimab (MBG453)	Sabatolimab+ HMA ¹⁸⁸	ND-AML unfit for intensive chemotherapy	ORR 40%. ORR 54% in RUNX1/ASXL1/ TP53 mutated AML	Phase Ib, NCT03066648
		Şabatolimab+ HMA + ven ¹⁸⁹	ND-AML unfit for intensive chemotherapy	CR/CRi 67%	Phase II, NCT04150029
E-selectin	Uproleselan ¹⁹⁰	"7 + 3" + Uproleselan	ND-AML ≥60 years fit for intensive therapy	CR/CRi-72%	Phase III ongoing, NCT03701308
		MEC + uproleselan	R/R AML fit for intensive therapy	41% composite CR median OS 8.8 months	Phase III ongoing, NCT03616470
CD123	Tagrasofusp ¹⁹¹	Tagrasofusp + HMA	ND-AML not fit for intensive therapy,	ND-AML–20% CR/CRi	Phase I, NCT03113643
		$Tagrasofusp\ HMA + Ven$	BPDCN, R/R-AML	ND-AML-89% CR/CRi.	
	IMGN632	IMGN632 +/- HMA +/- ven ¹⁹²	R/R AML	IMGN632 + HMA + Ven 55% ORR, composite CR 31%	Phase Ib/II in both ND and R/R AML, NCT04086264
	Flotetuzumab (DART CD123/CD3)	monotherapy ¹⁹³	Refractory or early relapse (<6 mo) AML	CR/CRh/CRi—30%.	2nd generation MGD024 Phase I in R/R AML, NCT05362773

Selective MCL-1 inhibitor for AML and myeloma

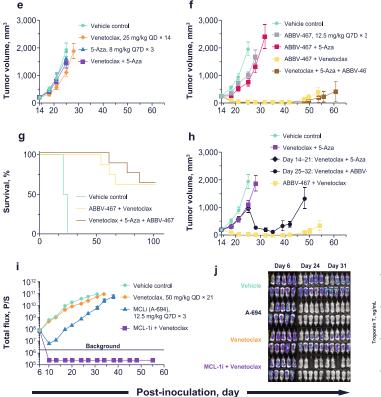
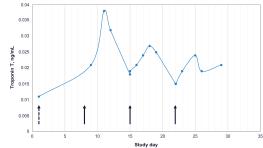
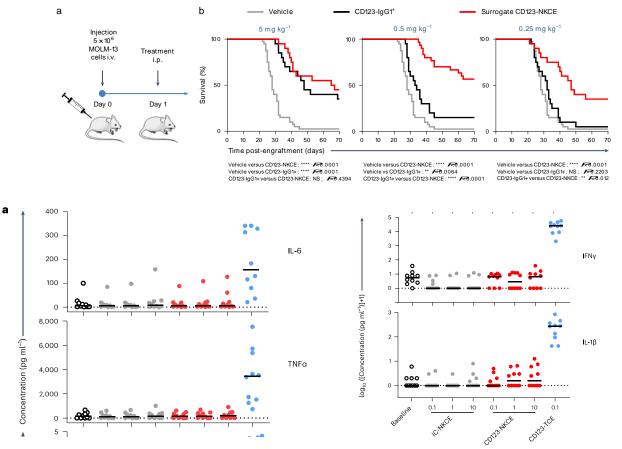
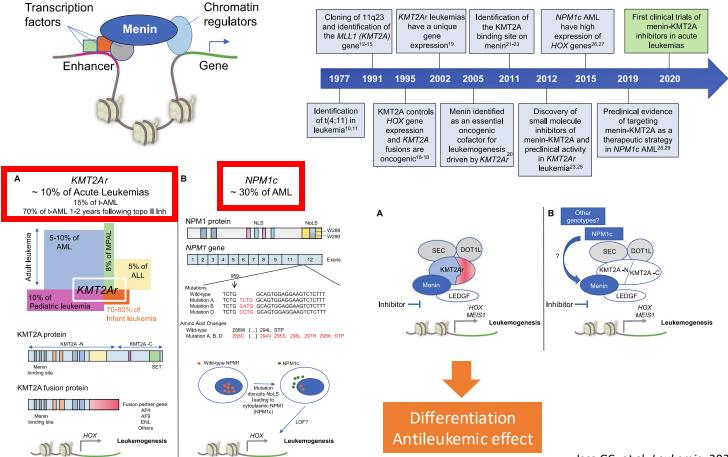



Table 1 Binding affinity of compounds 1, 2, and ABBV-467 to BCL-2 family proteins, and cellular activity of ABBV-467 and other clinical-stage MCL-1 inhibitors in human tumor cell lines.


	TR-FRET, Ki, nM				
	MCL-1	BCL-2	BCL-XL	BCL-W	BCL2-A
Binding affinity					
1 (MIK665)	<0.01	599	>660	>468	>468
2	5.54	>1200	>660	NT	NT
ABBV-467	<0.01	>642	>376	>247	>402
	AMO-1	H929	MV4	-11	DLD-1
	EC ₅₀ (nM, 10% FBS)	EC ₅₀ (nM 10% FBS			EC ₅₀ (nM, 10% FBS)
Cellular activity					
Cellular activity ABBV-467	0.16	0.47	3.91		>10,000
		0.47 4.75	3.91 10.87		>10,000 4750
ABBV-467	0.16				
ABBV-467 MIK665	0.16 2.06	4.75	10.87		4750

Data are representative or the mean of at least 3 independent experiments. The impact on cell visibility was determined by Cell Tirler-Glo' after 24 h of continuous treatment (see "Methods"). BCI-28-cell lymphoma 2, EC₅₀ half maximal effective concentration; FBS fetal bovine serum, Ki dissociation constant, NT not tested, TR-FRET time-resolved fluorescence resonance energy transfer

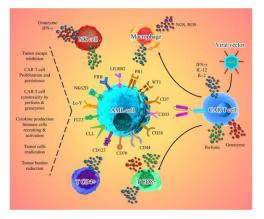
Serum troponin T



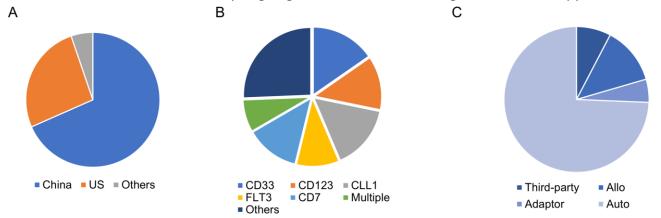
Trifunctional NKp46-CD16a-NK cell engager targeting CD123

Gauthier L, et al. Nat Biotechnol. 2023;41(9):1296-1306.

Menin inhibition: KMT2Ar/m or NPM1m-positive AML

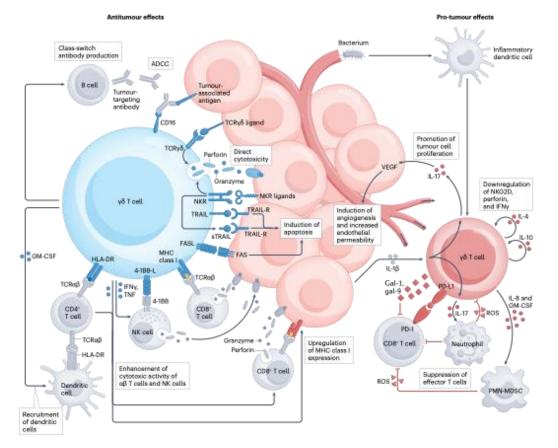


Issa GC, et al. Leukemia. 2021;35(9):2482-2495.

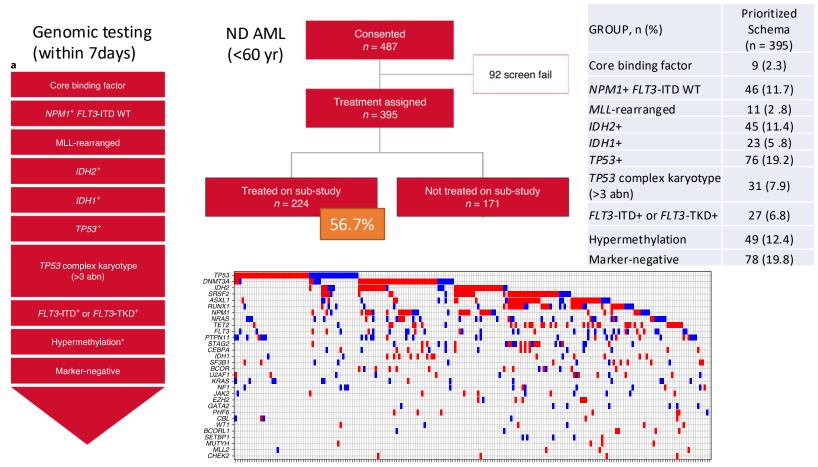

Selected menin inhibitors in development

Drug	Company	Lead indication	Status
Revumenib	Syndax	<i>KMT2A</i> -rearranged acute leukaemia, <i>NPM1</i> -mutated acute leukaemia	Submitted
Ziftomenib	Kura	NPM1-mutated acute leukaemia	Phase II
JNJ-75276617	Johnson & Johnson	KMT2A-rearranged, NPM1-mutated acute leukaemia	Phase I
DSP-5336	Sumitomo	Acute leukaemia	Phase I
BMF-219	Biomea Fusion	Various	Phase I
BN104	Bionova	AML, ALL	Phase I
Balamenib	Eilean	AML	Phase I
D0060-319	Chengdu Easton	KMT2A-rearranged acute leukaemia	Preclinical
HG153	HitGen	KMT2A-rearranged or NPM1-mutated AML and ALL	Preclinical
NA	Ascentage	NA	Preclinical
DS-1594	Daiichi Sankyo	KMT2A-rearranged or NPM1-mutated AML and ALL	Discontinued
· · ·			

Implications of the association between the CAR T cell and cancer cells in AML

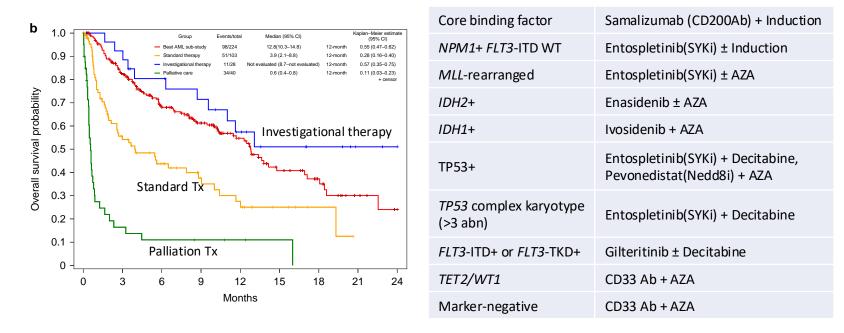


Overview of currently ongoing clinical trials in AML-targeted CAR T therapy

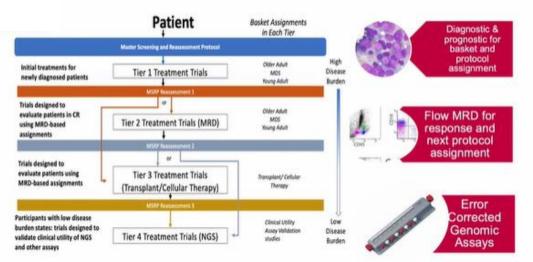


Marofi F, et al. Stem Cell Res Ther. 2021;12(1):81; Saito S. Int J Hematol.

The emerging roles of $\gamma\delta$ T cells in cancer immunotherapy



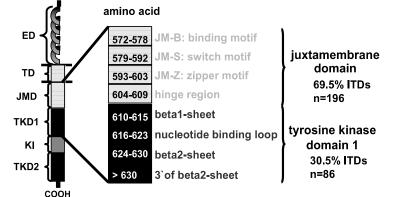
AML Master trial


Burd A, et al. Nat Med. 2020;26(12):1852-1858.

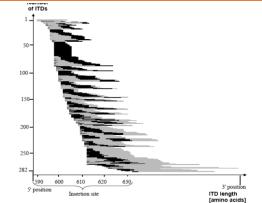
AML Master trial

- Standard treatment 103, investigational treatment 28, palliative care 40 patients
- 30-day mortality: substudy 3.7%, standard treatment selected 20.4%
- Median overall survival: study treatment 12.8 months, standard treatment 3.9 months, palliative care 0.6 months

Umbrella trial in myeloid malignancies: The myeloMATCH National Clinical Trials Network Precision Medicine Initiative

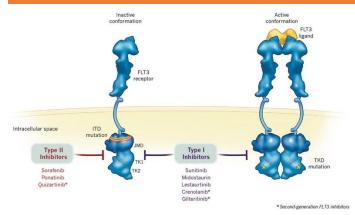


Biomarkers in myeloMATCH

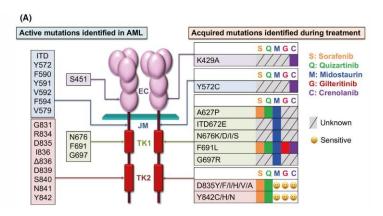

Companie	es Supporting Biomarker Assessments
Thermo Fish	er Scientific
TwinStrand I	Biosciences
	Targets/Drug Classes
TP53 modula	ation
DNA methyl	transferase inhibition
FLT3	
NPM1	
MLL/KMTZA	
KIT	
IDH I and 2	
IRAK4	
BCL2	
CD-47	
Liposomal co	ombination chemotherapy

Little RF, et al. Blood. 2022;140(suppl 1):9057-9060.

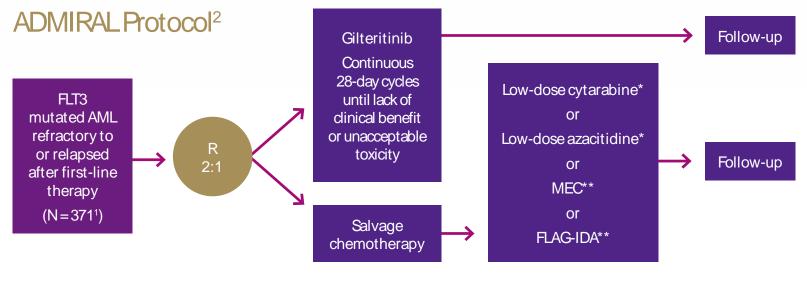
Schematic structure of the FLT3 receptor



Correlation between ITD insertion site and length



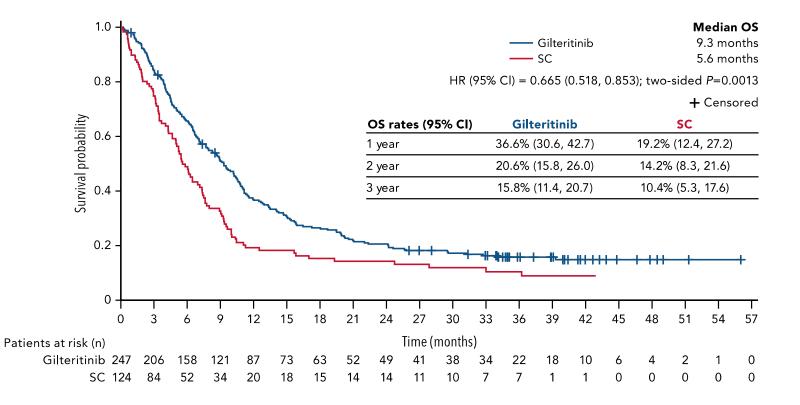
Kayser S, et al. Blood. 2009;114(12)2386-2392.


Schematic structure of the FLT3 receptor

Daver N, et al. Leukemia. 2019;33(2):299-312.

Kiyoi H, et al. Cancer Sci. 2020;111(2):312-322.

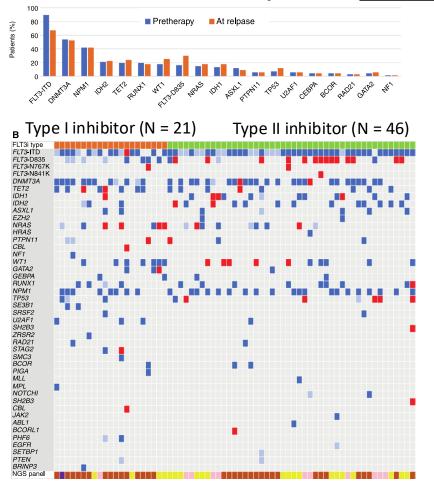
AML = Acute Myeloid Leukemia


FLT3 = FMS-like tyrosine kinase 3

FLAG-IDA = fludarabine, cytarabine, granulocyte colony-stimulating factor and idarubicin

NR=no response PD=progressive disease R=randomized

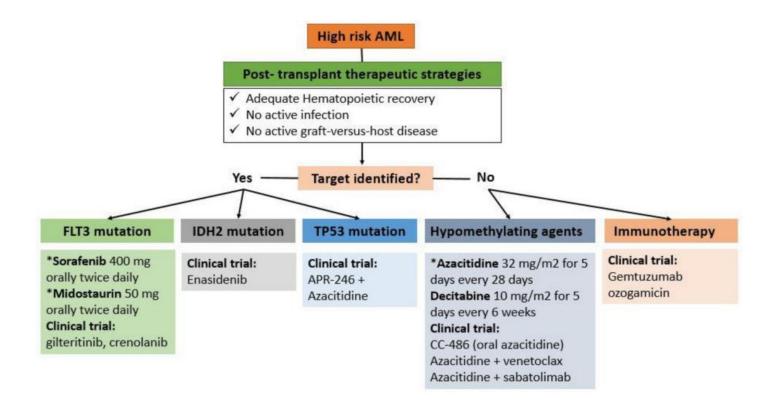
*Continuous28-day cycles until lack of clinical benefit or unacceptable toxicity. **For a maximum of 2 cycles or until NRor PD.


MEC=mitoxantrone, etoposide and intermediate-dose cytarabine

Trial	QuANTUM-R (phase III, n = 367)	ADMIRAL (phase III, n = 371)
Drug	Quizartinib	Gilteritinib
Effective mutation	ITD	ITD and TKD
CR rate	CR 4%, CRc 48%	CR 21%, CRc 54%
Time to CRc Time to best res	1.1 mo 1.9 mo (CRc)	1.8 mo 3.8 mo
Median OS	6.2 mo	9.3 mo
Median DOR	3.0 mo (CRc)	4.6 mo (CRc)
QTc prolongation (Gr ≥3)	4.1%	0.4%
CPK increased (Gr ≥3)	NA	2.4%
Resistance mechanism	TKD、F691L Ras/MAPK	F691 Ras/MAPK
The rate of Allo-HSCT	31.8% (78/245)	35.5% (63/247)

*Unfair comparison as different patient populations.

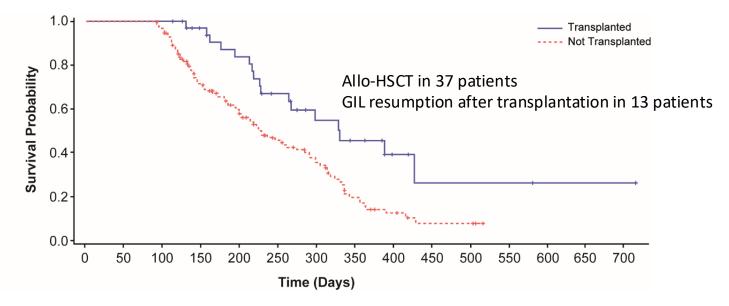
Frequency and landscape of somatic mutations pretherapy and at relapse after <u>FLT3i-based therapies</u>



А

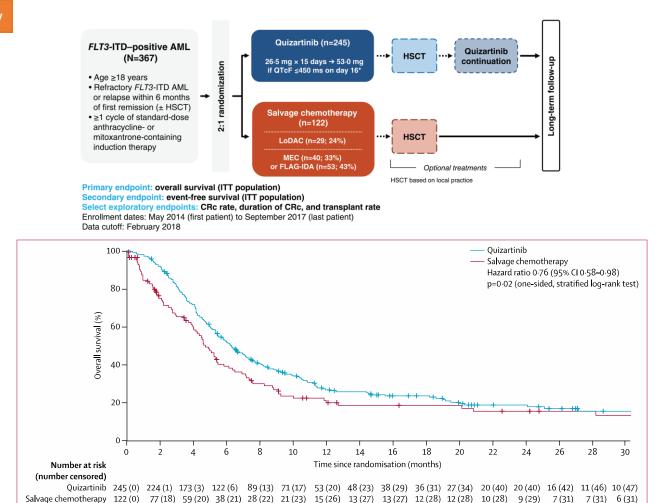
- Targeted next-generation sequencing (NGS) at relapse identified emergent mutations involving on-target *FLT3*,
 epigenetic modifiers, *RAS/MAPK* pathway, and less frequently *WT1* and *TP53*
- RAS/MAPK and FLT3-D835 mutations emerged most commonly following type I and II FLT3i-based therapies, respectively.
- Among pretreatment RAS-mutated patients, pretreatment cohort-level variant allelic frequencies for RAS were higher in nonresponders, particularly with type I FLT3i-based therapies, suggesting a potential role in primary resistance as well

Alotaibi AS, et al. Blood Cancer Discov. 2021;2(2):125-134.

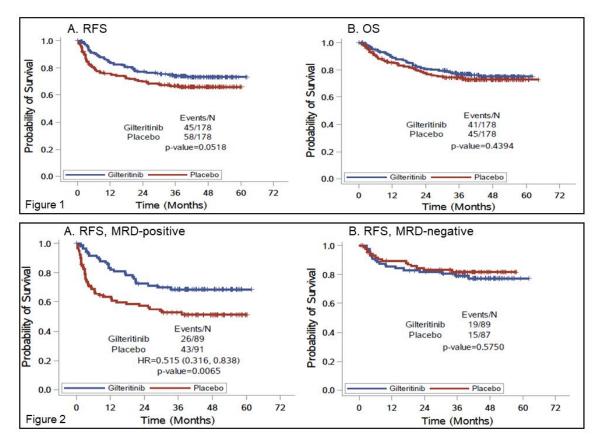

Maintenance therapy after allogeneic transplantation

CHRYSALIS Study

Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study


Alexander E Perl*, Jessica K Altman*, Jorge Cortes, Catherine Smith, Mark Litzow, Maria R Baer, David Claxton, Harry P Erba, Stan Gill, Stuart Goldberg, Joseph G Jurcic, Richard A Larson, Chaofeng Liu, Ellen Ritchie, Gary Schiller, Alexander I Spira, Stephen A Strickland, Raoul Tibes, Celalettin Ustun, Eunice S Wang, Robert Stuart, Christoph Röllig, Andreas Neubauer, Giovanni Martinelli, Erkut Bahceci, Mark Levis

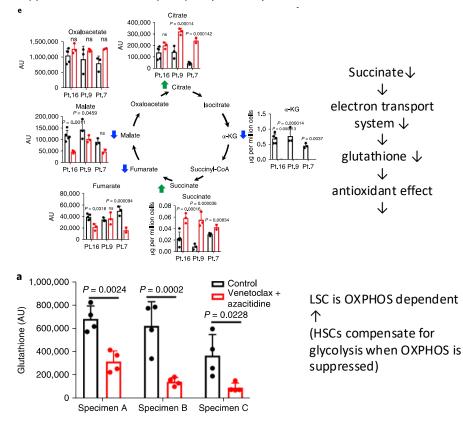
Bridging to allo-HSCT after successful treatment with GIL


Perl AE, et al. Lancet Oncol. 2017;18(8):1061-1075.

QuANTUM-R Study

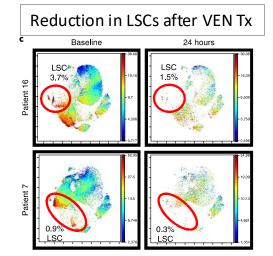
Cortes JE, et al. *Lancet Oncol.* 2019;20(7):984-997.

BMT-CTN 1506 (MORPHO): A randomized trial of the FLT3 inhibitor gilteritinib as post-transplant maintenance for *FLT3*-ITD AML

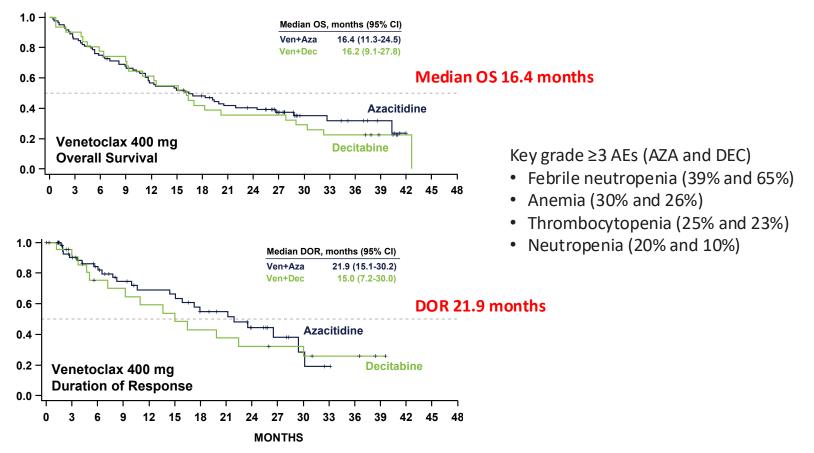

Levis M, et al. EHA 2023. Abstract LB2711.

Efficacy of venetoclax against AML stem cells

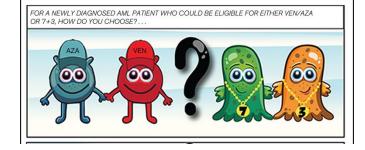
	VEN+DEC	VEN+AZA
Complete remission	8 (35%)	6 (27%)
CRi	6 (26%)	7 (32%)
Partial remission	1(4%)	0
MLFS*	2 (9%)	5 (23%)
Resistant disease	3 (13%)	2 (9%)
Non-evaluable†	3 (13%)	2 (9%)
Complete remission and CRi	14 (61%)	13 (59%)
Overall response‡	15 (65%)	13 (59%)
Overall outcome§	17 (74%)	18 (82%)

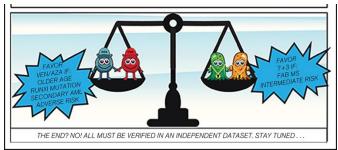

VENLOCC VENLAZA

Suppression of oxidative phosphorylation by VEN + AZA

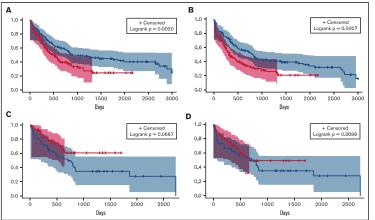

Most common grade 3-4 TEAE:

Thrombocytopenia (9 in group A, 13 in group B), febrile neutropenia (11 in group A, ten in group B,), and neutropenia (12 in group A, eight in group B).




DiNardo CD, et al. *Lancet Oncol.* 2018;19(2):216-228; Pollyea DA, et al. *Nat Med.* 2018;24(12):1859-1866.

Long-term follow-up data of VEN-based regimen



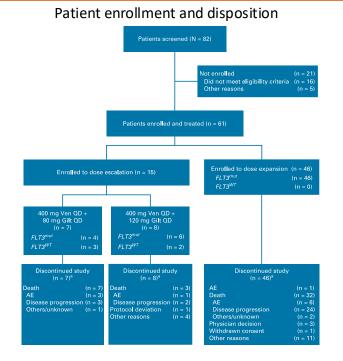
Newly diagnosed AML: AZA + VEN vs intensive chemotherapy

Retrospective analysis AZA + VEN: n = 143, IC: n = 149

Propensity-matched cohort

CR/CRi

- AZA + VEN: Elderly, secondary AML, *RUNX1* mut
- IC: AML M5

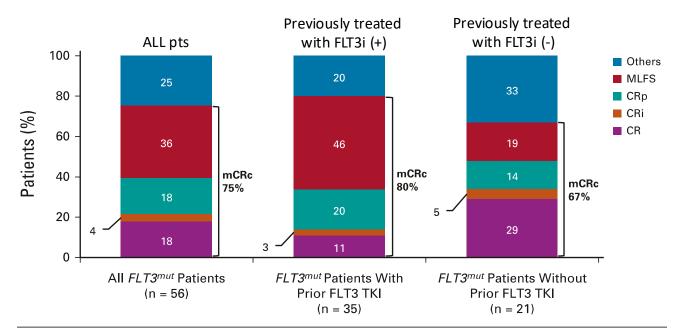

OS

- AZA + VEN: Elderly, secondary AML, *RUNX1*mut
- IC: AML M5

After adjusting for baseline factors, the VEN + AZA group had better OS.

Evan MC. Blood Advances. 2021.

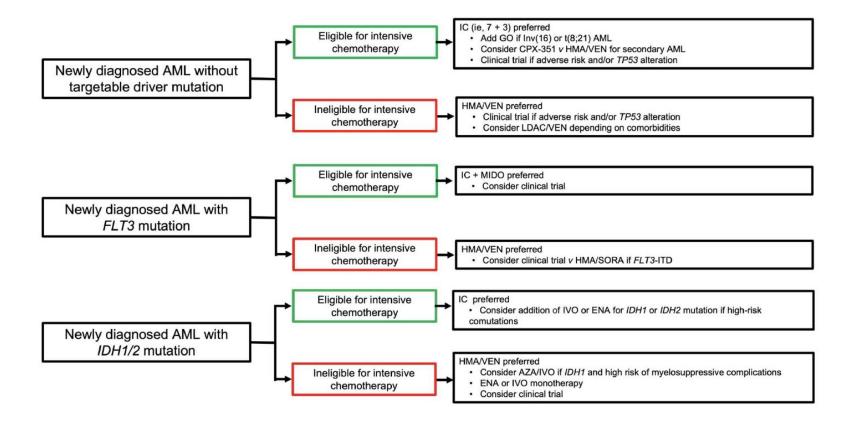
Venetoclax + gilteritinib for *FLT3*-mutated R/R AML

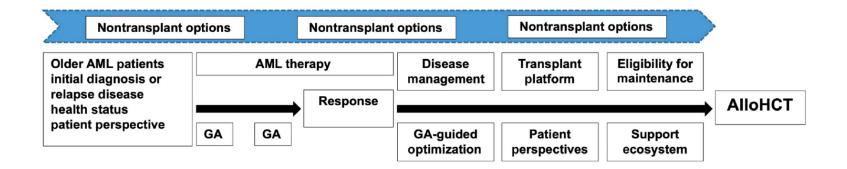

- 61 patients enrolled, median age 63 years (range: 21 to ~85 years)
- Prior treatment: 19 patients (31%) received allogeneic transplantation; 10 patients received VEN (no prior gilteritinib)
- 36 of 56 FLT3 mutation-positive patients had received FLT3 TKIs
- The median duration of exposure was 2.6 months (range: 0.07-16.8) for VEN and 2.6 months (range: 0.1-17.2) for GIL

Median age, years (range) 63 (21-85) Sex, No. (%) 30 (49) Race, No. (%) 30 (49) Race, No. (%) 53 (88) Black or African American 3 (5) American or Alaska Native 4 (7) Hawaiian Native or Pacific Islander 0 Missing 1 (2) ECOG PS, No. (%) 10 (16) 1 42 (69) 2 9 (15) Cytogenetic risk, No. (%) 2 (3) Intermediate 33 (56) Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior Innes of Therap 10 (16) Prior lines of therap 1 Pior venetoclax, No. (%) 10 (16) Prior venetoclax, No. (%) 10 (16) Prior setticat, No. (%) 10 (16) Prior setticat, No. (%) 10 (16)	Characteristic	All Patients (N = 61)
Female30 (49)Race, No. (%) (4) White53 (88)Black or African American3 (5)American or Alaska Native4 (7)Hawaiian Native or Pacific Islander0Missing1 (2)ECOG PS, No. (%)0010 (16)142 (69)29 (15)Cytogenetic risk, No. (%)2 (3)Intermediate33 (56)Poor20 (34)No mitoses or missing6 (10)Relapsed disease, No. (%)19 (31) <i>FLT3</i> mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therap 2123Prior lines of therap 210 (16)Prior venetoclax, No. (%)10 (16)Prior venetoclax, No. (%)10 (16)Prior lines of therap 119 (31)Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	Median age, years (range)	63 (21-85)
Race, No. (%)S3 (88)White53 (88)Black or African American3 (5)American or Alaska Native4 (7)Hawaiian Native or Pacific Islander0Missing1 (2)ECOG PS, No. (%)0010 (16)142 (69)29 (15)Cytogenetic risk, No. (%)7Favorable2 (3)Intermediate33 (56)Poor20 (34)No mitoses or missing6 (10)Relapsed disease, No. (%)19 (31) <i>FLT3</i> mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therap 21Prior lines of therap 110 (16)Prior venetoclax, No. (%)10 (16)Prior venetoclax, No. (%)10 (16)Prior lines CT, No. (%)19 (31)Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	Sex, No. (%)	
White53 (88)Black or African American3 (5)American or Alaska Native4 (7)Hawaiian Native or Pacific Islander0Missing1 (2)ECOG PS, No. (%)0010 (16)142 (69)29 (15)Cytogenetic risk, No. (%)7Favorable2 (3)Intermediate33 (56)Poor20 (34)No mitoses or missing6 (10)Relapsed disease, No. (%)19 (31) <i>FLT3</i> mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therap 2123Prior venetoclax, No. (%)10 (16)Prior venetoclax, No. (%)10 (16)Prior alloSCT, No. (%)19 (31)Prior FLT3 TKI in <i>FLT3</i> ^{TWI} patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	Female	30 (49)
Black or African American3 (5)American or Alaska Native4 (7)Hawaiian Native or Pacific Islander0Missing1 (2)ECOG PS, No. (%)0010 (16)142 (69)29 (15)Cytogenetic risk, No. (%)7Favorable2 (3)Intermediate33 (56)Poor20 (34)No mitoses or missing6 (10)Relapsed disease, No. (%)42 (69)Refractory disease, No. (%)19 (31) <i>FLT3</i> mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therap 2123Prior venetoclax, No. (%)10 (16)Prior venetoclax, No. (%)10 (16)Prior alloSCT, No. (%)19 (31)Prior FLT3 TKI in <i>FLT3™</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	Race, No. (%)	
American or Alaska Native4 (7)Hawaiian Native or Pacific Islander0Missing1 (2)ECOG PS, No. (%)0010 (16)142 (69)29 (15)Cytogenetic risk, No. (%)7Favorable2 (3)Intermediate33 (56)Poor20 (34)No mitoses or missing6 (10)Relapsed disease, No. (%)42 (69)Refractory disease, No. (%)19 (31) <i>FLT3</i> mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therap 1223Prior venetoclax, No. (%)10 (16)Prior venetoclax, No. (%)10 (16)Prior alloSCT, No. (%)19 (31)Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	White	53 (88)
Hawaiian Native or Pacific Islander 0 Missing 1 (2) ECOG PS, No. (%) 0 0 10 (16) 1 42 (69) 2 9 (15) Cytogenetic risk, No. (%) Favorable Favorable 2 (3) Intermediate 33 (56) Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior lines of therap Mid osta urin as Prior lines of therap aran splantation Prior venetoclax, No. (%) 10 (16) Prior alloSCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	Black or African American	3 (5)
Missing 1 (2) ECOG PS, No. (%) 0 0 10 (16) 1 42 (69) 2 9 (15) Cytogenetic risk, No. (%) Favorable Favorable 2 (3) Intermediate 33 (56) Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior lines of therap Midostaurin as Prior lines of therap Midostaurin as Prior venetoclax, No. (%) 10 (16) Prior alloSCT, No. (%) 10 (16) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	American or Alaska Native	4 (7)
ECOG PS, No. (%) 0 10 (16) 1 42 (69) 2 2 9 (15) Cytogenetic risk, No. (%) Favorable 2 (3) Intermediate 1 33 (56) Poor Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior lines of therap Mid osta urin as Induction therapy, soraf enib after 2 3 Vior venetoclax, No. (%) 10 (16) Prior venetoclax, No. (%) 10 (16) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI	Hawaiian Native or Pacific Islander	0
0 10 (16) 1 42 (69) 2 9 (15) Cytogenetic risk, No. (%) Favorable Favorable 2 (3) Intermediate 33 (56) Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior lines of therap Mid osta urin as Prior lines of therap 1 2 3 Prior venetoclax, No. (%) 10 (16) Prior alloSCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	Missing	1 (2)
1 42 (69) 2 9 (15) Cytogenetic risk, No. (%) Favorable Favorable 2 (3) Intermediate 33 (56) Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior lines of therap Mid osta urin as Prior lines of therap 1 2 3 Prior venetoclax, No. (%) 10 (16) Prior alloSCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	ECOG PS, No. (%)	
2 9 (15) Cytogenetic risk, No. (%) Favorable 2 (3) Intermediate 33 (56) Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Mid osta urin as Prior lines of therap 1 soraf enib after 2 3 10 (16) Prior venetoclax, No. (%) 10 (16) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	0	10 (16)
Cytogenetic risk, No. (%) Favorable 2 (3) Intermediate 33 (56) Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior lines of therap Mid osta urin as Prior lines of therap 1 2 3 Prior venetoclax, No. (%) 10 (16) Prior relidesCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	1	42 (69)
Favorable2 (3)Intermediate33 (56)Poor20 (34)No mitoses or missing6 (10)Relapsed disease, No. (%)42 (69)Refractory disease, No. (%)19 (31) $FL73$ mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therap12122Prior venetoclax, No. (%)10 (16)Prior alloSCT, No. (%)19 (31)Prior FLT3 TKI22/56 (39)	2	9 (15)
Intermediate33 (56)Poor20 (34)No mitoses or missing6 (10)Relapsed disease, No. (%)42 (69)Refractory disease, No. (%)19 (31) <i>FLT3</i> mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therapMid osta urin asPrior lines of therap12transplantation23Prior venetoclax, No. (%)10 (16)Prior FLT3 TKI10 (26) (64)1 prior FLT3 TKI22/56 (39)	Cytogenetic risk, No. (%)	
Poor 20 (34) No mitoses or missing 6 (10) Relapsed disease, No. (%) 42 (69) Refractory disease, No. (%) 19 (31) <i>FLT3</i> mutation, No. (%) 56 (92) ITD alone 44 (72) TKD alone 9 (15) Both 3 (5) Median prior lines of Midostaurin as Prior lines of therap induction therapy, 1 sorafenib after 2 transplantation Prior venetoclax, No. (%) 10 (16) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	Favorable	2 (3)
No mitoses or missing6 (10)Relapsed disease, No. (%)42 (69)Refractory disease, No. (%)19 (31) $FL73$ mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines ofMid ostaurin asPrior lines of therap12transplantationPrior venetoclax, No. (%)10 (16)Prior relation the LT3 TKI in $FLT3^{mut}$ patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	Intermediate	33 (56)
Relapsed disease, No. (%)42 (69)Refractory disease, No. (%)19 (31) $FLT3$ mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines of therapMid osta urin asPrior lines of therap12transplantation2transplantationPrior venetoclax, No. (%)10 (16)Prior FLT3 TKI12/266 (39)	Poor	20 (34)
Refractory disease, No. (%)19 (31) $FL73$ mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines ofMid ostaurin asPrior lines of therapinduction therapy,1sorafenib after2transplantationPrior venetoclax, No. (%)10 (16)Prior FLT3 TKI22/56 (39)	No mitoses or missing	6 (10)
FLT3 mutation, No. (%)56 (92)ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines ofMid Osta urin asPrior lines of therapinduction therapy,1sorafenib after2transplantationPrior venetoclax, No. (%)10 (16)Prior FLT3 TKI12/26 (39)	Relapsed disease, No. (%)	42 (69)
ITD alone44 (72)TKD alone9 (15)Both3 (5)Median prior lines ofMid Osta urin asPrior lines of therapinduction therapy,1sorafenib after2tran splantation \geq 310 (16)Prior venetoclax, No. (%)10 (16)Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	Refractory disease, No. (%)	19 (31)
TKD alone9 (15)Both3 (5)Median prior lines ofMidostaurin as induction therapy, sorafenib after transplantation \geq 310 (16)Prior venetoclax, No. (%)10 (16)Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	FLT3 mutation, No. (%)	56 (92)
Both3 (5)Median prior lines ofMid ostaurin asPrior lines of therapinduction therapy,1sorafenib after2transplantation \geq 310 (16)Prior venetoclax, No. (%)10 (16)Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)	ITD alone	44 (72)
Median prior lines of Midostaurin as induction therapy, sorafenib after transplantation 2 3 Prior venetoclax, No. (%) 10 (16) Prior IloSCT, No. (%) 19 (31) Prior FLT3 TKI 22/56 (39)	TKD alone	9 (15)
Prior lines of therapinduction therapy, sorafenib after transplantation2 \geq 3Prior venetoclax, No. (%)10 (16)Prior alloSCT, No. (%)19 (31)Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%)36/56 (64)1 prior FLT3 TKI22/56 (39)		
Implementation Instruction Instruction	Median prior lines o Midost	aurin as
1 sorafenib after 2 transplantation Prior venetoclax, No. (%) 10 (16) Prior alloSCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	Prior lines of therap induction	htherapy.
2 transplantation Prior venetoclax, No. (%) 10 (16) Prior alloSCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mul}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	¹ sorafer	hih after
Prior venetoclax, No. (%) 10 (16) Prior alloSCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	2	
Prior alloSCT, No. (%) 19 (31) Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	≥ 3 transpi	antation
Prior FLT3 TKI in <i>FLT3^{mut}</i> patients, n/n (%) 36/56 (64) 1 prior FLT3 TKI 22/56 (39)	Prior venetoclax, No. (%)	10 (16)
1 prior FLT3 TKI 22/56 (39)	Prior alloSCT, No. (%)	19 (31)
	Prior FLT3 TKI in FLT3 ^{mut} patients, n/n (%	6) 36/56 (64)
> 1 prior FLT3 TKI 14/56 (25)	1 prior FLT3 TKI	22/56 (39)
	> 1 prior FLT3 TKI	14/56 (25)

Daver N, et al. *J Clin Oncol.* 2022;40(35):4048-4059.

Venetoclax + gilteritinib for FLT3-mutated R/R AML


Response rates in all *FLT3* mut patients treated at any dose (n = 56)


mCRc (modified composite complete response): CR + CRi + CRp (defined in ADMIRAL trial)

- Modified composite complete response was achieved in 75% of patients
- Response rates were 67% and 80% in patients who had not previously received FLT3i

Older adults with newly diagnosed AML

Older adults with newly diagnosed AML

- Treatment of elderly patients with AML may reduce treatment-related mortality by incorporating early diagnosis, long-term geriatric assessment (GA), and GA-guided management
- GA is combined with disease risk assessment for early transplant evaluation to maximize the likelihood of cure in elderly patients

Thank you for your kind attention!

AML case-based panel discussion

Case 1 AML: Ane Veu (Fiji) Case 2 AML: Feng-Ming Tien (Taiwan) Moderator: Naval Daver

APTITUDE HEALTH

Case 1

Ane Veu (Fiji)

Acute Myeloid Leukemia

Case Study – Fiji

Ane Veu, MD

Consultant Physician

Special Interest: Medical Oncology

Master SS

Biodata

Symptoms

18-year-old male

Noticed progressive fatigue

- Keen student and rugby player
- Normal childhood and milestones

- Significant bruising with minor bumps
- Slow-healing facial furuncle

Full blood count results

Indices	D1	D8	D10
Hemoglobin (11–16 g/dL)	12.4	11.9	9.9
White cell count (4–11 × 10³/µL)	66,000	58,700	75,000
Platelet (140–150 × 10³/µL)	26,000	21,000	19,000

Public hospital opinion – comparison with a private practice facility

			<u>CWM HOSPITAL</u> OLOGY LABORAT	ORY
		<u>BL</u>	OOD FILM REPOR	<u>T</u>
Name			NHN	520219717
Sex	M	ale	Age	17 years
Ward	EI)	Date collected	19.09.23
CLINIC Increase r/o Leuk DESCR	d WCC emia			
The bloo	od film v	vas reviewed.		
				Microcytic hypochromic cells and cells show dyserythropoiesis.
	e both n	nyeloblast and mono		ast cells present. The leukemic e granulocytes also show

The platelets are markedly reduced.

OPINION:

The blood film appearances are consistent with Acute Myeloid Leukemia AML -M4 (FAB classification)

24/09/2023 22/09/2023	1298106 RN 4247719
	4247719
Test: Blood Film	

BLOOD FILM

RBCs:

Normocytic and normochromic. Few polychromatophilic red cells and occasional (2 per 100 WBCs)nucleated red cells are noted WBCs: There is increased white cell counnt with shoft to left consisting of immature myeloid cells. Promyelocytes 61%

Myeloblast30%Mature segmented neutropiii20%Lymphocytes8%

Platelet: Markedly reduced in number and giant paltelets are observed.

Impression:

*Acute myeloid leukaemia, morphology in favour of acute promyolocytic keukaemia. *Throbocytopenia

*No haemoparasite

Comment: Immonophenotyping and cytogenetic study are essential for confirmation and further management.

Diagnosis at a public hospital confirmed by a private practice

		РАТН	<u>CWM HOSPITAL</u> OLOGY LABORATO)PV	
			LOOD FILM REPORT		
Name			NHN	520219717	
Sex	Ma	ale	Age	17 years	
Ward	EL)	Date collected	19.09.23	
Date reported: 21.09.23 Film no.: 459/19 CLINICAL DETAILS: Increased WCC r/o Leukemia					
DESCRIP					
The blood	nim v	vas reviewed.			
				icrocytic hypochromic cells and Ils show dyserythropoiesis.	
			leukocytosis with 80% blas oblast features. The mature	t cells present. The leukemic granulocytes also show	

The platelets are markedly reduced.

OPINION:

dysplastic features.

The blood film appearances are consistent with Acute Myeloid Leukemia AML -M4 (FAB classification)

24/09/2023	1298106
22/09/2023 MR	N 4247719
Test: Blood Film	
rest. Diodermin	

BLOOD FILM

RBCs:

Normocytic and normochromic. Few polychromatophilic red cells and occasional (2 per 100 WBCs)nucleated red cells are noted WBCs: There is increased white cell count with shoft to left consisting of immature myeloid cells.

Promyelocytes 61% Myeloblast 30% Mature segmented neutropii 20% Lymphocytes 8%

Platelet: Markedly reduced in number and giant paltelets are observed.

Impression:

*Acute myeloid leukaemia, morphology in favour of acute promyolocytic keukaemia. *Throbocytopenia

*No haemoparasite

Comment: Immonophenotyping and cytogenetic study are essential for confirmation and further management.

Diagnosis at a public hospital confirmed by a private practice – FISH test

			PATHOLOG	<u>HOSPITAL</u> Y LABORATO	
			<u>BLOOD I</u>	FILM REPORT	
[Name			NHN	520219717
	Sex	Male		Age	17 years
	Ward	ED		Date collected	19.09.23
	CLINICAL Increased W r/o Leukem	ia			
	The blood f	ilm was reviewe	ed.		
					crocytic hypochromic cells and lls show dyserythropoiesis.
		oth myeloblast			cells present. The leukemic granulocytes also show

The platelets are markedly reduced.

OPINION:

The blood film appearances are consistent with Acute Myeloid Leukemia AML -M4 (FAB classification)

24/09/2023		1298106
22/09/2023	MRN	4247719
Test: Blood Film		
BLOOD FILM		
RBCs: Normocytic and normochromic.	Few poly	chromatophilic red cells and occasional

(2 per 100 WBCs)nucleated red cells are noted WBCs:

 There is increased white cell count with shoft to left consisting of immature myeloid cells.

 Promyelocytes
 61%

 Myeloblast
 30%

 Mature segmented neutropili
 20%

 Lymphocytes
 8%

Platelet: Markedly reduced in number and giant paltelets are observed.

Impression:

*Acute myeloid leukaemia, morphology in favour of acute promyolocytic keukaemia. *Throbocytopenia

*No haemoparasite

Comment: Immonophenotyping and cytogenetic study are essential for confirmation and further management.

Acute leukemia research – Fiji

A Descriptive Study of Adult Acute Myeloid Leukemia Patients at CWMH from 1st Jan 2010 to 31st Dec 2015

By

MARICA MATAIKA Post Graduate Masters

Internal Medicine Fiji School of Medicine Suva, Fiji. 2017

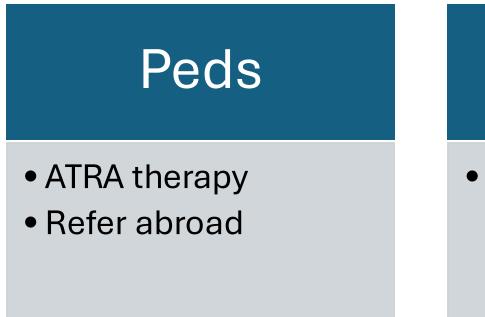
RESULTS: 76 cases

Demographics

Male > Female

✤Median age

47 years


Median time from diagnosis to death

2 weeks

Cause of mortality

Infection

Fiji AML treatment protocol

• Supportive only

Referral to an international cancer center

Diagnosis	Flow Cytometry	Bone Marrow Analysis
Refractory AML	CD34 double posHLADR double pos	AML: 35% blasts
MRD negative	CD 117 posMPO pos	FISH pos: RUNX1/RUNX1T1
ECOG PS0	• CD56/CD 19 pos	FISH neg: PML/RARA KMT2A
		<u>NGS myeloid panel</u> : pos; <i>ASXL1,</i> <i>ETV6, RUNX1/ RUNX1T1</i> mutations

How would you treat this patient if no stem cell transplant facilities available?

- A. 7+3
- B. CPX-351
- C. FLAG-IDA
- D. HMA + venetoclax
- E. Palliative care

Treatment in overseas facility

Treatment	Details	Particulars	Other
Induction chemotherapy (10/7/23 – 10/13/23)	3 +7 DA		
Post-induction status (10/30/23)	Bone marrow asp Bone marrow biopsy	Morphologic remission Suspicious large cells	Residual disease

Treatment	Details	Particulars	Other
Induction chemotherapy (10/7/23 – 10/13/23)	3+7 DA		
Post-induction status (10/30/23)	Bone marrow asp Bone marrow biopsy	Morphologic remission Suspicious large cells	Residual disease
FLAG therapy (07/11/23 – 12/11/23)	FLAG therapy		
Post-FLAG status (12/4/23)	Bone marrow asp and biopsy	Morphologic remission	MRD by MFC: AML MRD = <0.1%

Treatment	Details	Particulars	Other	
Induction chemotherapy (10/7/23 – 10/13/23)	3+7 DA			
Post-induction status (10/30/23)	Bone marrow asp Bone marrow biopsy	Morphologic remission Suspicious large cells	Residual disease	
FLAG therapy (07/11/23 – 12/11/23)	FLAG therapy			
Post-FLAG status (12/4/23)	Bone marrow asp and biopsy	Morphologic remission	MRD by MFC: AML MRD = <0.1%	
Transplant period (Dec–Jan 2024)	Myeloablative conditioning (MAC) regimen	Fludarabine inj (Dec 17–21) Treosulfan inj (Dec 18–20) Cyclophos inj (Dec 28–29) TBI total 6 Gy over 3 days (Dec 21–23)		
	(12/25/23)	Allogeneic haploidentical peripheral blood stem cell transplant	CD34 cell dose infused 5.5 × 10 ⁶ /kg bw	

Treatment	Details	Particulars	Other	
Induction chemotherapy (10/7/23 – 10/13/23)	3+7 DA			
Post-induction status (10/30/23)	Bone marrow asp Bone marrow biopsy	Morphologic remission Suspicious large cells	Residual disease	
FLAG therapy (07/11/23 – 12/11/23)	FLAG therapy			
Post-FLAG status (12/4/23)	Bone marrow asp and biopsy	Morphologic remission	MRD by MFC: AML MRD = <0.1%	
Transplant period (Dec–Jan 2024)	Myeloablative conditioning (MAC) regimen	Fludarabine inj (Dec 17–21) Treosulfan inj (Dec 18–20) Cyclophos inj (Dec 28–29) TBI total 6 Gy over 3 days (Dec 21–23)		
	(12/25/23)	Allogeneic haploidentical peripheral blood stem cell transplant	CD34 cell dose infused 5.5 × 10 ⁶ /kg bw	
Post-transplant test (Mar 2024)	Bone marrow asp and biopsy	Morphologic remission hypocellular marrow (20%–30%)	Negative for residual disease	

GVHD prophylaxis (12/30/23)	Tacrolimus Mycophenolate mofetil
Anti-infective prophylaxis	Acyclovir Posaconazole G-CSF Inj (D5 – neutrophil engraftment)
Engraftment	Neutrophil – D14 Platelet – D11
Irradiated blood products	Red cell C: 4 Units (1/1/24) Platelets: 7 units (4/1/24)
Adverse events (WHO CTCAE v5)	Fever: Grade 2–3 Cytokine release syndrome: Grade 2–3 Oral/GI Toxicity: Grade 2–3 Cystitis: Grade 1 Hematuria: Grade 1 Dizziness: Grade 1

Current status: ECOG 1

- April–July weekly blood tests: FBC/Na/K/Mg/Tac level (Aug onwards: 2 weekly)
- April–September weekly Tac levels: Aim 5–20 ng/mL (Oct onwards: 2 weekly)

Date	Norm	4/24	5/09	6/05	6/12	6/26	7/03	7/10	7/17	7/24	7/31	8/07	8/14
Result	ng/mL	8.8	8.5	11.5	10.5	5.0	2.0	8.6	5.5	1.7	3.5	1.3	2.4

- Vaccination preparation
 - DPT × 3 (Aug/Sep/Oct)
 - ≻H.Inf
 - ➢ Pneumococcal
 - ≻HBV
 - ≻HPV

Case 1 – Discussion

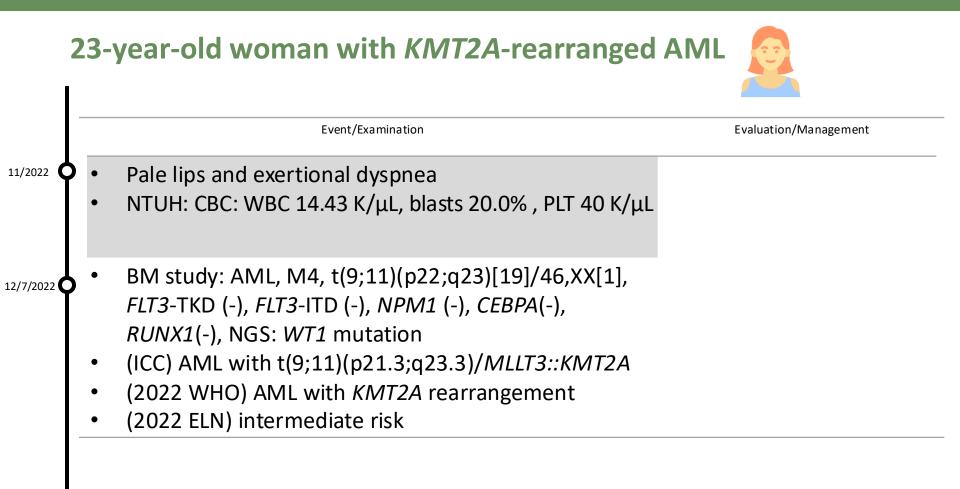
Ane Veu (Fiji)

Discussion

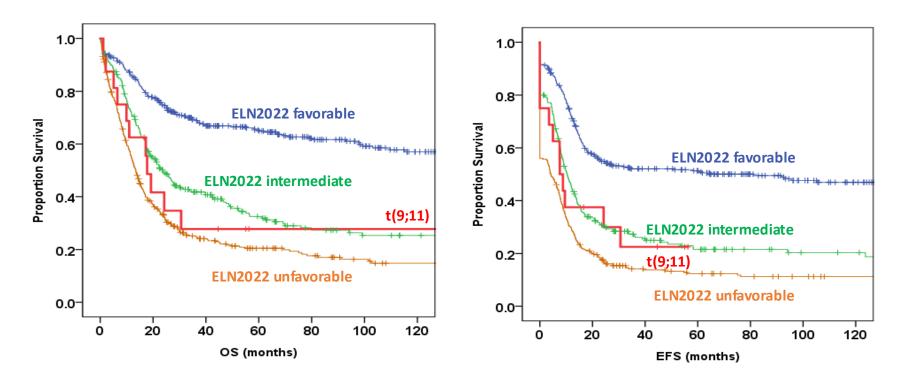
- > What management changes would you advise regarding tacrolimus levels?
- > How would you recommend vaccination schedule planning?

Case 2

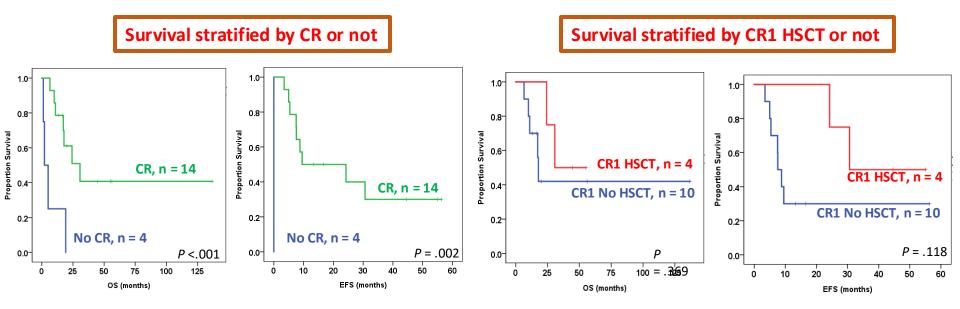
Feng-Ming Tien (Taiwan)



Global Leukemia Academy AML case-based panel discussion Case AML: young high risk


Feng-Ming Tien, MD, MSc 8.24.2024

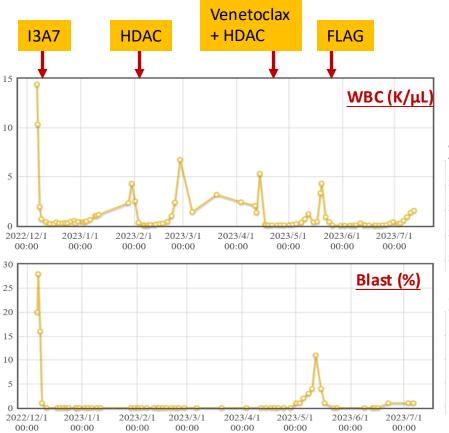
Division of Hematology, Department of Medicine National Taiwan University Hospital, Taipei, Taiwan



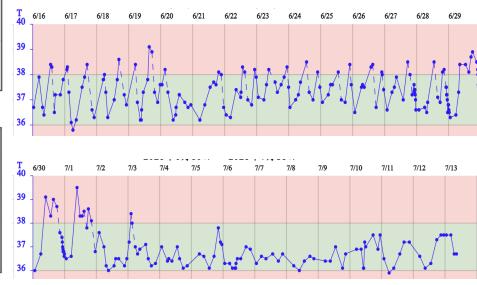
NTUH data: survival for AML with t(9;11)(p21.3;q23.3)

Persistent positive flow MRD

	Event/Examination	Evaluation/Management
12/8/2022	I3A7	BM: CR1, flow MRD positive 0.39%
1/28/2023	HDAC	 Septic shock, typhlitis or pubis soft tissue infection Port-A infection (<i>C. arthrosphaerae/S. maltophilia</i>), Port-A removal on 2/24 3/22 BM: CR1, flow MRD positive 0.9%, <i>MLLT3::KMT2A</i> PCR 0.176


Persistent positive flow MRD

	Event/Examination	Evaluation/Management
/8/2022	I3A7	BM: CR1, flow MRD positive 0.39%
28/2023	HDAC	 Septic shock, typhlitis or pubis soft tissue infection Port-A infection (<i>C. arthrosphaerae/S. maltophilia</i>), Port-A removal on 2/24 3/22 BM: CR1, flow MRD positive 0.9%, <i>MLLT3::KMT2A</i> PCR 0.176
2/2023	Venetoclax 100 mg qd* 7 days (with posaconazole) + HDAC	Relapse
19/2023	FLAG	7/11 BM: smear blast 1.4%, flow MRD 2.18%, MLFS


What's the next step for this patient with refractory t(9;11) AML?

- A. Salvage chemotherapy (eg, NEC)
- B. Decitabine and venetoclax
- C. Menin inhibitor (DSP-5336) trial
- D. Anti-CD123 (AZD9829) trial
- E. Proceed directly to allo-HSCT

Hemogram and PB blasts before allo-HSCT

- Intermittent fever for several weeks after FLAG
- 7/6 inflammation scan: diffuse bone marrow uptake; no other notable infection

9/10 MMUD allo-HSCT on 2023/7/25

	Event/Examination	Evaluation/Management
7/25/2023	Bu3Cy2 + HLA 9/10 MMUD-PBSCT, CD34+:	CR-KP bacteremia
Í	4.56 × 10 ⁶ /KgBw, 23M to 23F	• 8/16 BM: CR2, flow MRD–, full donor chimerism by STR, FISH: XX below cut-off, <i>KMT2A</i> PCR -2.292
		 Stop all immunosuppressants on 10/16
		No acute GvHD
10/3/2023	Maintenance decitabine 20 mg/m ² × 3 days, C1D1 10/3, C2D1 11/11	Smooth

Maintenance decitabine after allo-HSCT

Mono.(%)

3.0

3.0

Lym.(%)

40.0

31.0

Aty.Lym.(%)

1.0

0.0

2/5/2024

WBC D/C(2/2)

2024/03/20 06:51

2024/03/25 08:35

Event/Examination **Evaluation/Management** Prolonged neutropenic fever and Maintenance decitabine 20 mg/m² \times 3 days, • diarrhea, despite GCSF and antibiotics C3D1 2/5 3/18 BM: CR2, flow MRD-, KMT2A ۰ PCR-CBC+PLT(1/2)WBC(k/ μ L) $RBC(M/\mu L)$ HB(q/dL)HCT(%) MCV(fL) MCH(pg) MCHC(q/dL) $PLT(k/\mu L)$ 145 (Manual 2024/03/20 06:51 0.56 1.89 5.7 17.4 92.1 30.2 32.8 checked) 2024/03/25 08:35 0.71 3.31 8.8 26.6 80.4 26.6 33.1 63 WBC D/C(1/2) Blast(%) Promvl.(%) Mvelo.(%) Meta(%) Band(%) Eos.(%) Baso.(%) Seg(%) 2024/03/20 06:51 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 2024/03/25 08:35 0.0 0.0 0.0 0.0 3.0 13.0 0.0 0.0

PlasmaCell(%)

0.0

0.0

Normobl.()

0.0 / 50 WBC

0.0 / 50 WBC

PS()

WBC 50X2

WBC 50X2

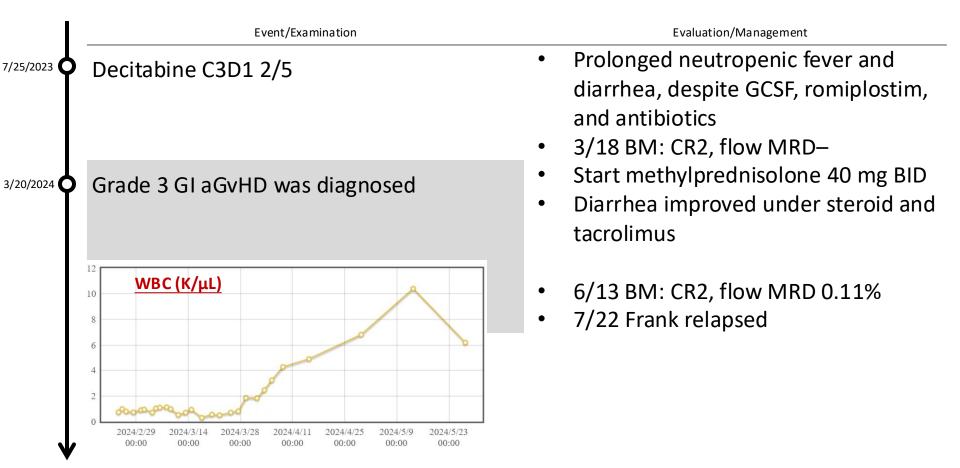
Diagnostic workup for persistent diarrhea

 3/20/2024 Colonoscopy: Several large deep ulcers, hyperemic mucosa with loss of vasculature and mucus/stool-coatings were noted at the cecum and ascending colon, status post-biopsies

Intestine, large, colon, ascending, colonoscopic biopsy, c/w graft-versus-host disease Intestine, large, colon, descending, colonoscopic biopsy, c/w graft-versus-host disease Intestine, large, colon, sigmoid, cþlonoscopic biopsy, c/w graft-versus-host disease

MACROSCOPIC:

A: 4 tissue fragments, up to 0.4 x 0.2 x 0.1 cm in size. B: 2 tissue fragments, up to 0.5 x 0.3 x 0.1 cm in size. C: 2 tissue fragments, up to 0.4 x 0.3 x 0.1 cm in size.


All for sections and labeled as: Jar 0 A1: ascending colon B1: descending colon C1: sigmoid colon

MICROSCOPIC:

All sections show crypt apoptoses which is most prominent in section A1 accompanied by contiguous crypt loss. Mild inflammation is also noted. CMV immunostain is negative in all sections. Overall, the picture is compatible with graft-versus-host disease, grade 3.

Late acute GvHD around 8 months after allo-HSCT

What's the next step for this patient with relapsed t(9;11) AML after allo-HSCT?

- A. Salvage chemotherapy followed by donor lymphocyte infusion
- B. Decitabine and venetoclax followed by donor lymphocyte infusion
- C. Menin inhibitor (DSP-5336) trial
- D. Anti-CD123 (AZD9829) trial
- E. Second allo-HSCT with another donor

Case 2 – Discussion

Feng-Ming Tien (Taiwan)

Panel discussion: How treatment in first line influences further therapy approaches in ALL and AML

Naval Daver and all faculty

Panel Discussion

> Will CAR Ts and bispecifics change the treatment landscape?

> What is the evolving role of HSCT – will it still be necessary?

> What does the future in Asia-Pacific look like in terms of

- Adoption of new therapies?
- Evolving standards of care?

Panel Discussion

ARS questions

Naval Daver

Which of the following is NOT true for ALL?

- A. Inotuzumab and blinatumomab + chemotherapy is active in both front line and salvage for ALL
- B. Kinase inhibitors can be combined with other therapy modalities in Ph-positive ALL
- C. MRD is highly prognostic for relapse and survival in Ph-negative ALL
- D. There are no effective consolidation treatments for patients who remain MRD positive after induction therapy

The prognosis of patients with R/R AML depends on:

- A. Age
- B. Prior therapy (eg, HSCT)
- C. Timing of relapse
- D. The mutational and cytogenetic profile of the disease
- E. All of the above
- F. A and D

GLOBAL LEUKEMIA ACADEMY

THANK YOU FOR ATTENDING!

APTITUDE HEALTH