

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 24 September 2022

Virtual Breakout: Pediatric ALL

State APTITUDE HEALTH

Welcome and Meeting Overview

Franco Locatelli

FACULTY

Franco Locatelli, MD IRCCS Bambino Gesù Children's Hospital, Rome, Italy

CHAIR

Rob Pieters, MD, PhD Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands

Christina Peters, MD St. Anna Children's Hospital, Vienna, Austria

Virtual Breakout – Pediatric ALL Sessions (Day 2)

24 September 2022, 10.00 - 12.45 CEST

Chair: Dr Franco Locatelli

Time (CEST)	Title	Speaker
10.00 – 10.10	Session Open	Franco Locatelli
10.10 – 10.30	How to Use MRD and Genetics for Stratification and Therapy Guidance in First-Line Therapy of Childhood ALL	Rob Pieters
10.30 – 10.55	Optimizing First-Line Therapy in Pediatric ALL: How to Balance Cure and Long-Term Risks?	Rob Pieters
10.55 – 11.15	 ALL Case-Based Panel Discussion Balancing Cure and Toxicity Risks 	Moderator: Franco Locatelli Janine Stutterheim All faculty
11.15 – 11.25	Break	
11.25 – 11.55	Current Treatment Options for High-Risk ALL in Children	Christina Peters
11.55 – 12.35	 ALL Case-Based Panel Discussion Relapsed/Refractory Setting (Part 1) Toxicity Management (Part 2) 	Moderator: Franco Locatelli Hannah von Mersi Anna Cvrtak All faculty
12.35 – 12.45	Session Close	Franco Locatelli

Introduction to the Voting System

Franco Locatelli

Which of the following subsets of first-relapse ALL patients can be considered as very high risk?

- 1. All patients with B-ALL relapsing within 18 months from diagnosis
- 2. All patients with hypodiploidy
- 3. All patients with t(17;19) or t(1;19)
- 4. Each of the 3 previous subsets

Which assertion is correct for children with B-ALL?

- 1. Inotuzumab is approved by EMA for induction treatment of relapsed B-ALL in childhood
- 2. Inotuzumab recommended dosage is 3 mg/m²
- 3. Blinatumomab is approved for consolidation treatment before HSCT in children with high-risk first relapse B-ALL
- 4. None of the patients experiencing relapse later than 6 months after treatment discontinuation should be transplanted

How to Use MRD and Genetics for Stratification and Therapy Guidance in First-Line Therapy of Childhood ALL

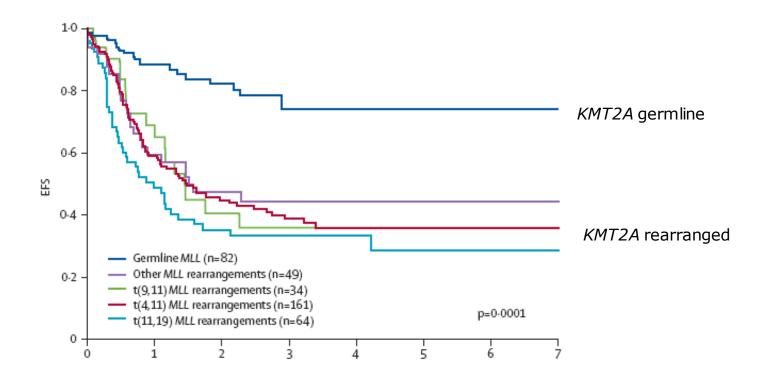
Rob Pieters

How to use MRD and genetics for risk-stratification and therapy guidance

Rob Pieters Chief Medical Officer

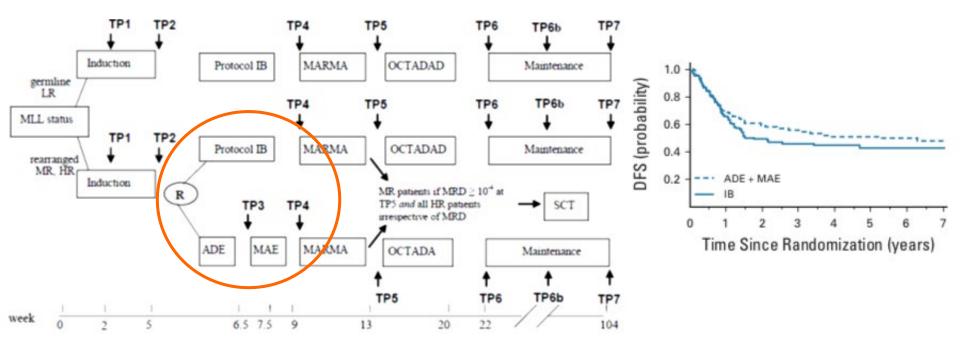
MRD and genetics to guide stratification and therapy

- Specific therapy protocols for high-risk genetic subgroups
- MRD-based choices of specific therapies
- Therapy reduction in MRD low-risk groups
- Therapy intensification in MRD high-risk groups
- Interdependency of MRD and genetics


Question 1: Which of the following statements is NOT correct?

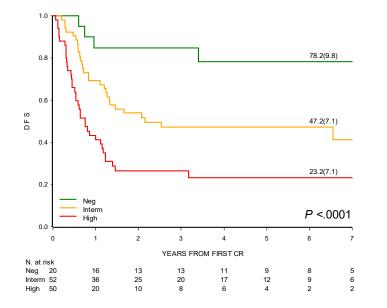
- 1. MRD at end of induction in infant *KMT2A*-rearranged ALL can be used to select the most effective subsequent myeloid-like or lymphoid-like type of consolidation therapy
- 2. MRD at end of induction and consolidation in *BCR-ABL1*—positive ALL is used to select patients who do not need a SCT
- 3. The prognostic relevance of MRD at end of induction depends on the genetic subtype of ALL
- 4. The majority of relapses occur in patients who remain MRD-positive after consolidation

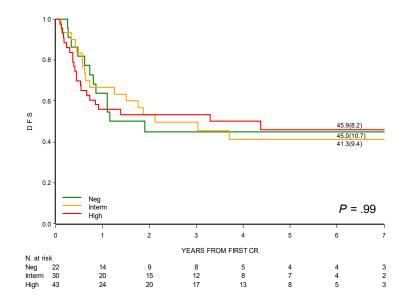
KMT2A (MLL) and infant ALL



Pieters R, et al. Lancet. 2007;370(9583):240-250.

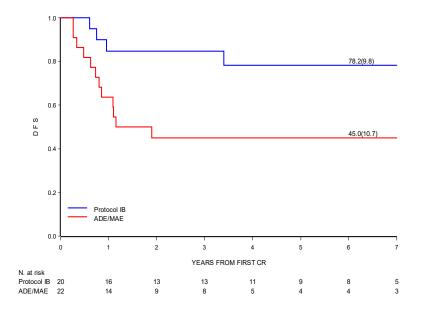
Interfant-06 treatment schedule



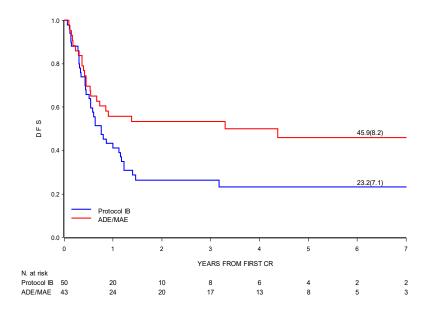

Prognostic value of MRD at EOI depends on consolidation treatment given

Patients treated with lymphoid IB consolidation

Patients treated with myeloid ADE/MAE consolidation



Stutterheim J, et al. J Clin Oncol. 2021;39(6):652-662.


Patient outcomes by treatment given, according to MRD at EOI

Patients with negative MRD at end of induction

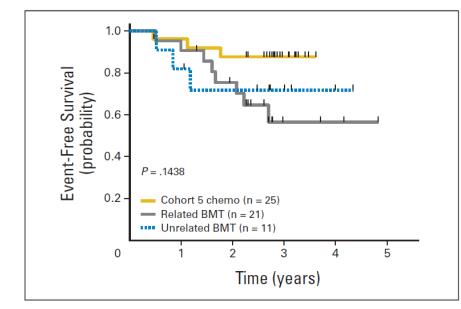
Patients with high MRD (≥0.05%) at end of induction

Conclusions: EOI MRD Interfant-06

(ALL-like) induction leads to selection of patients

- Low MRD \rightarrow "ALL-like leukemia" \rightarrow benefit from ALL consolidation (IB)
- High MRD → "AML-like leukemia" → benefit from AML consolidation (ADE/MAE)

TKI studies and outcomes in Ph+ ALL (courtesy of Thai Ho Tran)



	AALL00311	EsPhALL2004 ²	EsPhALL2010 ³	AALL06224	AALL1122 ⁵	CCCG-ALL-2015 ⁶
Phase	3	2	2	2	2	3
ткі	Imatinib 340 mg/m²	Imatinib 300 mg/m²	Imatinib 300 mg/m²	Dasatinib 60 mg/m²	Dasatinib 60 mg/m²	Imatinib 300 mg/m ² vs Dasatinib 80 mg/m ²
Period	2002-2006	2004-2009	2010-2014	2008-2012	2012-2014	2015-2018
Patients	91	160	155	60	106	<mark>97 (imatinib)</mark> 92 (dasatinib)
CR1 HSCT	25%	83%	38%	32%	14%	0.5%
5-yr EFS	71% (Cohort 5)	60%	57%	60%	55%	4-yr EFS: 49% (imatinib) 4-yr EFS: 71% (dasatinib)
5-yr OS	81% (Cohort 5)	72%	72%	86%	82%	4-yr OS: 69% (imatinib) 4-yr OS: 88% (dasatinib)

1. Schultz KR, et al. *Leukemia*. 2014; 2. Biondi A, et al. *Haematologica*. 2018; 3. Biondi A, et al. *Lancet Haematol*. 2018; 4. Slayton WB, et al. *J Clin Oncol*. 2018; 5. Hunger SP, et al. SIOP Virtual Congress. 2020; 6. Shen S, et al. *JAMA Oncol*. 2020.

TKI in BCR-ABL1-positive ALL: Which indication for SCT??

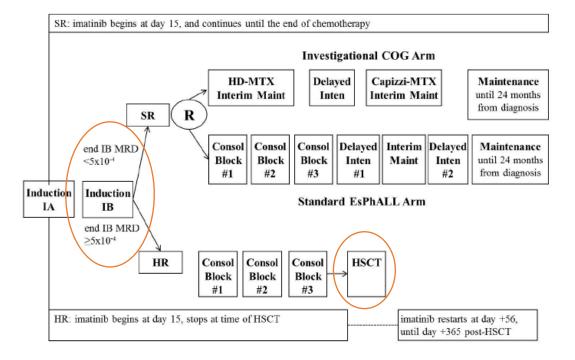
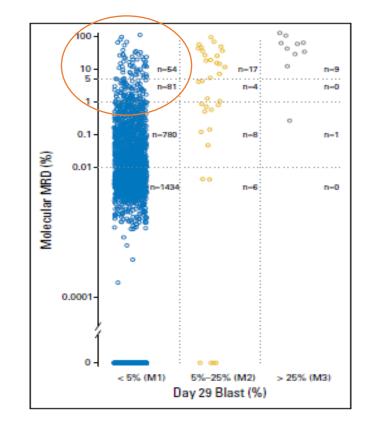
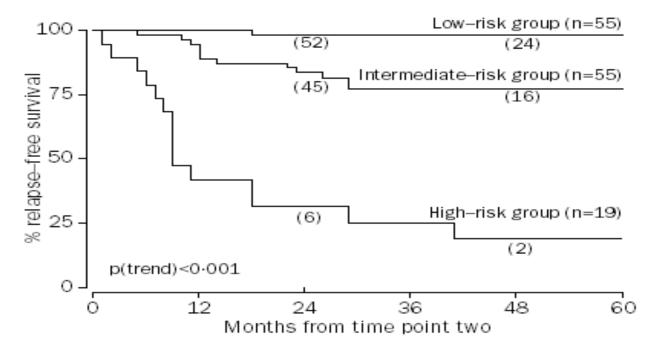


Fig 4. Comparison of event-free survival (EFS) for Cohort 5 chemotherapy only versus related-donor bone marrow transplantation (BMT) versus unrelated-donor BMT. Cohort 5 patients were compared with human leukocyte antigen (HLA) –identical sibling BMT (8 of 39 in cohorts 1-4; 13 of 44 in cohort 5) and 11 of the total 83 patients removed from protocol for an alternative-donor BMT. Patients treated on protocol were given imatinib 340 mg/m²/d for 6 months starting 4 to 6 months after BMT.

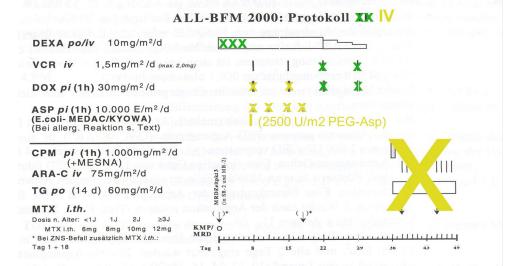
EsPhALL2017/COGAALL1631



Note. MRD: Minimal Residual Disease, SR:Standard Risk, HR: High Risk, R: Randomization, HD-MTX: High Dose Methotrexate, Maint: Maintenance, Inten: Intensification, Consol: Consolidation, HSCT: Hematopoietic Stem Cell Transplant

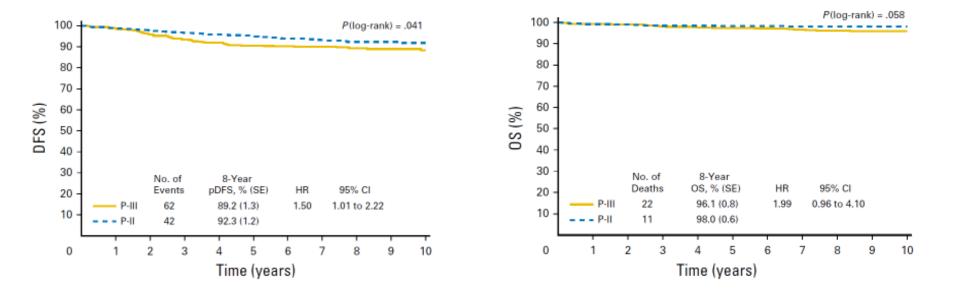

Morphologic vs molecular detection of MRD at end of induction

Minimal residual disease and outcome in ALL



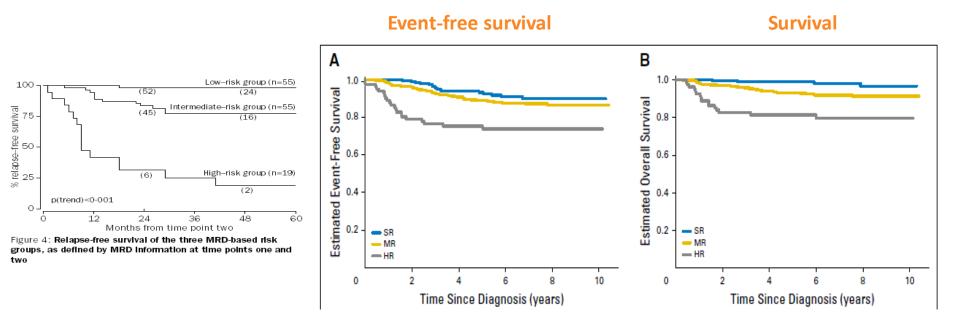
Relapse-free survival of the 3 MRD-based risk groups, as defined by MRD information at time points 1 and 2

Therapy reduction in MRD-negative patients: BFM-II vs BFM-III vs DCOG-IV



	BFM-II	BFM-III	DCOG-IV	Cum dose
Dexamethasone	250	180	180	mg/m2
VCR	6	3	3	mg/m2
Doxorubicin	120	60	0	mg/m2
Native Asp	40.000	40.000	0	U/m2
PEG-Asp	0	0	2.500	U/m2
Cyclophoshamide	1.000	500	0	mg/m2
araC	600	600	0	mg/m2
6-TG	840	840	0	mg/m2

Therapy reduction (P-II to P-III) in AIEOP-BFM 2000: DFS and OS



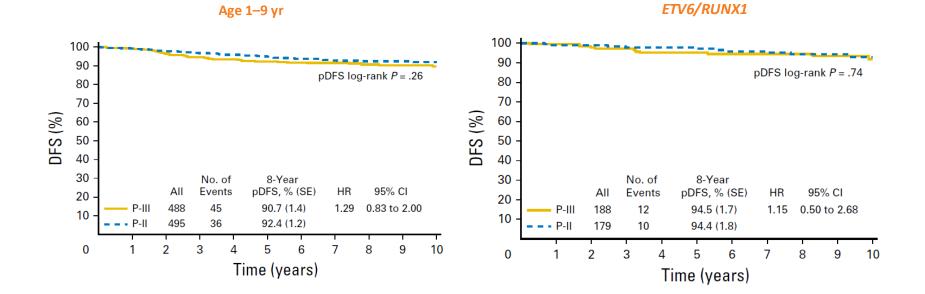
Study ALL-10 protocol outcome

Therapy reduction in SR is safe: 5-yr survival 99%
 Intensification in MR: 5-yr EFS from 76% to 88%
 Intensification in HR: 5-yr EFS from 16% to 78%

Pieters R, et al. J Clin Oncol. 2016;34(22):2591-2601.

Outcome in MRD low-risk patients (25% of all patients)

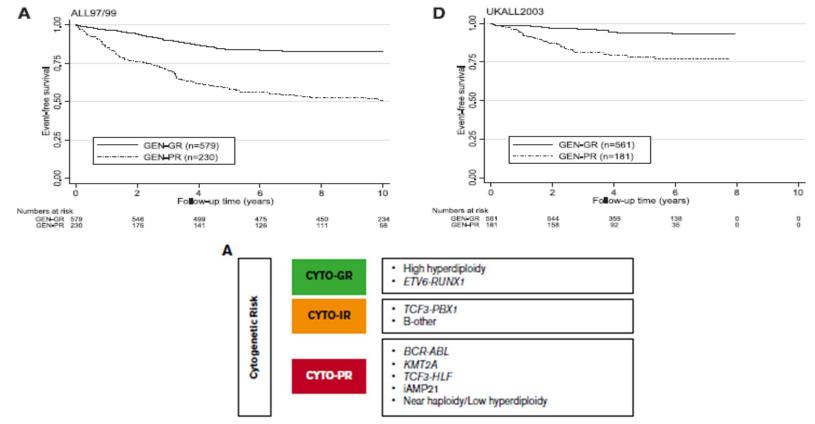
	Prot II	Prot III	DCOG Prot IV
8yr OS	98%	96%	97%
5yr DFS	96%	91%	93%
5yr CIR	4%	8%	6%

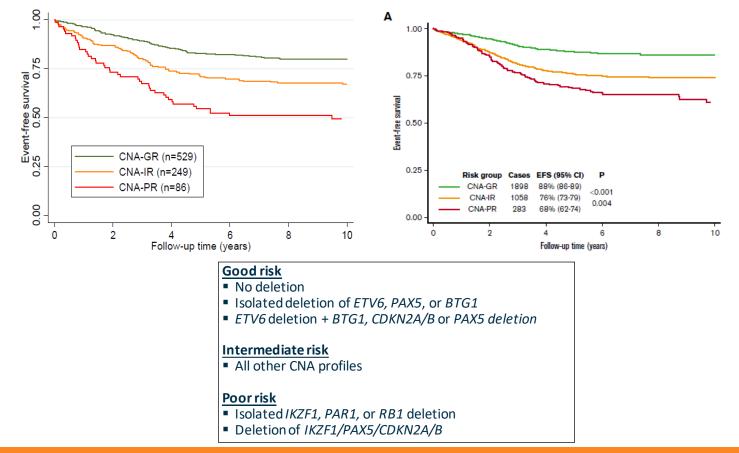

• Therapy reduction: relapse rate ~4% higher but survival not different

Dilemma

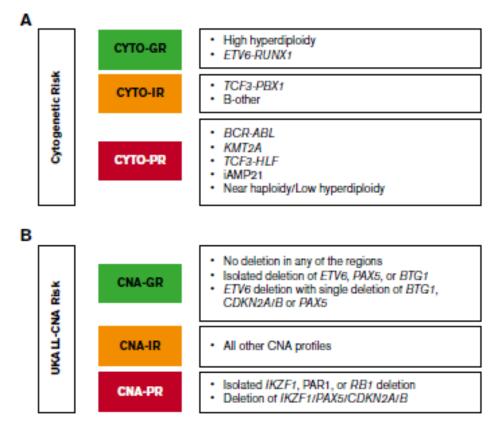
- Decrease of the rapy for all MRD low-risk patients: an extra ${\sim}4\%$ of them need relapse the rapy OR
- More intensive therapy for all MRD low-risk patients

Therapy reduction in specific risk groups (AIEOP-BFM 2000)?

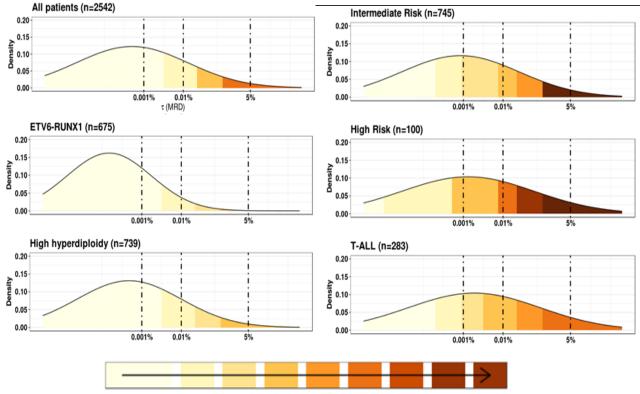



EFS ALL97/99 and UKALL2003 by genetic risk group

UK copy number alteration (CNA) classifier (by MPLA)



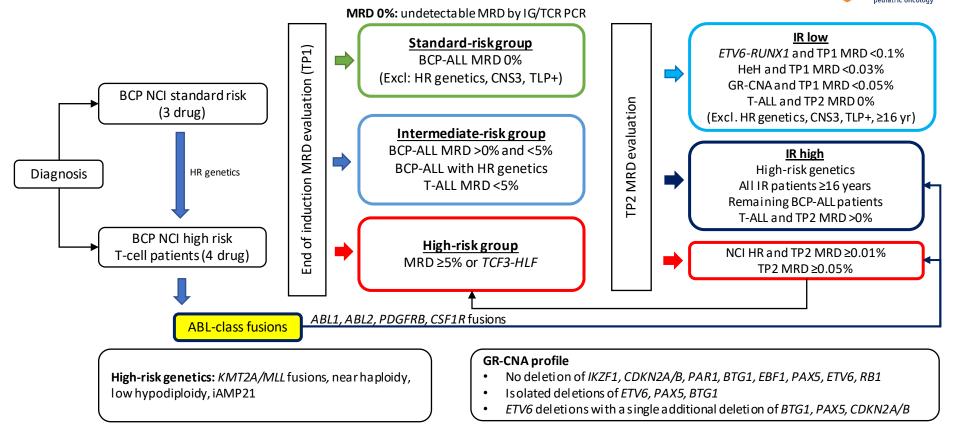
Moorman AV, et al. Blood. 2014;124(9):1434-1444; Hamadeh L, et al. Blood Adv. 2019;3(2):148-157.


Novel genetic risk groups in B-lineage ALL by cytogenetics and by CNA

Risk of relapse by MRD value varies by genetic subtype

Increasing relapse rate at 5 years (1-45%)

Patient population: ALLTogether



Study Group	Age	Pts/Year	Country
DCOG	1–18	106	NL
UKALL	1–24	419	UK
COALL	1–18	90	D
NOPHO	1–45	235	S, DK, N, FIN, IS, EE, LT
BSPHO	1–18	80	В
SHOP	1–18	55	РТ
ΡΗΟΑΙ	1-24	42	EI
SFCE	1–18	400	F
SEHOP	1–18	?	E – candidate status
Total	1–45	1427 +?	Western Europe

Risk-stratification algorithm

Risk groups by MRD and genetics: Outcomes and interventions * ALL Together

Risk group	Patients, %	5-yr EFS, %	5-yr OS, %	5-yr relapse, %	Treatment intervention
SR	23%	95	99	4	Random: reduction doxorubicin
IR-low	37%	94	98	4	Random: reduction doxorubicin Random: reduction VCR/Dexa pulses
IR-high	36%	82	89	15	Random: intensification inotuzumab Random: intensification 6TG/MP vs MP Down non-random: blinatumomab ABL-class: non-random imatinib
VHR	4%	78	78	14	B-lineage: non-random CD19 CAR T T-lineage: non-random nelarabine

MRD and genetics to guide stratification and therapy

- Specific therapy protocols for high-risk genetic subgroups
- MRD-based choices of specific therapies
- Therapy reduction in MRD low-risk groups
- Therapy intensification in MRD high-risk groups
- Interdependency of MRD and genetics

Answer to Question 1: Which of the following statements is NOT correct?

- 1. MRD at end of induction in infant *KMT2A*-rearranged ALL can be used to select the most effective subsequent myeloid-like or lymphoid-like type of consolidation therapy
- 2. MRD at end of induction and consolidation in *BCR-ABL1*—positive ALL is used to select patients who do not need a SCT
- 3. The prognostic relevance of MRD at end of induction depends on the genetic subtype of ALL
- 4. The majority of relapses occur in patients who remain MRD-positive after consolidation

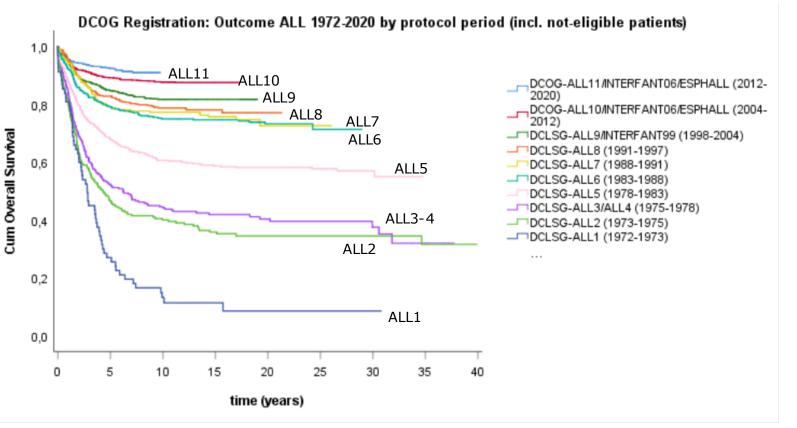
Thank you!

Optimizing First-Line Therapy in Pediatric ALL: How to Balance Cure and Long-Term Risks?

Rob Pieters

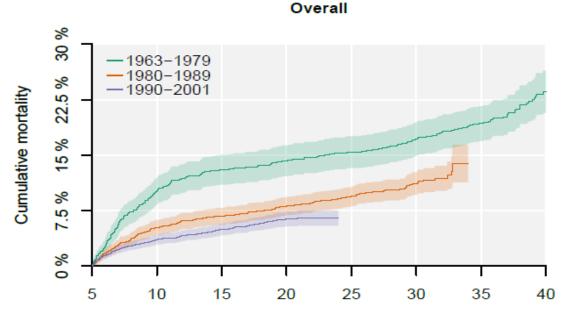
Optimizing First-Line Therapy in ALL: How to Balance Cure and Long-Term Toxicities

Rob Pieters Chief Medical Officer

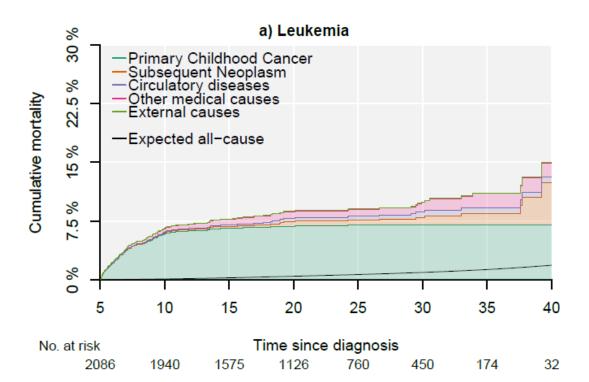


Question 1: Which factor has the lowest probability of causing significant long-term toxicity in pediatric ALL?

- The anthracyclines daunorubicin and/or doxorubicin in a cumulative dose of >300 mg/m² in a child aged 5 years at diagnosis
- Methotrexate in a cumulative dose of 20,000 mg/m² in a child aged 8 years at diagnosis
- 3. Cranial radiotherapy in a child aged 2 years at diagnosis
- 4. Dexamethasone in a girl aged 14 years at diagnosis

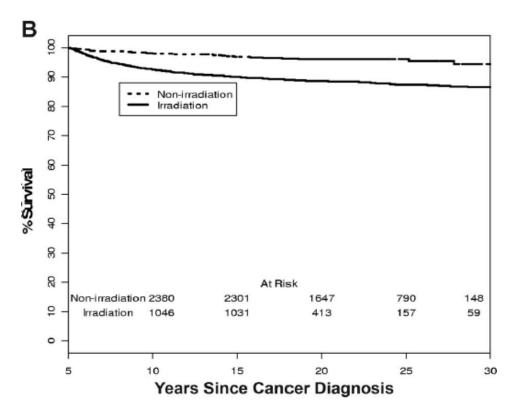

ALL Survival in the Netherlands: 1972–2020

Cumulative Late Mortality of Childhood Cancer Survivors by Year of Diagnosis

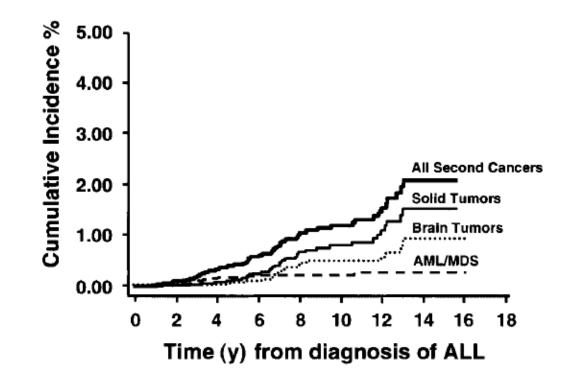


Time since diagnosis

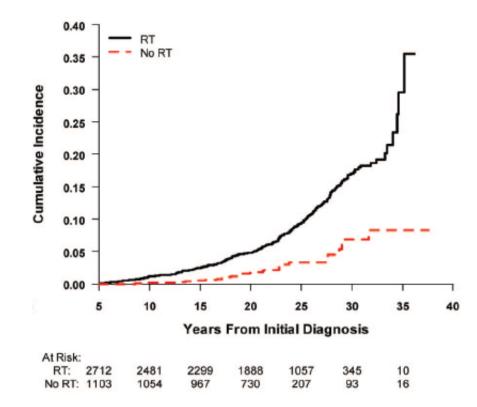
Van Kilsdonk, 2022


Cumulative Late Mortality of Survivors of Childhood Leukemia

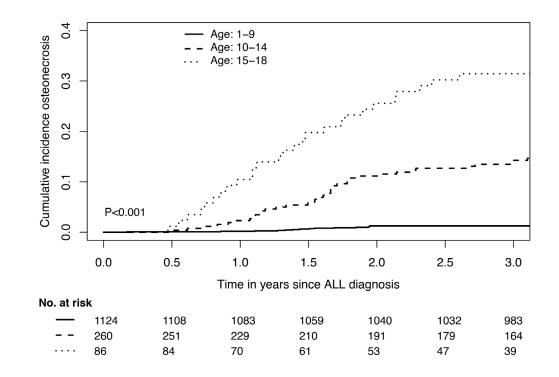
Survival of 5-Year ALL Survivors: Irradiated vs Nonirradiated


Balancing Cure and Toxicity

- Second malignancies
- Osteonecrosis
- Neurocognitive sequelae
- Cardiomyopathy
- Insulin-dependent diabetes (pancreatitis)
- Who should be transplanted?
- Late effects of immunotherapies?

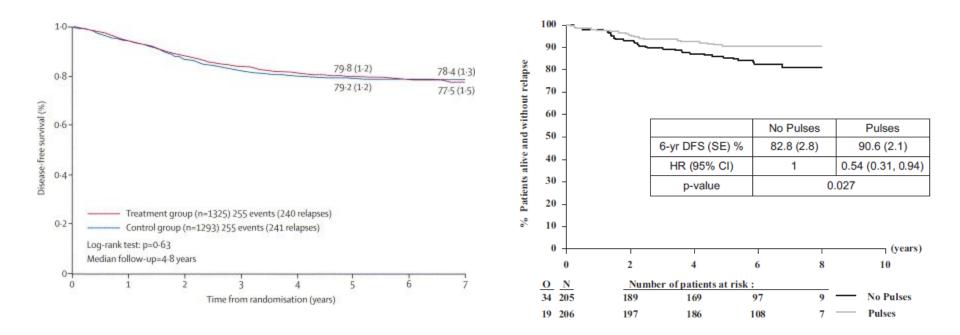

Cumulative Incidence of Second Neoplasms in 8831 Children With ALL

Second Neoplasms Among 5-Year Survivors of Childhood ALL in the CCSS Cohort: Role of Radiotherapy

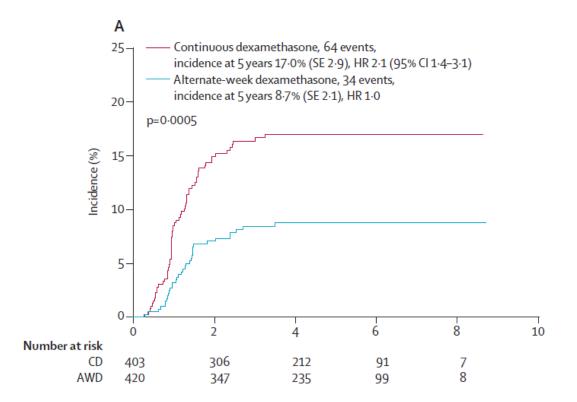


Robison LL, et al. Hematology Am Soc Hematol Educ Program. 2011;2011:238-242.

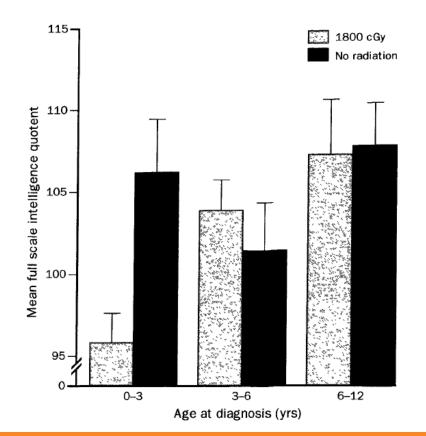
Cumulative Incidence of Osteonecrosis by Age

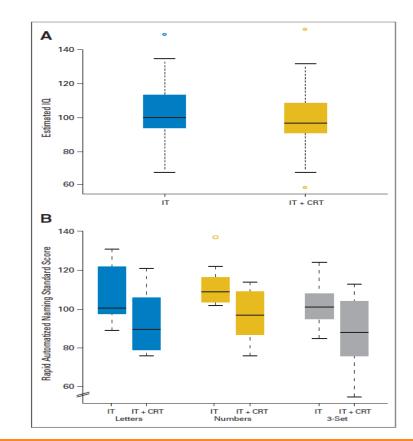


Dexa/VCR Pulses During Maintenance in Average-Risk ALL Patients: Results From AIEOP-BFM and From EORTC

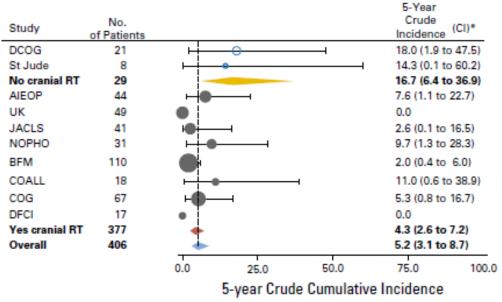


Conter V, et al. Lancet. 2007;369(9556):123-131; de Moerloose B, et al. Blood. 2010;116(1):36-44.


Osteonecrosis: Continuous vs Alternate-Week Dexamethasone

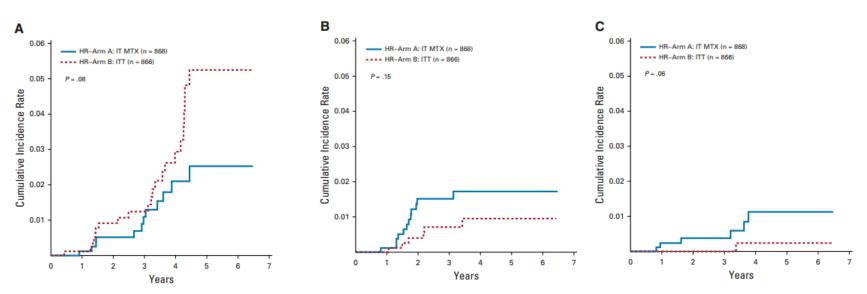

Effects of 1800 cGy Cranial Radiation on Intellectual Performance by Age

IQ and Rapid Naming Tasks: Intrathecal (IT) vs IT + Cranial Radiation (CRT)



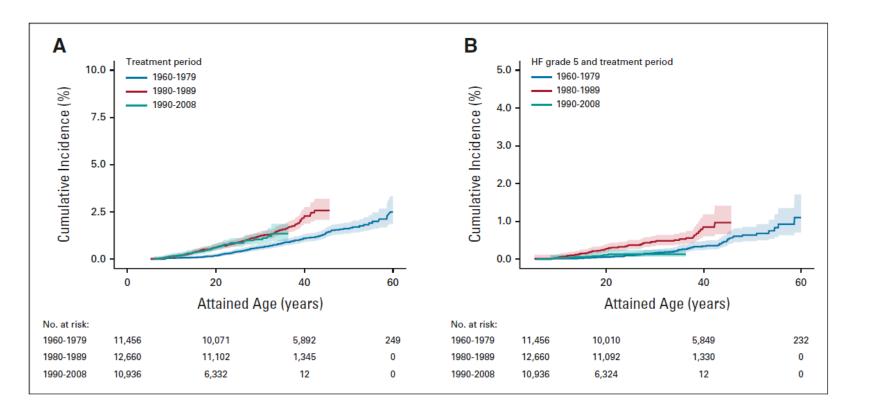
5-Year Outcomes to Preemptive Cranial Radiotherapy for ALL With CNS3

5-yr isolated CNS relapse: 16.7% vs 4.3% (P = .02) 5-yr mortality: 22.4% vs 20.6% (P = .83)


Test for treatment effect (cranial irradiation, yes v no): P = .02

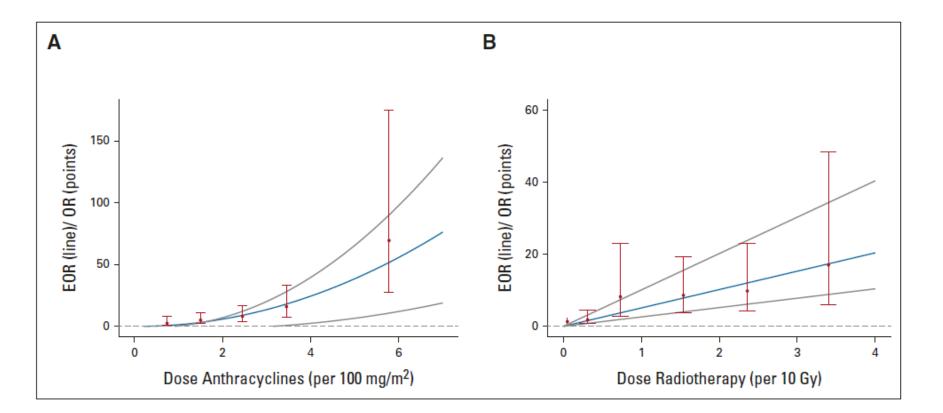
Cumulative Incidence of Relapse in HR B-ALL: Intrathecal MTX vs Intrathecal Triple Therapy

Combined BM + CNS Relapse


Isolated BM Relapse

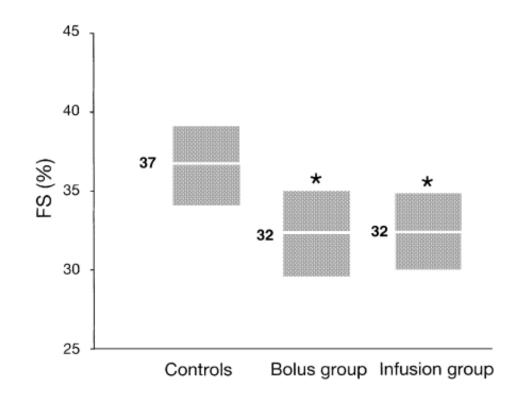
Isolated CNS Relapse

Salzer WL, et al. J Clin Oncol. 2020;38(23):2628-2638.

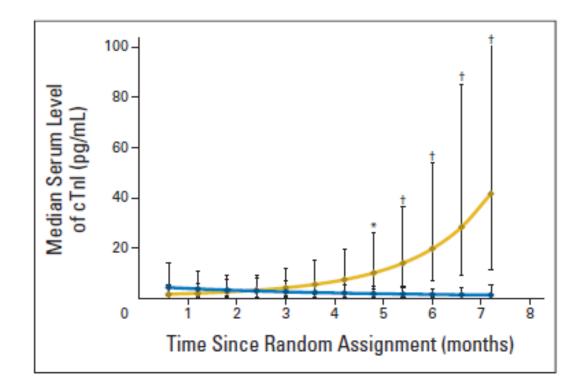

Cumulative Incidence of Heart Failure in Childhood Cancer Survivors

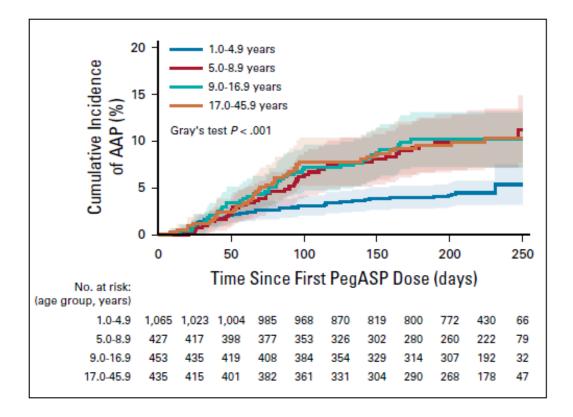
Drincess

Center pediatric oncology

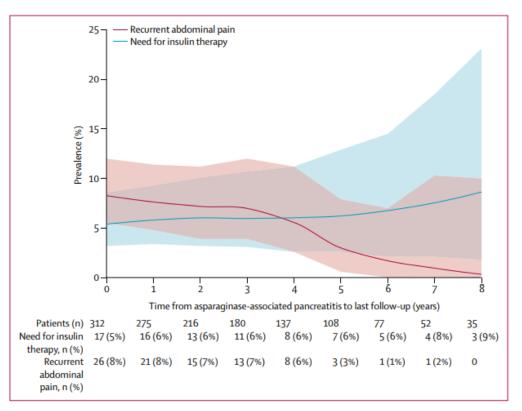

Cumulative Incidence of Heart Failure in Childhood Cancer Survivors

pediatric oncology


Shortening Fraction by Bolus or 6-Hour Infusion of Daunorubicin

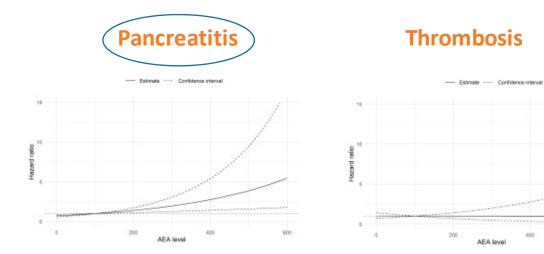

Cardiac Troponin During Doxorubicin Therapy in ALL With (blue) or Without (yellow) Dexrazoxane

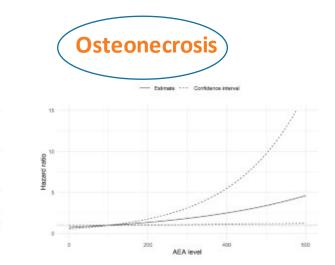
Pancreatitis by Age



Rank CU, et al. J Clin Oncol. 2020;38(2):145-154.

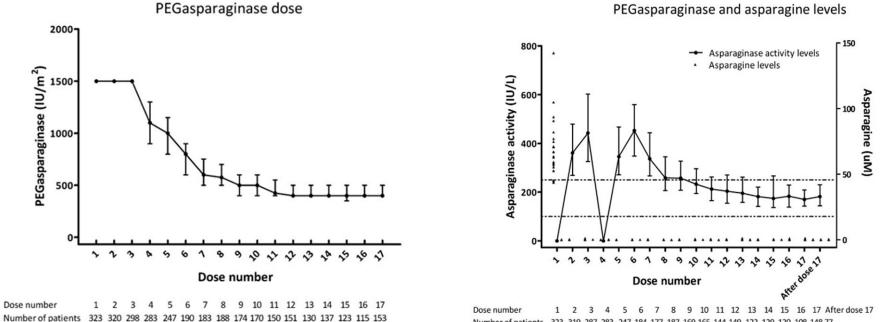
Prevalence of Persisting Complications From Asparaginase-Associated Pancreatitis

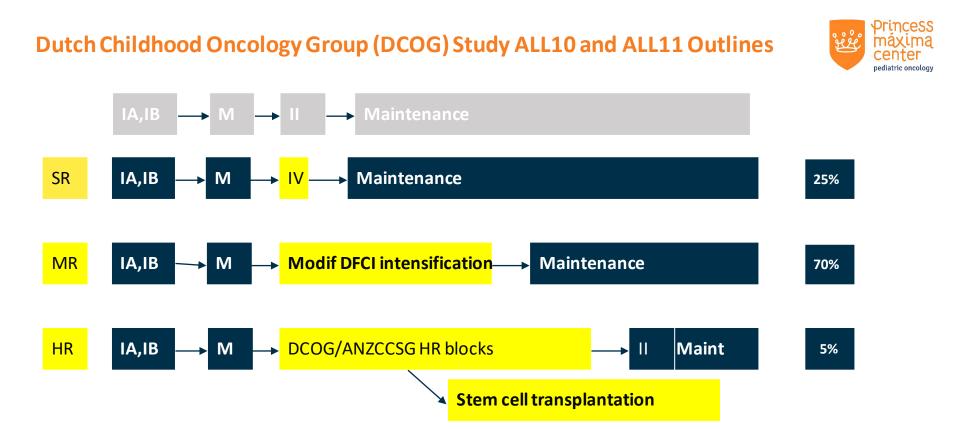


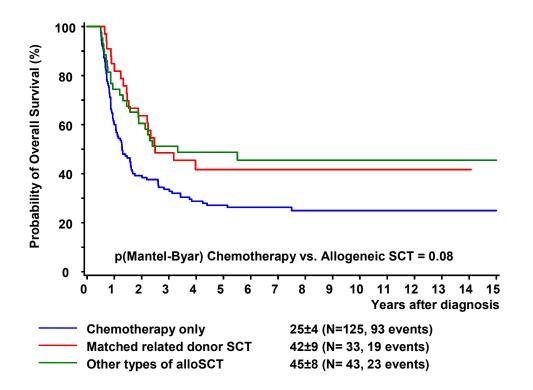

Risk of Toxicity by Median Asparaginase Enzyme Activity

400

600

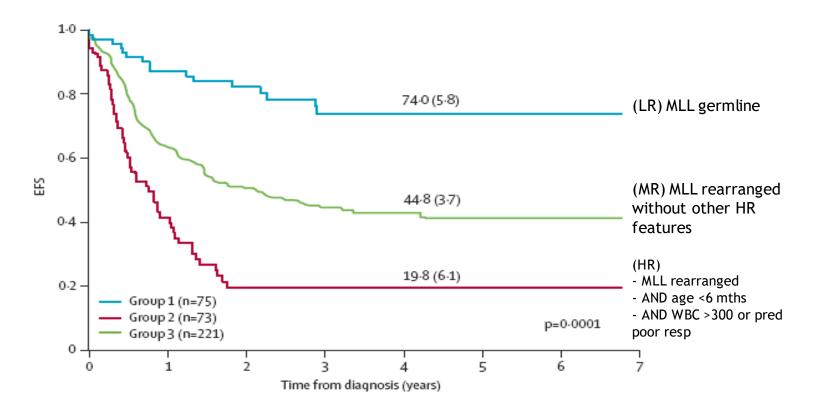



Therapeutic Drug Monitoring: Target Drug Level 100–250 U/L


Number of patients 323 319 287 283 247 184 177 187 169 165 144 149 122 129 120 108 148 77

Kloos R, et al. J Clin Oncol. 2020;38(7):715-724.

No CR After Induction AND T-ALL: Better Survival With AlloSCT



Schrappe M, et al. N Engl J Med. 2012;366(15):1371-1381.

Outcome by MLL Status, Age, and White Blood Cell Count

AlloSCT in Infant MLL-Rearranged ALL: Interfant-99 <u>MR</u> Patients Adjusted by Waiting Time to SCT

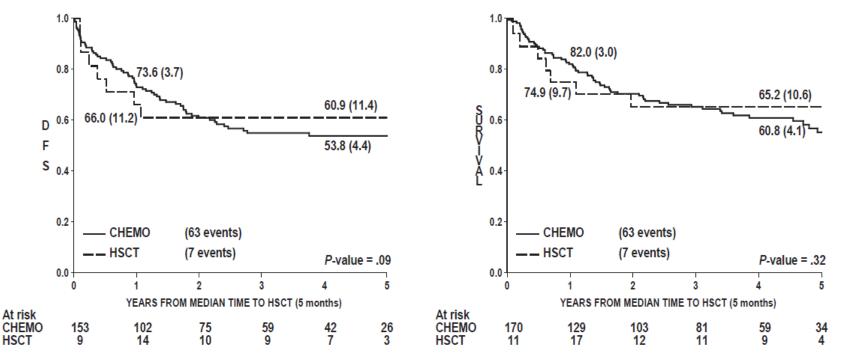


Figure 2. DFS and OS of 188 medium-risk patients with *MLL*⁺ infant ALL by treatment performed, adjusted by waiting time to HSCT. *P* value is from Cox Model. CHEMO indicates chemotherapy only; and HSCT, hematopoietic stem cell transplantation.

AlloSCT in Infant MLL-Rearranged ALL: Interfant-99 <u>MR</u> Patients Adjusted by Waiting Time to SCT

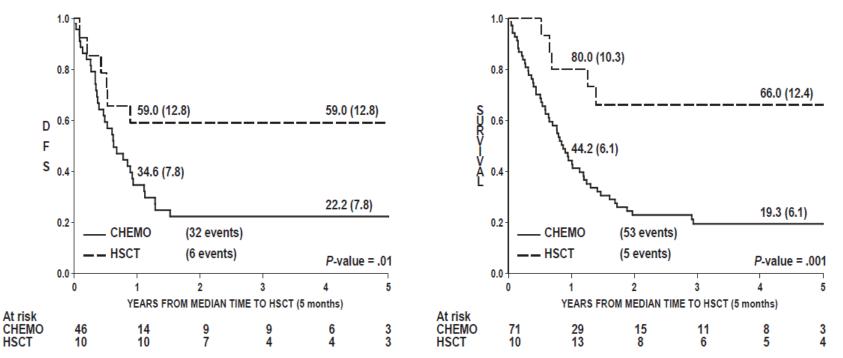
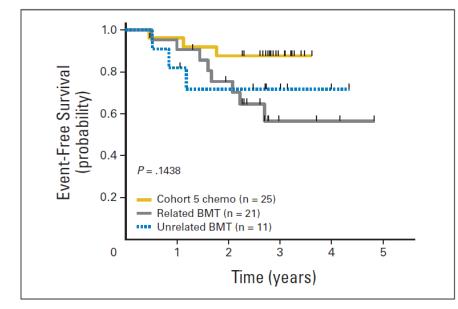



Figure 3. DFS and OS of 97 high-risk patients with *MLL*⁺ infant ALL by treatment performed, adjusted by waiting time to HSCT. *P* value is from Cox Model. CHEMO indicates chemotherapy only; and HSCT, hematopoietic stem cell transplantation.

TKI in BCR-ABL–Positive ALL: Need for SCT?

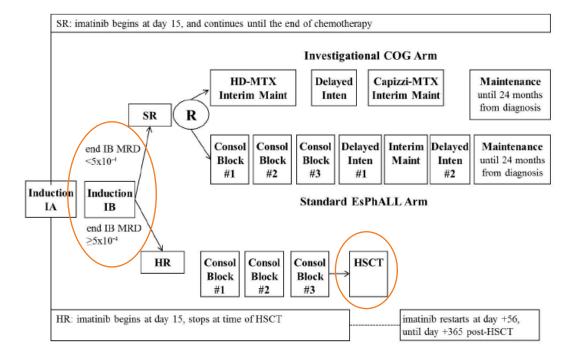
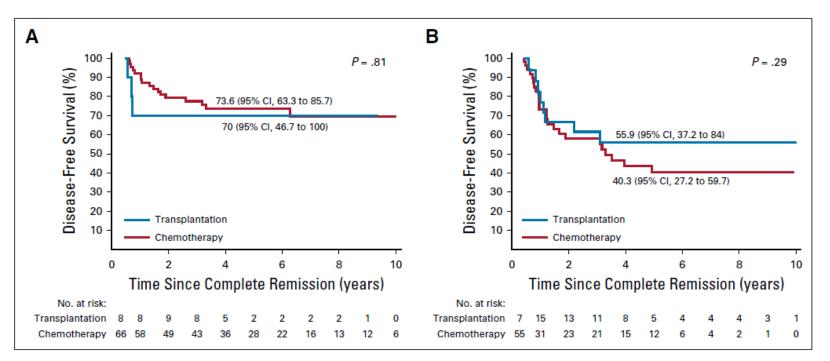
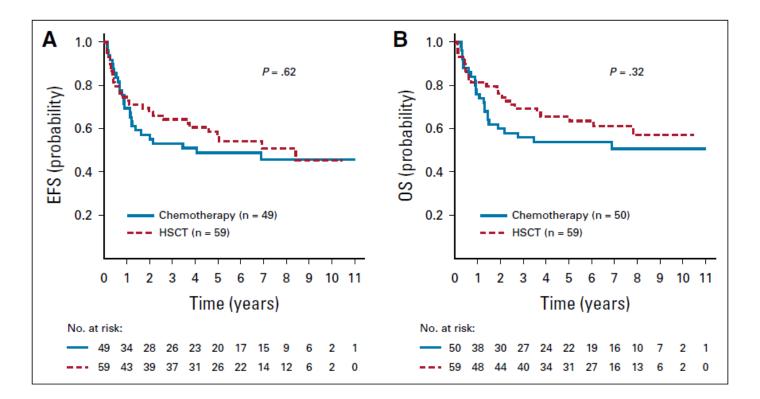


Fig 4. Comparison of event-free survival (EFS) for Cohort 5 chemotherapy only versus related-donor bone marrow transplantation (BMT) versus unrelated-donor BMT. Cohort 5 patients were compared with human leukocyte antigen (HLA) –identical sibling BMT (8 of 39 in cohorts 1-4; 13 of 44 in cohort 5) and 11 of the total 83 patients removed from protocol for an alternative-donor BMT. Patients treated on protocol were given imatinib 340 mg/m²/d for 6 months starting 4 to 6 months after BMT.

EsPhALL2017/COGAALL1631

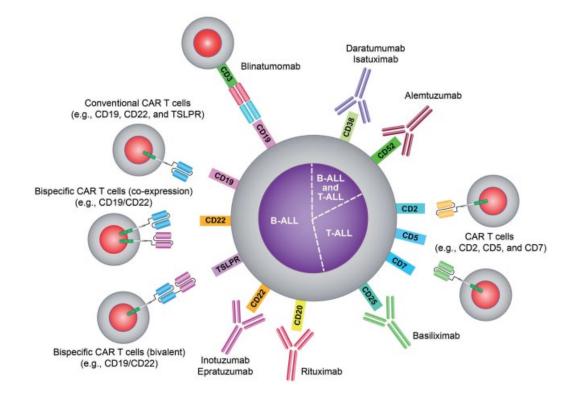

Note. MRD: Minimal Residual Disease, SR:Standard Risk, HR: High Risk, R: Randomization, HD-MTX: High Dose Methotrexate, Maint: Maintenance, Inten: Intensification, Consol: Consolidation, HSCT: Hematopoietic Stem Cell Transplant

DFS of Hypodiploid (<44 chromosomes) ALL With vs Without SCT


MRD EOI $< 10^{-4}$

MRD EOI >10⁻⁴

Outcome of Hypodiploid (<44 chromosomes) ALL With vs Without SCT



Loh, J Clin Oncol 2019

Immunotherapy in Acute Lymphoblastic Leukemia

Answer to Question 1: Which factor has the lowest probability of causing significant long-term toxicity in pediatric ALL?

- The anthracyclines daunorubicin and/or doxorubicin in a cumulative dose of >300 mg/m² in a child aged 5 years at diagnosis
- 2. Methotrexate in a cumulative dose of 20,000 mg/m² in a child aged 8 years at diagnosis
- 3. Cranial radiotherapy in a child aged 2 years at diagnosis
- 4. Dexamethasone in a girl aged 14 years at diagnosis

Balancing Cure and Late Toxicity

- Second malignancies
- Osteonecrosis
- Neurocognitive sequelae
- Cardiomyopathy
- Insulin-dependent diabetes (pancreatitis)
- Who should be transplanted?
- Late effects of immunotherapies?
- Large numbers of patients
- Long and structured follow-up
- Feedback to current protocols
- Dedicated late effects outpatient clinics

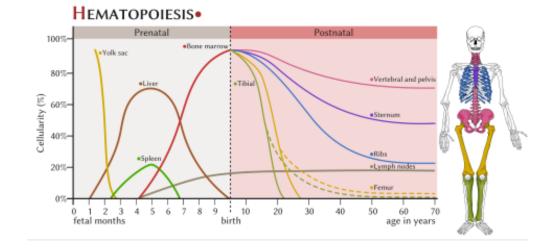
Late Effects Outpatient Clinic: 16,000 Survivors

Case 1: Balancing Cure and Toxicity Risks

Janine Stutterheim

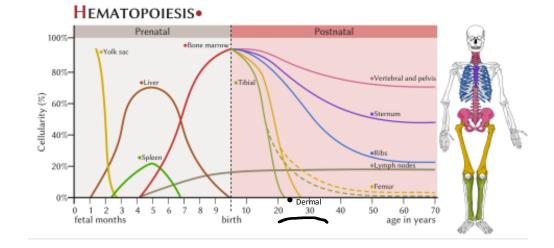
Case: Bilineage Leukemia (infant)

24-9-2022

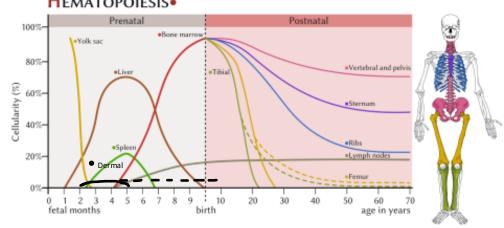


Baby S 41 + 1 weeks GA 3765 g (p50–p90)

- Uncomplicated gravidity
- Normal NIPT test
- Spontaneous parturition APGAR 5/8/9
- Physical exam: blueberry muffin rash


Blueberry Muffin Rash

- Widespread purpura and papules
- First described in 1960¹
 - Rubella-infected neonates in American rubella epidemic
- Etiology: cutaneous extramedullary hematopoiesis


Blueberry Muffin Rash

- Widespread purpura and papules
- First described in 1960¹
 - Rubella-infected neonates in American rubella epidemic
- Etiology: cutaneous extramedullary hematopoiesis

Blueberry Muffin Rash

- Widespread purpura and papules
- First described in 1960¹
 - Rubella-infected neonates in American rubella epidemic
- Etiology: cutaneous extramedullary hematopoiesis

Laboratory Results

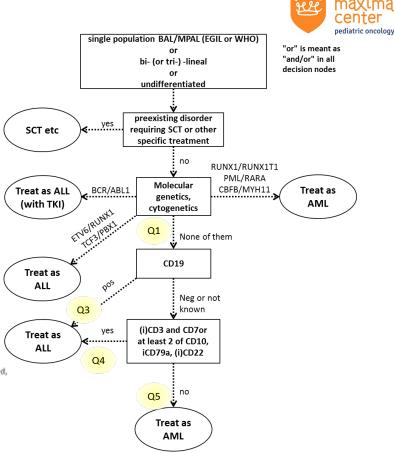
- Hb 9.1, T 102, L 68, 34% blasts
- Chemistry without any abnormalities
- Chest X-ray: normal, no mediastinal mass

Diagnosis, Flow Cytometry: Bilineage Leukemia

	Myeloid Clone	Lymphoid Clone	
	cMPO +	cCD79a+	
CD45	+/-	+	
CD34	-	zwak	
CD117	-	neg	
SSC	++	+/-	
CD79a	-	+	
CD19	+/-	+	
CD10	-	-	
CD20	-	-	
NG2	-	-	
CD22	partly	+	
CD24	-	+/-	
cTDT	+/-	+	
cMPO	+	-	

Genetics: KMT2A-AFF1 (MLL-AF4) rearrangement

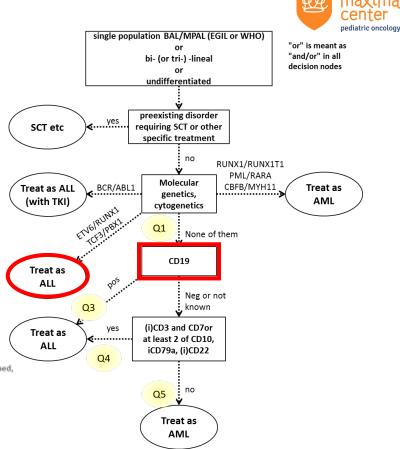
Question: How Would You Start Treatment?


- 1. ALL induction
- 2. AML induction
- 3. Interfant induction
- 4. No treatment

Neonatal Leukemia

- <28 days post partum, often congenital, <1% of childhood leukemia
- AML > ALL
- Symptoms and signs: hepatomegaly, splenomegaly, cutaneous infiltration, CNS infiltration and hyperleukocytosis
- Often *KMT2A*-rearranged
- Prognosis
 - AML with Translocation t(8;16) associated with spontaneous remission
 - AML overall survival 25%
 - ALL overall survival <20%

Bilineage Leukemia: iBFM AMBI2018



rincess

Fig. 4. All ALAL cases: outcome of a historical control, Q2.

Fig. 4. EFS (IBFM AMBI2012 study) of ALALs without specific fusions or preexisting disorders. All types of treatment (ALL, AML, combined, other) included. Patients on IBFM AMBI2018 should have a non-inferior outcome

Bilineage Leukemia: iBFM AMBI2018

rincess

Fig. 4. All ALAL cases: outcome of a historical control, Q2.

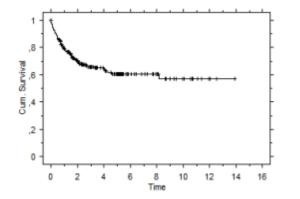
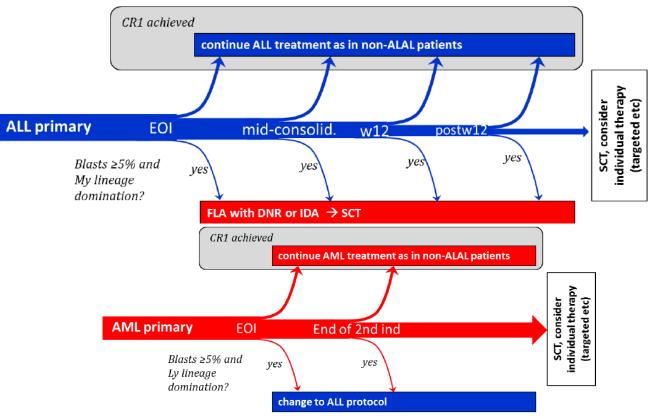
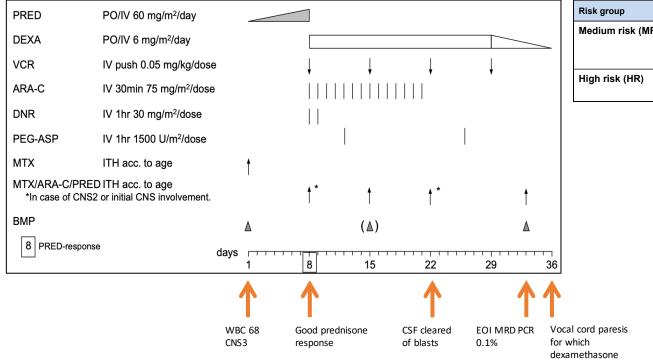
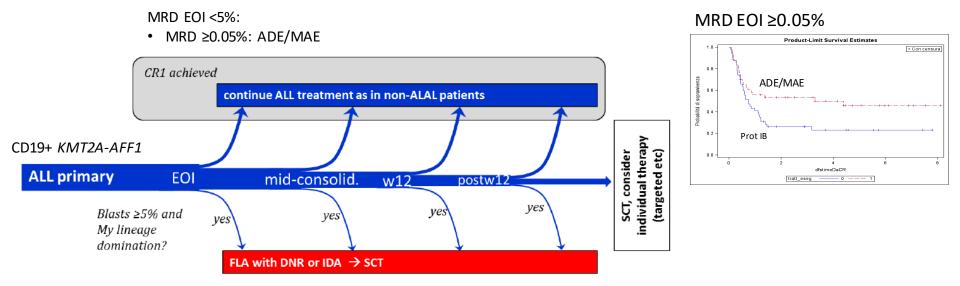



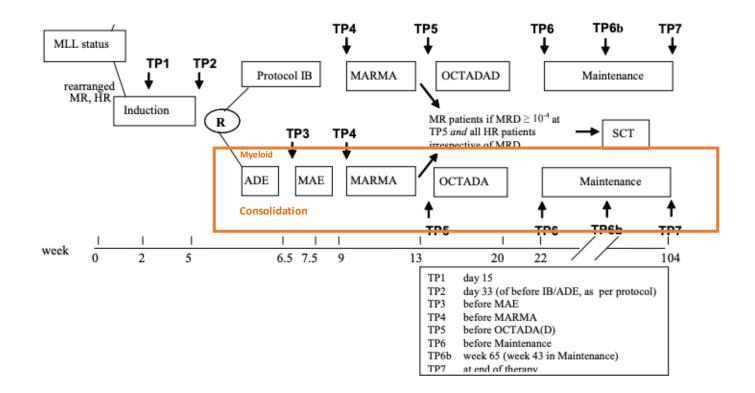
Fig. 4. EFS (IBFM AMBI2012 study) of ALALs without specific fusions or preexisting disorders. All types of treatment (ALL, AML, combined, other) included. Patients on IBFM AMBI2018 should have a non-inferior outcome


Bilineage Leukemia: iBFM AMBI2018 RECOMMENDED CHANGES OF TREATMENT

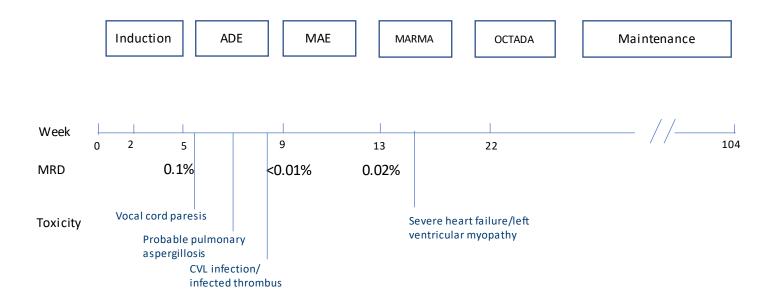
Treatment: Interfant Induction LYMPHOID INDUCTION WITH ADDITION OF CYTARABINE



Risk group	Criteria	
Medium risk (MR) [*]	1. age <u>></u> 6 months OR	
	2. age < 6 months AND WBC< 300 x 10 ⁹ /L	
	AND prednisone good response	
High risk (HR)	3 . age at diagnosis < 6 months AND	
	4. WBC <u>>300 x 10⁹/L AND/OR</u> prednisone poor response	

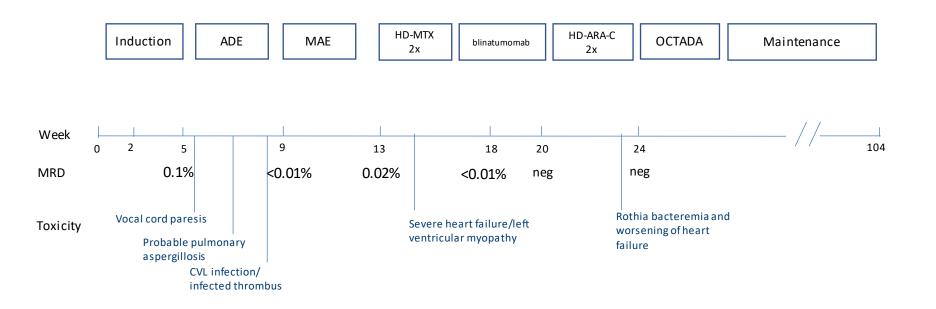

Bilineage Leukemia: iBFM AMBI2018

Interfant-06: With Myeloid Consolidation Blocks

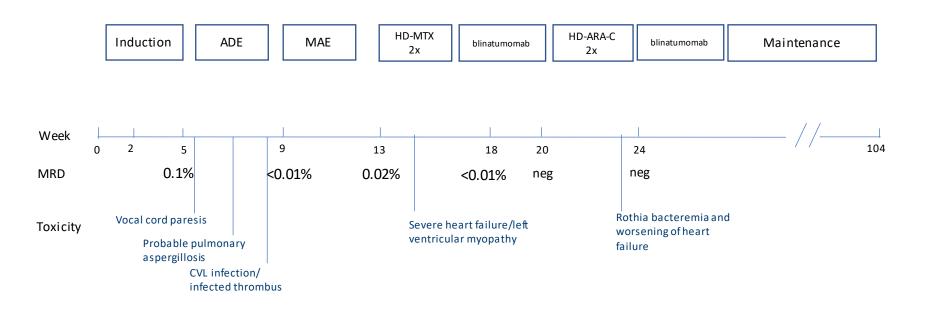


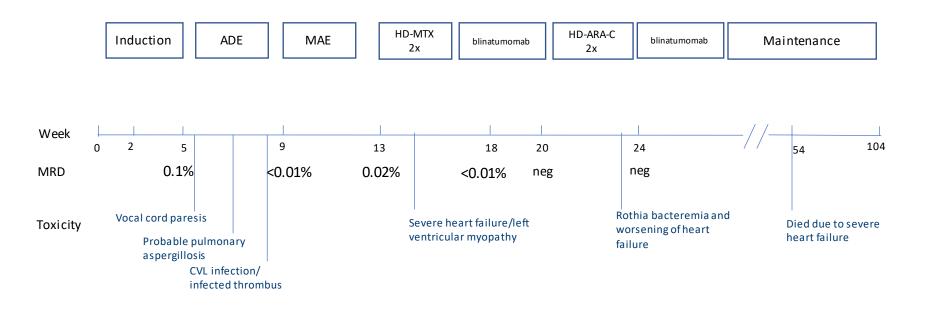
Pieters R, et al. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the Interfant-06 protocol: Results from an International phase III randomized study. J Clin Oncol. 2019;37;2246-2256.

Treatment, Continued: More Toxicity Arises


Question: How Would You Continue Treatment?

- 1. Maintenance treatment
- 2. MARMA HD-MTX treatment
- 3. Blinatumomab
- 4. CAR T therapy


Treatment, Continued


Treatment, Continued

Treatment, Continued

Questions?

- Diagnose: congenitale acute bilineage leukemie, CNS3, t(4,11)/ KMT2A-AFF1 fusie
- Presentatie met leukemia cutis
- TPMT_ normaal genotype
- Datum van diagnose: 30-4-2020, start Interfant-06
- Datum Overlijden 14-5-2021: oorzaak ernsig hartfalen
- Behandeling: Interfant -06 Inductie, ADE/MAE, 1ste helft MARMA,
- blina 2de helft MARMA, blina (ipv OCTADA), maintenance
- Behandeling gecompliceerd door ernstig hartfalen
- Respons:
- dag 8: GPR (liquor nog blasten gezien)
- BMP dag 15 niet verricht (liquor uitslag niet betrouwbaar)
- Liquor dag 22 schoon
- BMP EOI CR dd 3-6-20 flow-MRD +/- 4% vrnl myeloid. MRD MLL PCR 0.06%. max 0.1%
- BMP na ADE, dd 8-7-20 MLL-target pos < 10-4. max pos 10-4
- BMP EOC na ADE/MAE dd 15-08: MLL target 0.02%, max 0.06%
- BMP dag 15 blina: dd25-9: pos NK
- BMP dag 29 blina: dd 14-10: pos NK (MLL neg)
- BMP na 2de helft MARMA, dd 13-11: neg

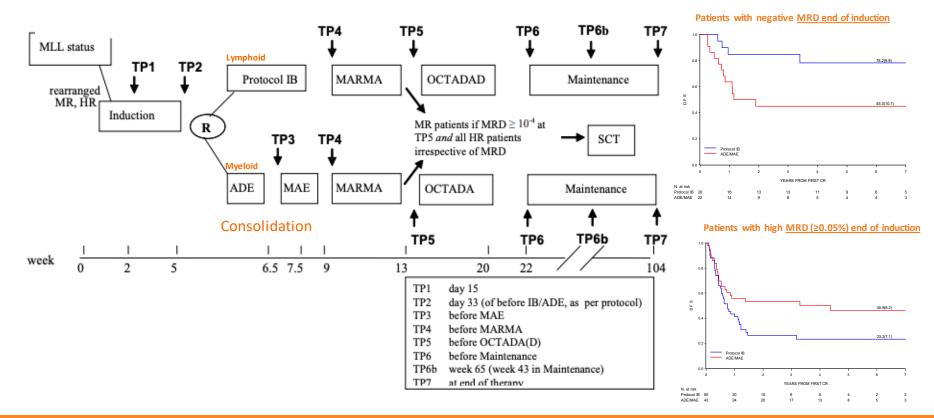
Toxiciteit:

- hartfalen door cardiomyopathie met LVF, IC opname 30-8-2020. WD antracycline-toxiciteit (DD congenitaal)
- probable pulmonale as pergillus wv sinds 26-6 Ambisome en voriconazol; in aug-2020 switch is avuconazol ivm slechte spiegels voriconazol
- defecte CVL (Re VJI) wv lijnwissel dd 26-6 (V.jug.intlinks)
- Tunnelinfectie nieuwe lijn dd 3-7, (BK enterococ Faecalis, + CNS)
- geinfecteerde trombus (BK enterococ Faecalis, + CNS), wv dalteparine dd 6-7, en 6 wkn antibiotica. Stop dalterapine 1-11-2020
- reversibele stridor obv stembandparese

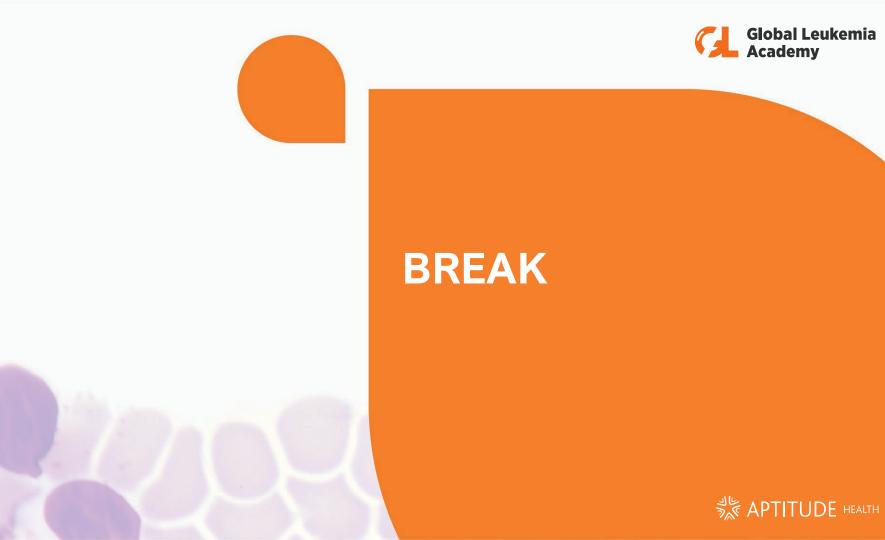
Aangepastantibioticabeleid:

- colonosisatie a cinetobacter wv meropenem indicatie

Bijzonderheden:


 - echo cor; aanvankelijk afw triculspidaal klep en klein VSD, bij laatste echo dd 24-6 + 3-8 geen bijz. echter 30-8 cardiomyopathie met matig tot slechte LVF

na 1/2 MARMA: 2x HD-MTX afgerond. Gestaakt ivm hartfalen.Over op Blinatumoman dd 11-9;


herstart met 2de deel MARMA; hierna Rothia infectie en weer hartfalen, wv opnieuw blina ipv OCTADA

Interfant-06

Pieters R, et al. Outcome of infants younger than 1 year with acute lymphoblastic leukemia treated with the Interfant-06 protocol: Results from an International phase III randomized study. J Clin Oncol. 2019;37;2246-2256.

Current Treatment Options for High-Risk ALL in Children

Christina Peters

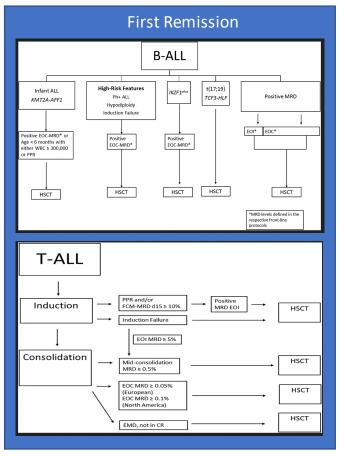
Global Leukemia Academy 2022

R/R pediatric ALL: How to offer a chance of cure and reduce side effects and late complications?

Christina Peters, MD

St. Anna Children's Hospital, Children's Cancer Research Institute

Vienna, Austria

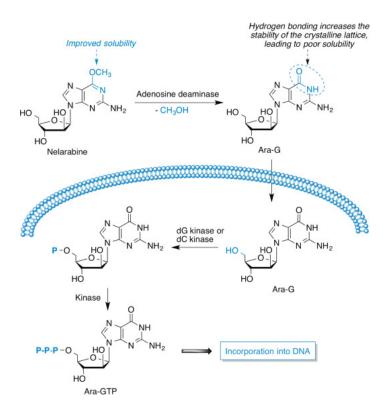

christina.peters@stanna.at

Company name	Disclosure	
Amgen	Consultancy, honoraria and travel support	
Novartis	Consultancy	
Jazz	Speakers bureau	
Pfizer	Consultancy	
Medac	Consultancy	
Neovii	Speakers bureau	

R/R Pediatric ALL: Strategies 2022

- Risk stratification: high/intermediate/low
- Treatment
 - Chemotherapy
 - Immunotherapy
 - Bispecific AB
 - AB-conjugates
 - CAR T cells
 - Hematopoietic cell transplantation
 - Donor type
 - Stem cell source
 - Conditioning regimen

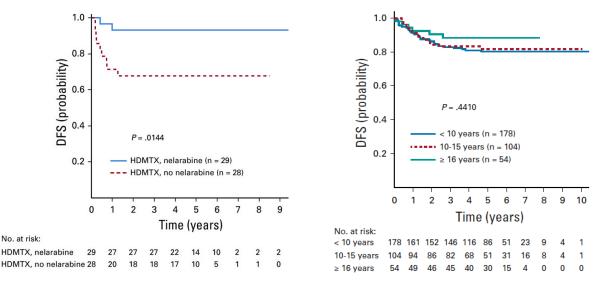
Indication for Allogeneic HSCT


Second Remission: Risk Stratification

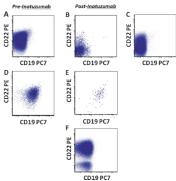
Children's oncology group (35)	BFM group (36)	UK group (37)	IntReALL consortium
Low	Low (S1)	Standard	Standard (S1 and some S2)
Late B-ALL marrow, end-block 1 MRD <0.1%	Late IEM relapses	Late IEM relapse	Early and late IEM relapses, of B-ALL or T-ALL
Late IEM, end-block 1 MRD <0.1%			Late B-ALL isolated marrow relapses Early/late B-ALL combined relapses
Intermediate	Intermediate (S2)	Intermediate	
_ate B-ALL marrow, end-block 1	Early IEM relapses	Early IEM relapses	
MRD ≥0.1%	Late B-ALL isolated marrow relapses	Late B-ALL isolated marrow relapses	
Late IEM, end-block 1 MRD ≥0.1%	Early/late B-ALL combined relapses Very early IEM relapses	Early/late B-ALL combined relapses	
High	High (S3 and S4)	High	High (S3, S4 and some S2)
Early B-ALL marrow	Very early and early B-ALL marrow	Very early IEM relapse	All very early relapses, irrespective of site
Early IEM	relapses	Very early and early B-ALL marrow relapses	and phenotype
T-ALL relapse, any site and timing	Very early B-ALL combined relapses	Very early B-ALL combined relapse	Early B-ALL isolated marrow relapses
	T-ALL marrow relapses (regardless of timing)	T-ALL marrow or combined relapse, any timing	T-ALL marrow relapses, combined or isolated (regardless of timing)

COG definitions: IEM relapse (<18 months from diagnosis), late IEM (≥18 months from diagnosis), early marrow relapse (<36 months from diagnosis), and late marrow relapse (≥36 months from diagnosis).

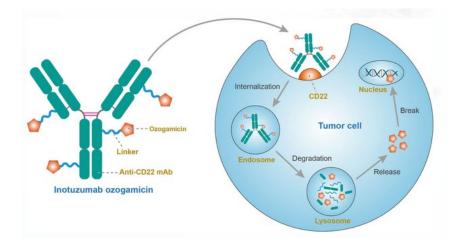
BFM and UK definitions: very early (<18 months from diagnosis), early (18 months from diagnosis but <6 months after end of treatment), and late (>6 months after end of treatment), IEM, isolated extramedullary disease; B-ALL, B-cell-acute lymphoblastic leukemia; MRD, minimal residual disease; BFM Group, Berlin–Frankfurt–Munster Group; T-ALL, T-cell-acute lymphoblastic leukemia.


Nelarabine

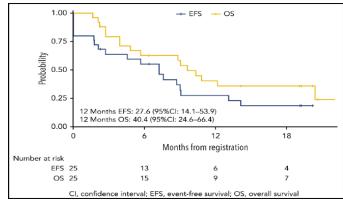
Nelarabine is the prodrug of 9-β-Darabinofuranosylguanine (ara-G) which when phosphorylated intracellularly to ara-G triphosphate (ara-GTP), preferentially accumulates in cancerous T-cells. Ara-G is transported into the leukemic blast by 2 different transporters. It is then phosphorylated to ara-GTP. Upon incorporation of ara-GTP into DNA, apoptosis occurs as formation is terminated.

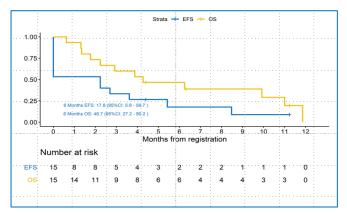

A Phase III Randomized Clinical Trial Testing Nelarabine in Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia, Children's Oncology Group AALL0434

Disease-free survival (DFS) for patients with CNS3 randomly assigned to high-dose methotrexate with leucovorin rescue (HDMTX) with or without nelarabine; 5-year DFS rates were $93.1\% \pm 6.5\%$ for HDMTX with nelarabine and $67.9\% \pm 12.2\%$ for HDMTX without nelarabine (P = .014).

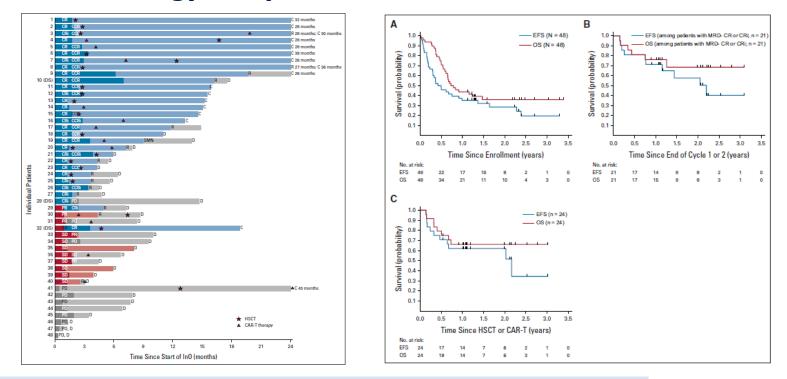


The addition of nelarabine to ABFM therapy improved DFS for children and young adults with newly diagnosed T-ALL without increased toxicity. Nelarabine decreased CNS relapses. Nelarabine is safe and effective in the treatment of newly diagnosed T-ALL in children and young adults with excellent disease-free survival.


Inotuzumab-Ozogamicin

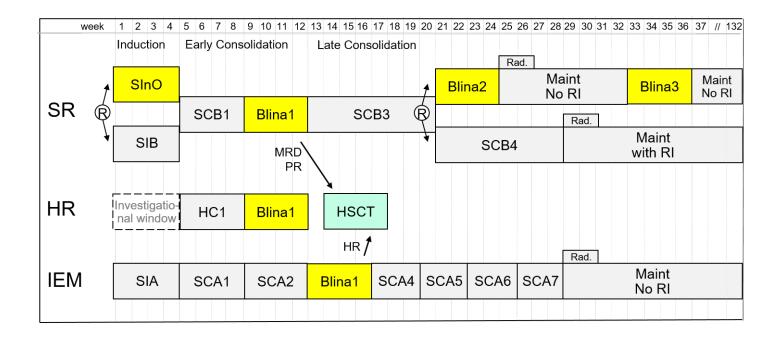

CD22 expression at relapse post-InO. CD22 expression in 2 patients evaluated preand post-InO and in 1 patient post-InO. CD22 is uniformly expressed on >99%Blymphoblastic leukemia cells prior to InO (a, d); however, CD22 expression is diminished or absent (b, c, e) or absent in a subset of lymphoblasts (f) after InO

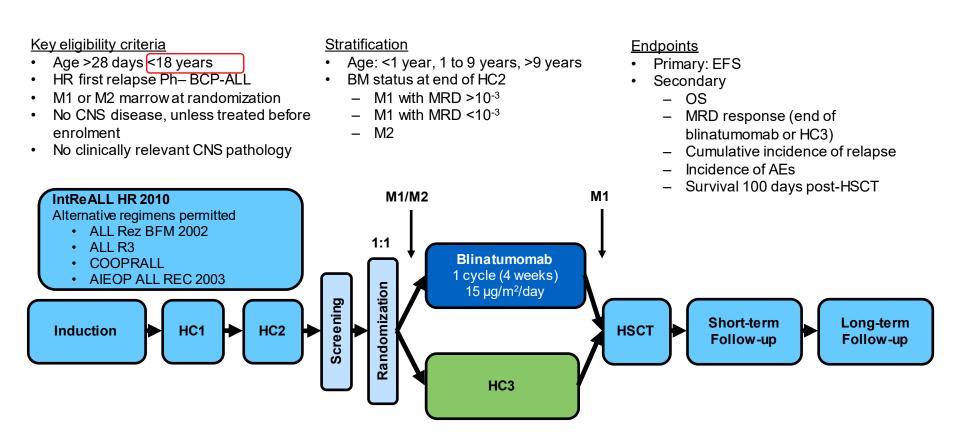
Bhojwani D, et al. Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2019



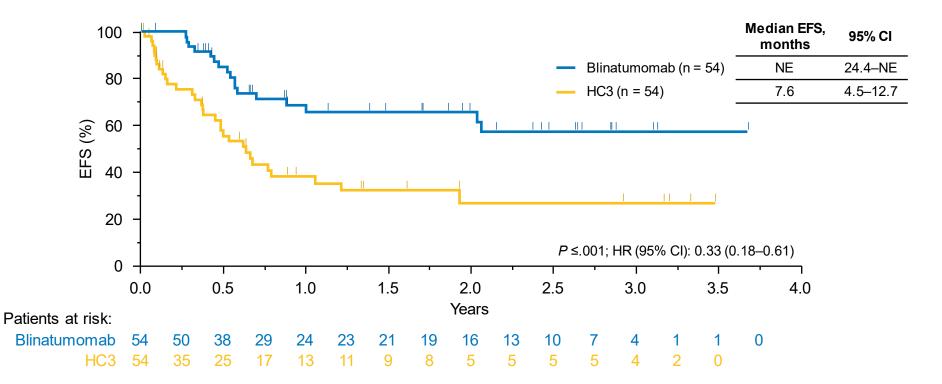
Brivio et al. A phase 1 study of inotuzumab ozogamicin in pediatric R/R ALL (ITCC-059 study). *Blood*. 2021

Brivio et al. Inotuzumab ozogamicin in infants and young children with r/refractory ALL: a case series. *Br J Haematol*. 2021

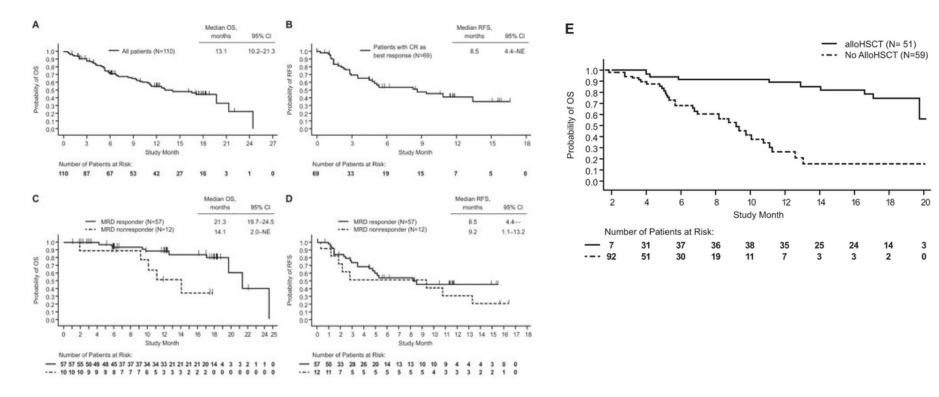

Phase II Trial of Inotuzumab Ozogamicin in Children and Adolescents With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia: Children's Oncology Group Protocol AALL1621


Caveat: prolonged cytopenia; VOD/SOS after HCT 28,6% grade 3

O'Brian et al. J Clin Oncol. 2022.


IntReALL BCP 2020

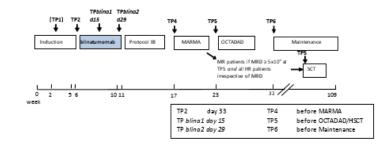
Amgen 20120215: Open-Label, Randomized, Phase III Trial – 47 Centers, 13 Countries


Superior EFS in the Blinatumomab Arm

Locatelli F, et al. JAMA. 2021;325(9):843-854.

P, stratified log rank P value; HR, hazard ratio from stratified Cox regression.

Blinatumomab Use in Pediatric Patients With Relapsed/Refractory B-Precursor Acute Lymphoblastic Leukemia From an Open-Label, Multicenter, Expanded Access Study (RIALTO)



Infant ALL: Poorer Outcomes Compared With Older Children

- Biology: 80% KMT2A-rearrangement
- Treatment-related toxicity: 18.4% in prospective INTERFANT-trial
 - Pieters R, et al. Lancet. 2007;370(9583):240-250.
 - Pieters R, et al. J Clin Oncol. 2019;37(25):2246-2256.
- HSCT with TBI associated with several late effects
 - Sanders JE, et al. *Blood*. 2005;105(9):3749-3756.
- HSCT with chemo-conditioning is associated with higher relapse incidence
 - Peters C, et al. J Clin Oncol. 2015;33(11):1265-1274.
 - Willasch AM, et al. *Bone Marrow Transplant*. 2020;55(8):1540-1551.

Blinatumomab for Infants

- Clesham K, et al. *Blood*. 2020;135(17):1501-1504.
- Sutton R, et al. *Pediatr Blood Cancer*. 2021;68(5):e28922.
- Popov A, et al. Blinatumomab following haematopoietic stem cell transplantation - a novel approach for the treatment of acute lymphoblastic leukaemia in infants. *Br J Haematol.* 2021;194(1):174-178.
- Interfant network: Blinfant protocol: Pilot study the addition of blinatumomab to the Interfant-06 backbone in infants with MLL-rearranged acute lymphoblastic leukaemia. EudraCT: 2016-00467417.

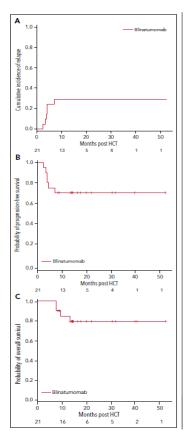
	N=28
Age at diagnosis	
< 6 months	18 (64%)
≥ 6 months	10 (36%)
Gender	
male	11 (39%)
female	17 (61%)
Risk group	
Medium risk	19 (68%)
High risk	9 (32%)
End of induction	
M1	26 (93%)
M2	2 (7%)
MRD end of induction	
Low < 0.05%	17 (61%)
High <u>></u> 0.05%	11 (39%)

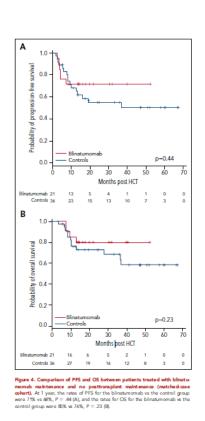
Table 1 Patient characteristics

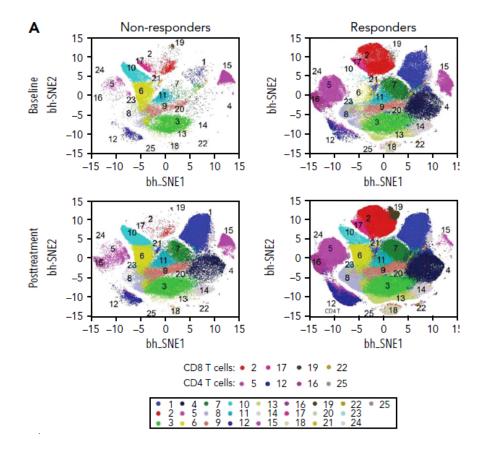
Tabl	e Z	MRD	results	
------	-----	-----	---------	--


N=28 18 (64%)			<u>Blina</u> infant					IF06	MRD neg Blina infant vs IF06
10 (36%) 11 (39%)	MRD		number of patients	Neg		₽95,≪QR*	E95	MRD Deg	p-value
17 (61%)	EOI		28	8 (29	(96)	5 (18%)	15 (54%)	19%	0.3169
	Day 15	i blina	28	15 (54	196)	9 (32%)	4 (14%)	-	
19 (68%)	Day 29) blina	28	15 (54	196)	10 (36%)	3 (11%)	-	
9 (32%)	TP4 be MARN		26	15 (58	196)	8 (30%)	3 (12%)	40%	0.1356
26 (93%) 2 (7%)	TP5 be OCTAL	fore AD/HSCT	23	19 (83	:96)	4 (17%)	0	63%	0.0997
17 (61%)		fore enance **	14	14 (10	·	0	0	NA	

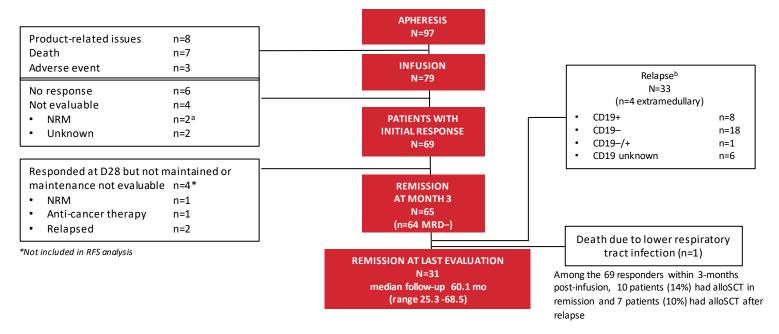
*OR quantitative range, varied from 0.05 to 0.005%. NA not available


**MR patients only; IF06 Interfant06 as historical control


Blinatumomab After HSCT

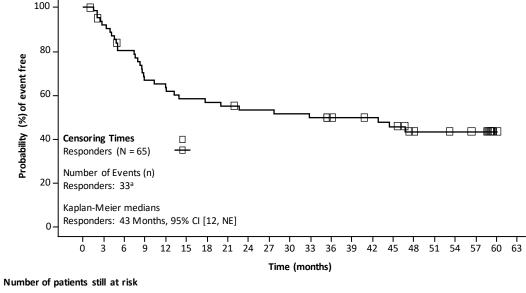

- Handgretinger R, et al. *Leukemia*. 2011;25(1):181-184.
- Schlegel P, et al. *Haematologica*. 2014;99(7):1212-1219.
- Wu H, et al. Am J Cancer Res. 2021;11(6):3111-3122.
- Stein AS, et al. *Biol Blood Marrow Transplant*. 2019;25(8):1498-1504.
- Alcharakh M, et al. *Immunotherapy*. 2016;8(8):847-852.
- Blinatumomab after T-cell receptor (TCR) alpha/betadepleted HSCT (NCT04746209): Phase II
- Blinatumomab for MRD in pre-B-ALL patients following HSCT (NCT04044560): FORUM add on trial

Blinatumomab After HSCT



Subpopulations identified via viSNE analysis of 14 surface markers in all 56 samples. (A) viSNE map for nonresponders and responders color-coded according to PhenoGraph cluster annotation. viSNE maps were separated to baseline and posttreatment in both nonresponders and responders groups.

ELIANA Update: Patient Flow Chart


Includes patients who had remission (CR/CRi) within 3 months post infusion

^aPatient with Down syndrome died due to cerebral hemorrhage. ^bCD19 status at relapse was characterized based on MFC-MRD assay and NGS analysis. (Pulsipher et al. 2022, *Blood Cancer Discovery*). alloSCT, allogeneic stem cell transplantation; CR, complete remission; CRi, CR with incomplete blood count recovery; D, day; MFC, multiparametric flow cytometry; MRD, minimal residual disease; mo, month; NGS, next-generation sequencing; NRM, non-relapse related mortality; RFS, relapse-free survival.

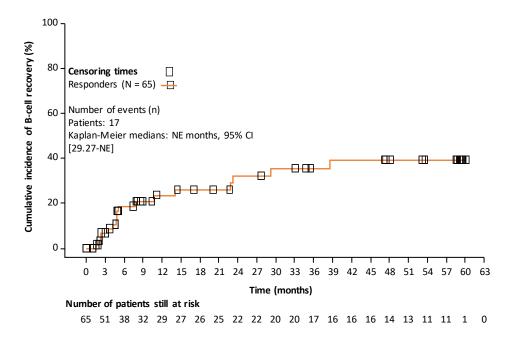
Rives et al. EHA 2022. Abstract 5112.

ELIANA Update: RFS for Patients With a CR/CRi Within 3 Months

65 56 48 40 39 35 34 33 31 31 30 29 26 25 24 22 18 17 15 14 1 0

5-year RFS: 44% (95% CI, 31%-56%)

 No new long-term treatmentrelated safety events were observed in this longer-term >5year follow-up


 Long-term remission rates up to 5.9-years of follow-up from ELIANA demonstrate that tisagenlecleucel may be a curative treatment option for heavily pretreated pediatric and young adult patients with R/R B-ALL

Note: RFS is without censoring for SCT and other cancer therapies

^aOne patient who died at Month 17 while in CR was censored as the event happened after at least 2 missing assessments. CR, complete remission; CRi, CR with incomplete blood count recovery; NE, not estimable; RFS, relapse-free survival; SCT, stem cell transplant.

Rives et al. EHA 2022. Abstract 5112.

ELIANA Update: B-Cell Recovery

- The probability of B-cell aplasia at:
 - Month 6 was 83% (95% CI, 71%–91%)
 - Month 12 was 71% (95% CI, 57%– 82%)
- Patients with B-cell recovery experienced a 2-year cumulative incidence of relapse of 40%
- Median time to B-cell recovery was 39 months in responders

Note: B-cell recovery is censored for HSCT.

(H)SCT, (hematopoietic) stem cell transplantation; NE, not estimable.

Rives et al. EHA 2022. Abstract 5112.

CAR T Cells for Infant BCP-ALL

	Participants
Whole cohort (n=38)	
Age at diagnosis, months	5.2 (2.6-7.6)
Sex	
Female	17 (45%)
Male	21 (55%)
White blood cell count at diagnosis, × 10° cells per L	375 (130-797)
Presenting with CNS involvement	18/32 (47%)
Treated according to Interfant-06 protocol	31 (82%)
KMT2A rearrangement	29 (76%)
Refractory to one or more previous treatment lines	19 (50%)
Previous HSCT	25 (66%)
Number of previous lines of therapy not including HSCT	2 (2-3)
Previous inotuzumab	7 (18%)
Previous blinatumomab	14 (37%)
Participants who received a tisagenlecleucel	infusion (n=35)
Median age at infusion, months	17.0 (14.9–24.6)
Bone marrow disease burden before lymphode	epletion
Median (IQR)	5% (0.2-31.0)
Measurable residual disease negative	7 (20%)
0-<1%	5 (14%)
1-<5%	5 (14%)
5-<10%	2 (6%)
10-<50%	9 (26%)
50-100%	7 (20%)
CNS disease before lymphodepletion	1 (3%)
Data are median (IQR), n (%), or n/N (%). Data on ra collected. HSCT=haematopoietic stem-cell transpla	
Table 1: Baseline characteristics	

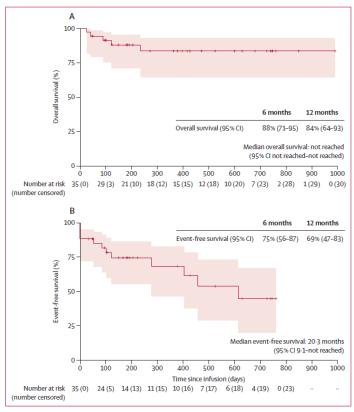


Figure 2: Overall survival and event-free survival

Ghorashian et al. Tisagenlecleucel therapy for relapsed or refractory B-cell acute lymphoblastic leukaemia in infants and children younger than 3 years of age at screening: an international, multicentre, retrospective cohort study. *Lancet Haematol.* 2022

CAR T Cells for Infant BCP-ALL

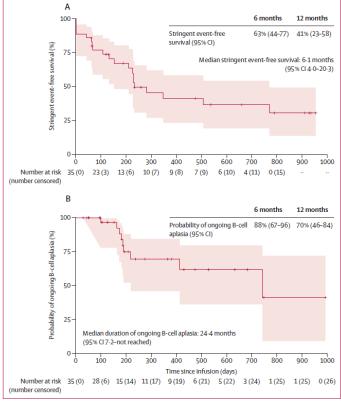
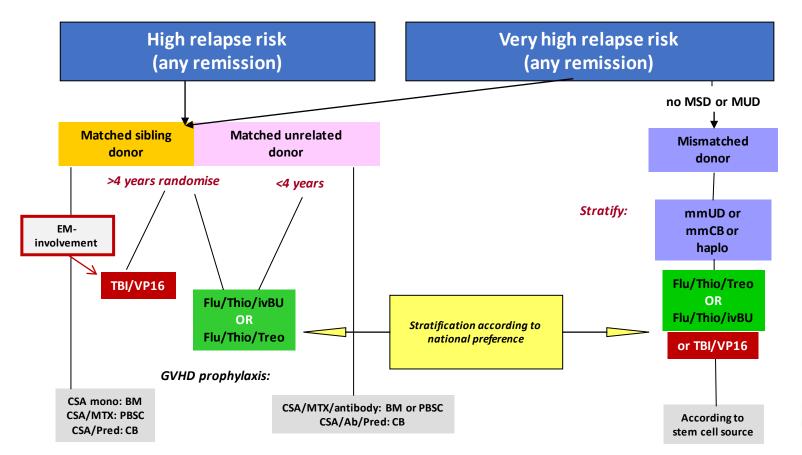


Figure 3: Stringent event-free survival and probability of ongoing B-cell aplasia (A) Stringent event-free survival. (B) Ongoing B-cell aplasia. Shaded areas are 95% Cls.

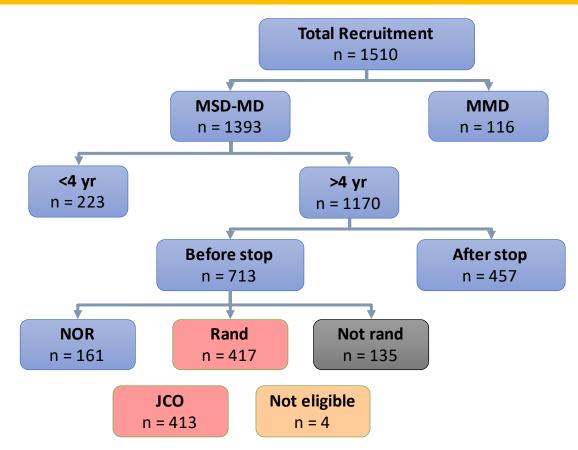
Cytokine release syndrome Any grade						
Any grade						
	21 (60%)	58 (77%)				
Grade 1–2	16 (46%)	23 (31%)				
Grade 3	3 (9%)	16 (21%)				
Grade 4	2 (6%)	19 (25%)				
Median duration, days	1.5 (0.0-4.0)	8.0 (NR-NR)				
Tocilizumab administered	8 (23%)	28 (37%)				
Managed in ICU	9 (26%)	35 (47%)				
Median duration in ICU, days	2 (2–10)	7 (NR-NR)				
Neurotoxicity or immune ef	fector cell-associated neu	rotoxicity syndrome				
Any grade	9 (26%)	30 (40%)				
Grade 1–2	9 (26%)	20 (27%)				
Grade 3	0	10 (13%)				
Grade 4	0	0				
Cytopenia for ≥30 days						
Any grade	15/23 (65%)	28 (37%)				
Grade 1–2	3/23 (13%)	4 (5%)				
Grade 3	9/23 (39%)	12 (16%)				
Grade 4	3/23 (13%)	12 (16%)				
Hypogammaglobulinaemia	27/31 (87%)	NR				
Infection						
Any grade	10/34 (29%)	32 (43%)				
Grade 1–2	2/34 (6%)	14 (19%)				
Grade 3	8/34 (24%)	16 (21%)				
Grade 4	0/34	2 (3%)				
Data are median (IQR), n (%), or n/N (%). ICU=Intensive care unit. NR=not reported.						

Ghorashian et al. Tisagenlecleucel therapy for relapsed or refractory B-cell acute lymphoblastic leukaemia in infants and children younger than 3 years of age at screening: an international, multicentre, retrospective cohort study. *Lancet Haematol.* 2022

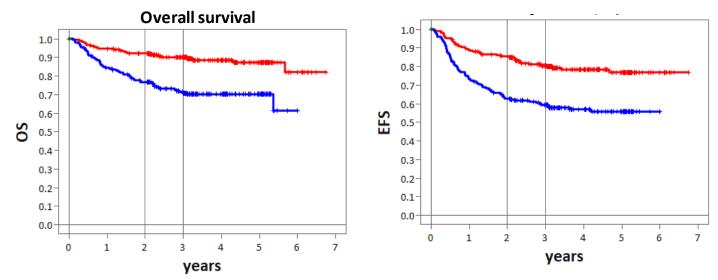
ALLO-SCT FOR CHILDREN AND ADOLESCENTS WITH ALL: ALL SCT ped FORUM


(FOR OMITTING RADIATION UNDER MAJORITY AGE)

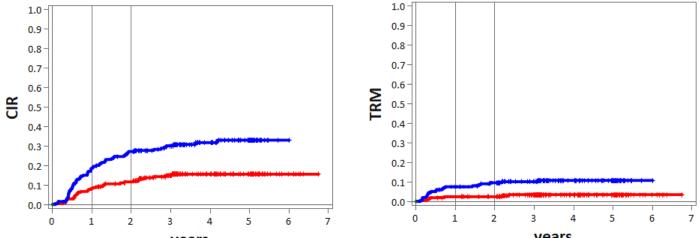
Christina Peters, Peter Bader, Franco Locatelli, Ulrike Pötschger, for the Study Group



Study Design: ALL SCT ped FORUM 2012



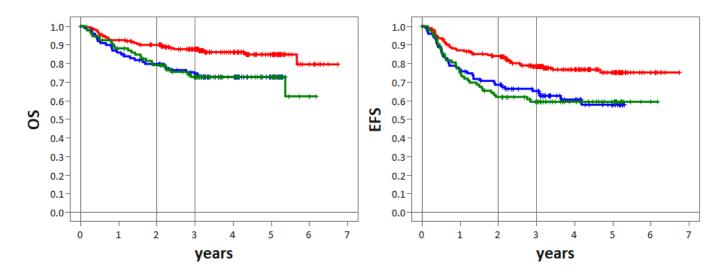
Peters et al. J Clin Oncol. 2021.


MSD/MD ≥4 Years, Randomised, Intention to Treat

	Patients	Events (+)	2-yr OS	3-yr OS	<i>P</i> value	Events (+)	2-yrs EFS	3-yrs. EFS	<i>P</i> value
TBI/VP16	212	24 (+5)	0.92±0.02	0.90±0.02	<.001	43 (+12)	0.86±0.02	0.81±0.03	<.001
СНС	201	58 (+9)	0.77±0.03	0.71±0.03		84 (+12)	0.63±0.04	0.59±0.04	

Med observation time: 3.7 years

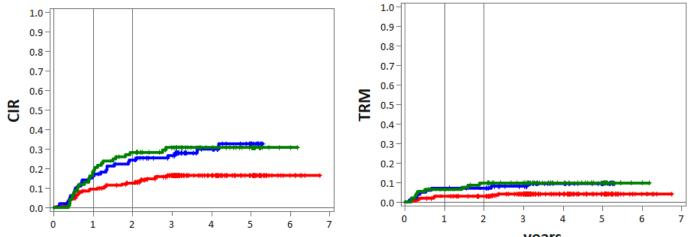
MSD/MD ≥4 Years, Randomised, Intention to Treat



years

years

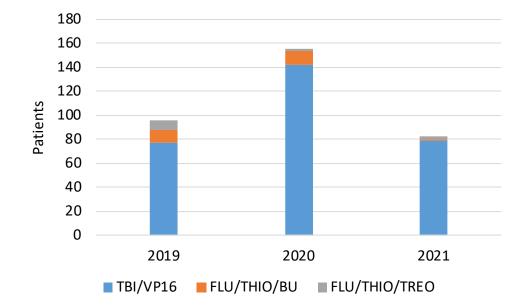
		Relapses		TRM		Sec. mal	EFS
Arm	Patients	Relapses	2-yr CIR	TRM	2-yr Cl		2-yr EFS
TBI/VP16	212	31 (+7)	0.12±0.02	7	0.02±0.01	+5	0.86±0.03
СНС	201	63 (+8)	0.27±0.03	21 (+4)	0.10±0.02	+1	0.63±0.04
P value			<.001	•	.007		<.001


MSD/MD >4 Years, Randomised, as Treated

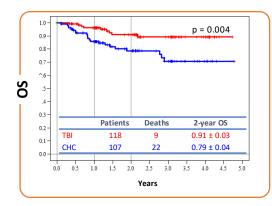
Given	Patients	Eval patients	Events	2-yr OS	3-yr OS	P value
TBI	202	202	28	0.90±0.02	0.88±0.02	.006
BU	100	100	26	0.80±0.04	0.74±0.04	
TREO	93	93	25	0.79±0.04	0.73±0.05	

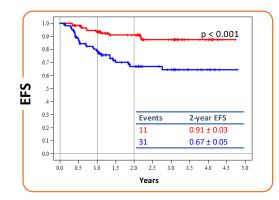
Events	2-yr EFS	3-yr EFS	P value
45	0.84±0.03	0.78±0.03	.001
38	0.69±0.05	0.65±0.05	
37	0.62±0.05	0.59±0.05	

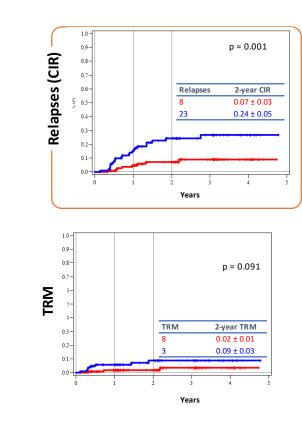
MSD/MD >4 Years, Randomised, as Treated



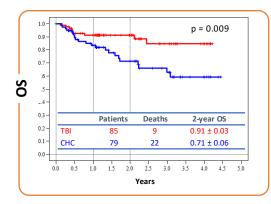
years

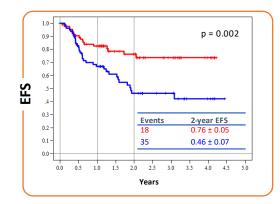

years

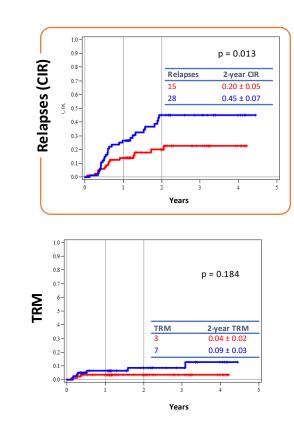

Given	Patients	n(CIR)	2-yr CIR	n(TRM)	2-yr TRM	n(Sec. mal)	2-yr EFS
ТВІ	202	32	0.12±0.02	8	0.03±0.01	5	0.84±0.03
BU	100	30	0.24±0.04	9	0.07±0.03	0	0.69±0.05
TREO	93	28	0.28±0.05	9	0.10±0.03	0	0.62±0.05
P value		•	.007		.111		.001


MSD/MD ≥4 Years, After Rando-Stop, n = 342 (transplanted before Oct 2021)

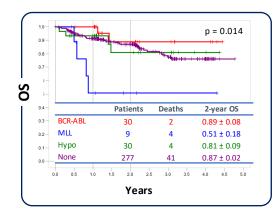
MSD/MD ≥4 Years, Randomised, CR1 Intention to Treat

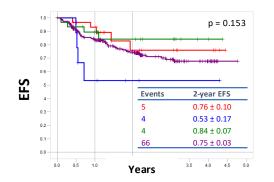


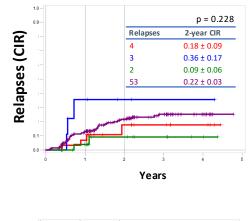


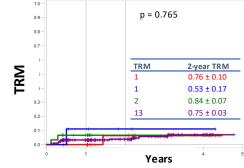


MSD/MD ≥4 Years, Randomised, CR1 Intention to Treat

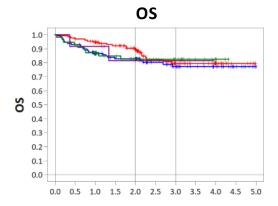


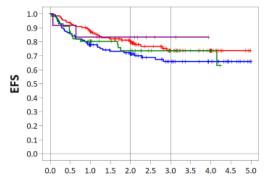






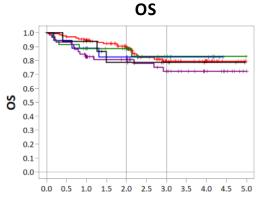
MSD/MD ≥4 Years, Randomised, Chromosomal Aberrations




MSD/MD ≥4 Years, Randomised, MRD pre-SCT

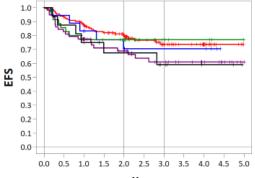
	Patients	Events	2-year OS	3-year OS	P value
MRD-(PCR)	132	21	0.89 ±0.03	0.79 ± 0.04	.714
MRD+(PCR)	129	27	0.83 ±0.03	0.77 ±0.04	
MRD-(FCM)	56	9	0.83 ±0.05	0.83 ± 0.05	
MRD+(FCM)	12	2	0.81 ±0.12	0.81 ± 0.12	

EFS



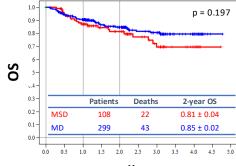
Years

Events	2-year EFS	3-year EFS	P value
30	0.80 ± 0.04	0.74 ± 0.04	.395
39	0.71 ± 0.04	0.66 ± 0.05	
15	0.74 ± 0.06	0.74 ± 0.06	
2	0.83 ± 0.11	0.83 ± 0.11	

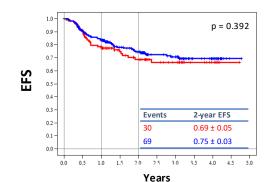

MSD/MD ≥4 Years, Randomised, MRD pre-SCT

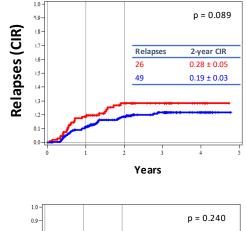
pcr_g	Patients	Eval. patients	Events	2-year OS	3-year OS	P value
Neg	132	132	21	0.89 ± 0.03	0.79 ± 0.04	.634
10 ⁻⁶	19	18	3	0.83 ± 0.09	0.83 ± 0.09	-
10-5	35	35	6	0.89 ± 0.05	0.83 ± 0.07	-
10-4	- 59	59	14	0.81 ± 0.05	0.72 ± 0.07	-
>10-4	16	16	4	0.79 ± 0.11	0.79 ± 0.11	-

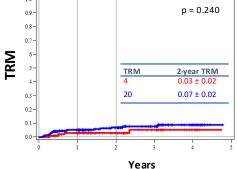
EFS

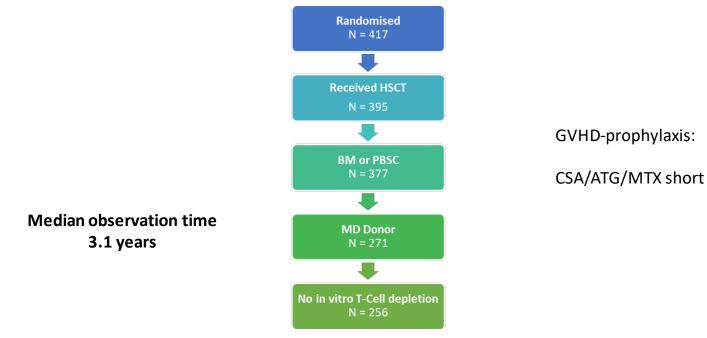


Years

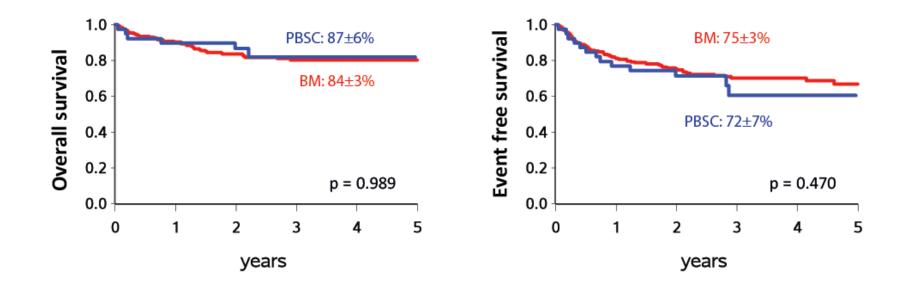

Events	2-year EFS	3-year EFS	P value
30	0.80 ± 0.04	0.74 ± 0.04	.375
5	0.71 ± 0.11	0.71 ± 0.11	-
8	0.77 ± 0.07	0.77 ± 0.07	-
20	0.69 ± 0.06	0.61 ± 0.07	-
6	0.68 ± 0.12	0.59 ± 0.13	-



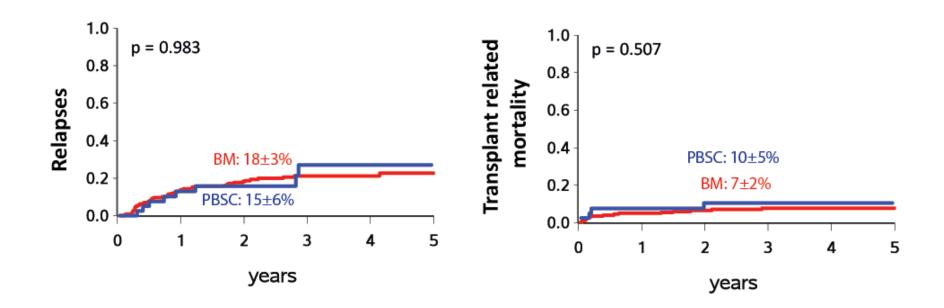

MSD/MD ≥4 Years, Randomised, Donor Type



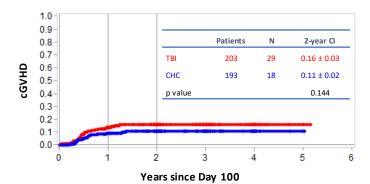
Research Question and Study Cohort

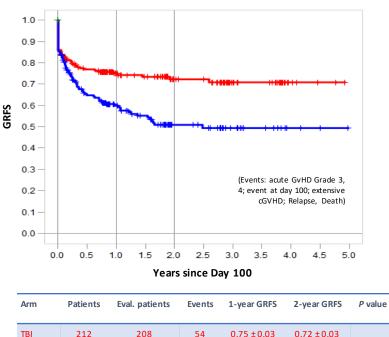

Impact of stem cell source PBSC vs BM from MUD on clinically relevant outcomes in randomized FORUM cohort?

Roland Meissel personal communication.



Outcome 1: Equivalent OS and EFS


Outcome 1: Equivalent CIR and TRM



MSD/MD ≥4 Years, Randomised, Acute and Chronic GVHD; GVHD Relapse-Free Survival

TBI CHC Grade 3.4 Grade 3.4 Grade Grade 2 24% 13% Grade Grade P = .5150,1 0,1 68% 77%

Chronic GVHD

87

 0.60 ± 0.04

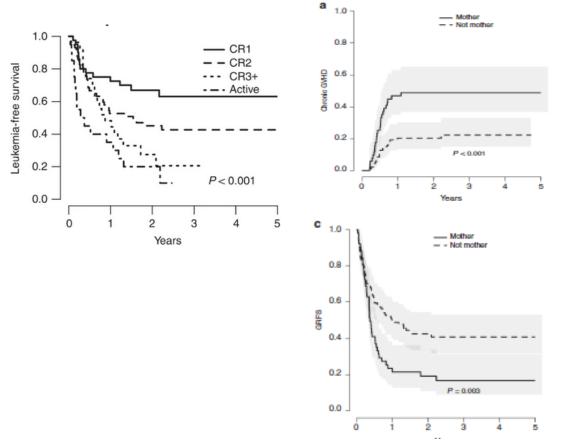
201

Chemo

198

GVHD-RFS

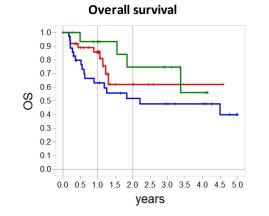
0.72 ±0.03 .000 0.51 ±0.04



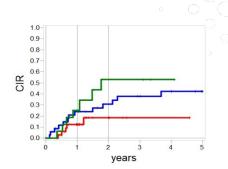
Multivariate Analysis

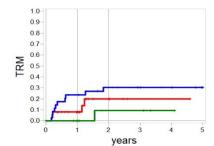
	OS (52 deaths/ 333 evaluable patients)		EFS (77 events/ 333 evaluable patients)		Relapses (59 events/333 evaluable patients)	
	HR (95% CI)	<i>P</i> value	HR (95% CI)	P value	HR (95% CI)	<i>P</i> value
Arm						
CHC vs TBI	3.1 (1.7–5.7)	.000	2.8 (1.7–4.6)	<.0001	2.5 (1.4–4.4)	.0001
Donor						
MSD vs MD	0.8 (0.4–1.4)	.385	0.8 (0.5–1.4)	.507	0.7 (0.4–1.1)	.122
Remission status (vs CR1)						
CR2	1.5 (0.8–2.7)	.208	1.7 (1.0–2.7)	.037	1.7 (1.0–3.1)	.057
CR3	0.7 (0.1–2.9)	.579	0.6 (0.2–2.2)	.483	0.3 (0.04–2.5)	.268
MRD						
Positive vs negative	1.4 (0.8–2.4)	.290	1.4 (0.9–2.3)	.119	1.4 (0.8–2.4)	.260
Age						
>10 years vs <10 years	1.8 (1–3.1)	.048	1.5 (1–2.4)	.080	1.5 (1–2.4)	.080
Immunophenotype (vs BCP)						
T-ALL	1.1 (0.5–2.3)	.897	0.8 (0.4–1.6)	.492	0.9 (0.4–1.9)	.708
Other	1.1 (0.1-8)	.958	0.6 (0.1-4.4)	.616	NA	_

HLA-Haploidentical Family Donors: The New Promise for Childhood ALL?




T-cell-depleted hHSCT	T-cell-replete hHSCT
 For a recipient with donor-specific anti-HLA antibodies, a donor without the corresponding HLA antigen is preferred (MFI <1,000) NK-cell alloreactive donor if available Younger donor over older donor A male donor for a male recipient First-degree relative over second-degree HLA-half-matched donor Between parent donors, mother is preferred over father ABO-matched donor CMV-seropositive recipient 	 For a recipient with donor-specific anti-HLA antibodies, a donor withou the corresponding HLA antigen is preferred (MFI <1,000) Younger donor over older donor A male donor for a male recipient Sibling or offspring donor ove parent donor Between parent donors, father is preferred over mother donor An ABO-matched donor is preferred to a minor ABO-mismatched donor and a minor ABO-mismatched donor First-degree relative over second degree HLA-half-matched dono (Beijing protocol) Donor with KIR ligand match (Beijing protocol) Donor with NIMA mismatch over NIPA mismatch (Beijing protocol)


Ab Rahman et al. Front Pediatr. 2021.


Rocha et al. BMT. 2021.

AlloHSCT From Mismatched Donors: n = 116 MMFD: n = 72, CB: n = 24, MMUD: n = 6

Conditioning	Patients	Events	2-yr OS	3-yr OS	P value	Events	2-yr EFS	3-yr EFS	P value
TBI/VP16	37	9	.62±.11	.62±.11	.203	10	.62±.11	$.62 \pm .11$.119
FLU/THIO/BU	35	17	$\textbf{.52} \pm \textbf{.09}$.48±.09		23	$.39 \pm .09$	$.32\pm.08$	
FLU/THIO/TREO	16	4	$.75\pm.13$	$.75\pm.13$		8	.38±.14	$.38 \pm .14$	

Peters, personal communication.

Peter Bader Franco Locatelli Study Committee **National Coordinators** Participating centres MARVIN data base Ulli Pötschger Helga Annadotier Paulina Kurzmann Jenny Glogowa Data Safety Monitoring Board Data managers

Tijana Frank

Danke

St. Anna kinderspital

Which pediatric patients are NOT candidates for allogeneic HSCT?

- 1. Children below 1 year of age and any *KMT2A* rearrangement
- 2. Patients not in complete morphological remission
- 3. Patients with T-ALL in second remission
- 4. Patients who received inotuzumab ozogamicin pre-transplant

Which pediatric patients are at high risk for post-transplant relapse?

- 1. Children with *BCRABL*+ rearrangement
- 2. Patients with high MRD-load at day +60 post-transplant
- 3. Patients transplanted from an unrelated donor
- 4. Patients with T-ALL

Patients who experience a very early B-precursor ALL post allogeneic HSCT should NOT receive following treatment option:

- 1. Immediate second allogeneic HCT with reduced conditioning regimen without remission induction
- 2. Blinatumomab
- 3. CAR T cells
- 4. Conventional chemotherapy + blina + CAR Ts + allo-HSCT

Case 2: Relapse/ Refractory ALL

Making the Impossible Possible

Part 1 – Relapse/Refractory Setting ALL

Global Leukemia Academy – Case Report

Hannah von Mersi and Anna Cvrtak

St. Anna Children's Hospital

Vienna, Austria

Pat. F. R. Initial Presentation 12/2017

- Female, 13 years
- Clinical presentation: lumbosacral and pelvic pain, pains in right lower extremity, recurrent fever, fatigue, nausea, and feebleness
- Patient history: trigeminal neuralgia (7/17), Lyme disease (ca. 2012)
- Laboratory results: WBC 3.41 G/L; ANC 0.89 G/L; L 1.84 G/L; Hb 9.3 g/dL; Plt 17,000 G/L; LDH 789U/L

- BCP-ALL (B-III with B-II subclone)
- Genetics: 46XX; del9p13; del21q22; suspected *IGH-DUX4* gene fusion
- CNS Status 2
- Treatment
 - According to AIEOP BFM 2009, HR-Group

Response and Treatment Adaptation

• Response

- Day 8: Good prednisolone response
- Day 15: Flow MRD 4.4% blasts
- Day 33: Flow MRD negative
- PCR MRD
 - Day 33 (TP1): 3 × 10⁻²
 - Day 78 (TP2): 7 × 10⁻³ \rightarrow Indication for HSCT
 - Before HR-2: 1 × 10⁻²
 - Before HR-3: 4 × 10⁻³
- Blinatumomab
 - PCR MRD after 14 days BLINA: 2 × 10⁻⁴

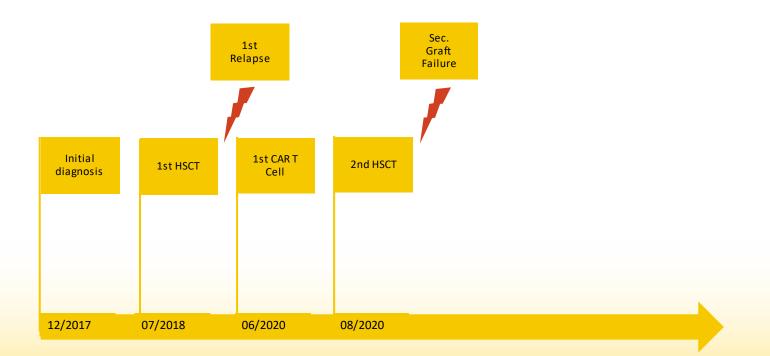
Initial diagnosis	1st HSCT	
12/2017	07/2018	

Global Leukemia Academy, 09/2022

- 9/10 HLA MUD
- 2.4 × 10⁶/kg CD34+ cells (BM)
- Conditioning: TBI 12 Gy + VP16
- Response
 - Day +28 after first HSCT: full donor chimerism

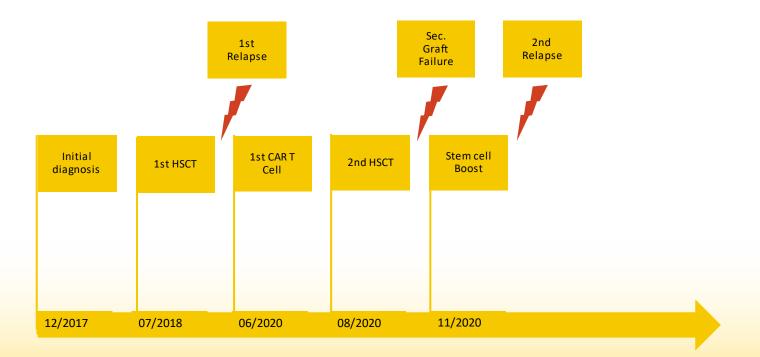
Global Leukemia Academy, 09/2022

First Relapse: Therapy


- 21 months after first HSCT
- Late isolated BM relapse
- Blast cell population: CD19+ and CD19– subclone
- Treatment
 - Dexamethasone pre-phase and Protocol Ib variant
 - CAR T cells (tisagenlecleucel [KYMRIAH[®]])
- Response
 - CD19+ subclone negative
 - CD19– subclone persistent (flow MRD 0.19% blasts, PCR-MRD 2 × 10³ blasts)

First Relapse: HSCT After CAR T Cells

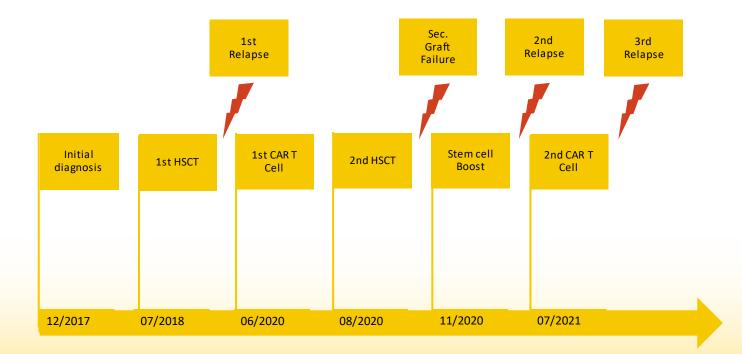
- Treatment following CAR T cells
 - Second HSCT (haploidentical mother) with reduced-toxicity conditioning with FLU/TREO/THIO
 - 3.0×10^6 /kg CD 34+; 38×10^6 CD3+
- Response
 - Day +28 after second HSCT
 - CD19+ negative, CD19– PCR-MRD 10⁻⁴
 - BM full donor chimerism
 - Day +90 after second HSCT
 - CD19+ negative, CD19– negative


Global Leukemia Academy, 09/2022

Secondary Graft Failure

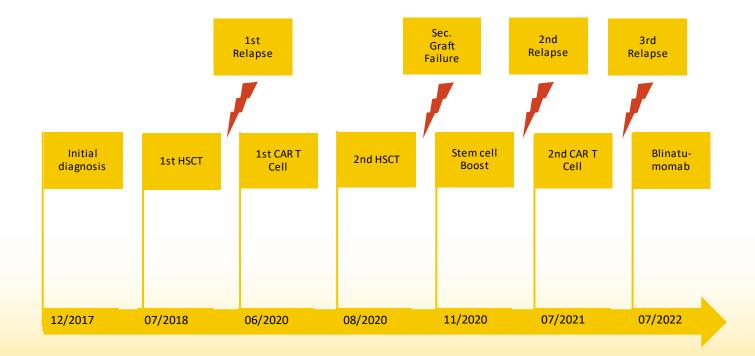
- Day +107 after second HSCT
- Treatment
 - Stem cell boost of haploidentical mother with alpha-/beta-depleted PBSC
 - 3.8 × 106/kg CD34+ cells
- Response
 - Good immunologic recovery
 - Complete donor chimerism

Global Leukemia Academy, 09/2022


Second Relapse

- 10 months after second HSCT
- Early isolated BM relapse
- Blast cell population: CD19+, CD22+, CD24+, CD10+, CD34+, CD20–, CD58–, CD11a–
- Treatment
 - Dexamethasone pre-phase, Protocol Ib variant
 - Second CAR T-cell reinfusion (tisagenlecleucel [KYMRIAH] new product)
- Response
 - Day +28 and +104 after CAR T-cell reinfusion; CR, flow MRD negative

Complications After Initial Treatment


Global Leukemia Academy, 09/2022

- 11 months after second HSCT
- Early isolated extramedullary relapse (lymphatic tissue in appendix vermiformis, multiple vertebral bone infiltration)
- Initially BM morphologically negative, flow MRD 0.07% blasts
- Treatment
 - 15 days of blinatumomab (initially 5 mg/m² for 4 days, then 15 mg/m²)
- Response
 - CR, flow MRD negative

St. Anna Children's Hospital

Andishe Attarbaschi Heidrun Boztug Michael Dworzak **Gernot Engstler** Anna Füreder Wolfgang Holter Anita Lawitschka **Roswitha Lüftinger Christina Peters** Herbert Pichler **Fiona Poyer** Natalia Zubarovskaya

Thank you!

Case 2 continued: Management of Infections & Toxicities

Anna Cvrtak & Hannah von Mersi

Making the Impossible Possible

Part 2 – Management of Infections and Toxicities

Global Leukemia Academy – Case Report

Anna Cvrtak and Hannah von Mersi

St. Anna Children's Hospital

Vienna, Austria

Complications After Initial Treatment

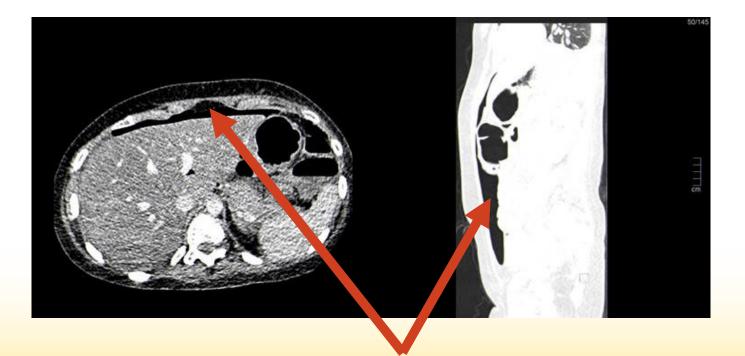
Global Leukemia Academy, 09/2022

Acute pancreatitis

- Asparaginase associated (first dose in Protocol Ia)
- Maximal values: amylase 983 U/L; lipase 1557 U/L
- Initial conservative treatment
- Pain exacerbation despite continuous infusion of morphine and hemodynamic instability

Which Differential Diagnosis Has to Be Considered at This Timepoint?

1. Sepsis


- 2. Gastrointestinal perforation
- 3. Necrotizing pancreatitis

4. lleus

5. All listed answers have to be considered

Complications After Initial Treatment

Global Leukemia Academy, 09/2022

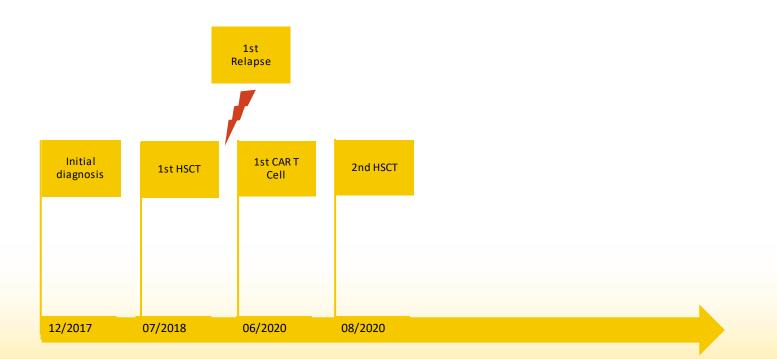
Complications After Initial Treatment

- Suspected acute pancreatitis with gastric perforation
- Explorative laparoscopy: ulcus perforans
- Surgical treatment, antibiotics

Complications After First HSCT

Initial diagnosis	1st HSCT	1st HSCT
12/2017	07/2018	07/2018

Acute GvHD (skin IV°)


- Start day +18 after HSCT, initially III°
- Histologic confirmation by biopsy
- Start of systemic steroid treatment (2 mg/kg/d) on day +21; good response
- Flare-up of GvHD after gradual reduction of steroid dose on day +34
- Increase of steroid dose and initiation of ECP

BK polyomavirus – associated hemorrhagic cystitis

- Associated with immunosuppression due to acute GvHD (steroid, calcineurin inhibitor)
- Initially increase of BK in urine followed by BK viremia (maximal value 10⁸ co./mL)
- Treatment: cidofovir, fluid substitution
- Development of chronic kidney failure due to treatment toxicity in combination with leukemia treatment

Complications After Second CAR T-Cell Therapy

Global Leukemia Academy, 09/2022

Clinical presentation

- Blurred vision
- Cephalea
- Progression of left orbital swelling

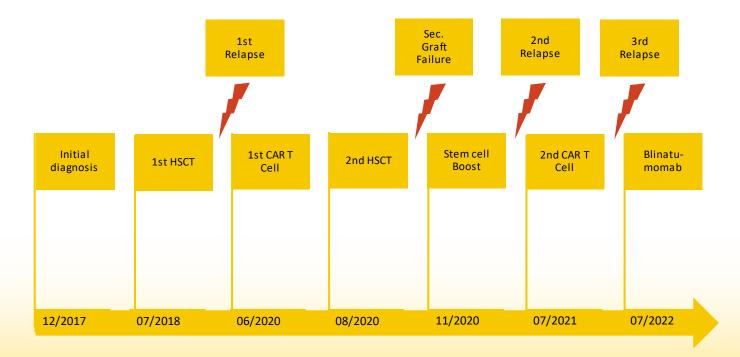
Which differential diagnosis has to be considered at this timepoint? (OPEN DISCUSSION)

Which Differential Diagnosis Has to Be Considered at This Timepoint?

Possible differential diagnosis

- Sepsis
- Sinus venous thrombosis
- Relapse
- Infection (bacterial/fungal)
- Drug toxicity
- Bleeding

Complications After Second CAR T-Cell Therapy


Global Leukemia Academy, 09/2022

Invasive fungal infection of left paranasal sinus involving left orbit and left optic nerve

- Endoscopic inspection and surgical treatment
- Detection of Aspergillus fumigatus in all samples
- Treatment with caspofungin and isavuconazole, granulocyte transfusions, stem cell boost
- Improvement of symptoms; culture and PCR negative

Global Leukemia Academy, 09/2022

- Chronic kidney disease, no indication of dialysis at the moment
- Loss of vision in left eye
- Continuous antifungal treatment with isavuconazole
- Cachexia
- Overall good quality of life

St. Anna Children's Hospital

Andishe Attarbaschi Heidrun Boztug Michael Dworzak **Gernot Engstler** Anna Füreder Wolfgang Holter Anita Lawitschka **Roswitha Lüftinger Christina Peters** Herbert Pichler **Fiona Poyer** Natalia Zubarovskaya

Thank you!

Session Close

Franco Locatelli

Which of the following subsets of first-relapse ALL patients can be considered as very high risk?

- 1. All patients with B-ALL relapsing within 18 months from diagnosis
- 2. All patients with hypodiploidy
- 3. All patients with t(17;19) or t(1;19)
- 4. Each of the 3 previous subsets

Which assertion is correct for children with B-ALL?

- 1. Inotuzumab is approved by EMA for induction treatment of relapsed B-ALL in childhood
- 2. Inotuzumab recommended dosage is 3 mg/m²
- 3. Blinatumomab is approved for consolidation treatment before HSCT in children with high-risk first relapse B-ALL
- 4. None of the patients experiencing relapse later than 6 months after treatment discontinuation should be transplanted

Closing Remarks

Franco Locatelli

Thank you!

- > Thank you to our sponsors, expert presenters, and to you for your participation
- > Please complete the **evaluation link** that will be sent to you via chat
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website in our Ask the Experts section

THANK YOU!

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

