

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 24 September 2022

Virtual Breakout: Adult AML

APTITUDE HEALTH

Welcome and Meeting Overview

Gail J. Roboz and Naval Daver

APTITUDE HEALTH

FACULTY

Gail J. Roboz, MD Weill Cornell Medicine and New York-Presbyterian Hospital, USA

CO-CHAIR

Naval Daver, MD MD Anderson Cancer Center Houston, TX, USA

CO-CHAIR

Agnieszka Wierzbowska, MD, PhD Medical University of Lodz, Poland

Virtual Breakout – AML Sessions (Day 2)

24 September 2022, 14.30 - 17.15 CEST

Chairs: Dr Gail J. Roboz/Dr Naval Daver

Time (CEST)	Title	Speaker			
14.30 – 14.40	Session Open ARS questions 	Gail J. Roboz and Naval Daver			
14.40 – 15.00	 Personalized Induction and Maintenance Approaches for AML Novel therapies and insights about their optimal utilization 	Gail J. Roboz			
15.00 – 15.25	 Fit and Unfit AML Patients: How Do We Distinguish? How Do We Treat Differently? Assessment of patient fitness to maximize therapy 	Agnieszka Wierzbowska			
15.25 – 16.05	 AML Case-Based Panel Discussion Relapsed/Refractory Case 1 Relapsed/Refractory Case 2 	Moderators: Gail J. Roboz and Naval Daver Agnieszka Pluta Anna Torrent All faculty			
16.05 – 16.15	Break				
16.15 – 16.40	 Optimizing Management of Relapsed/Refractory AML Optimal use of treatment choices in relapsed/refractory AML 	Naval Daver			
16.40 – 17.05	Interactive Discussion: Treatment Landscape Evolution Interactive discussion and Q&A 	Moderators: Gail J. Roboz and Naval Daver All faculty			
17.05 – 17.15	Session Close ARS questions	Gail J. Roboz and Naval Daver			

What age group is considered elderly AML patients?

- **1**. ≥50 years
- 2. ≥55 years
- 3. ≥60 years
- **4**. ≥65 years
- **5**. ≥70 years

Which of the following factors are important in assessing AML patients at diagnosis? Select all that apply.

- 1. Adverse genetic alterations
- 2. Age
- 3. Comorbidities
- 4. Performance status
- 5. Prior cytotoxic therapy
- 6. Prior myelodysplasia

Which of the following is not true regarding HMA + venetoclax in AML?

- 1. The CR/CRi with HMA+VEN in the VIALE-A was >65%
- 2. HMA+VEN improved median OS compared with HMA alone
- 3. Lab or clinical TLS is not seen with HMA+VEN in AML
- The recommended daily dose of venetoclax (without azoles) was 400 mg PO Qday in VIALE-A study
- 5. Neutropenia is commonly seen with HMA+VEN regimen

Personalized Induction and Maintenance Approaches for AML

Gail J. Roboz

Personalized Induction and Maintenance Approaches for AML

Global Leukemia Academy

Sept 2022

Gail J. Roboz, M.D.

Professor of Medicine Director, Clinical and Translational Leukemia Programs

DISCLOSURES OF COMMERCIAL SUPPORT

 Consultancy: AbbVie, Actinium, Agios, Amgen, Astellas, AstraZeneca, Bluebird Bio, Blueprint Medicines, Bristol Myers Squibb, Celgene, Glaxo SmithKline, Janssen, Jasper Therapeutics, Jazz, MEI Pharma (IDMC Chair), Mesoblast, Novartis, Pfizer, Syndax, Takeda (IRC Chair)

- NewYork-Presbyterian

Research Support: Janssen

2022 European LeukemiaNet (ELN) risk classification by genetics at initial diagnosis

Risk Category [♭]	Genetic Abnormality		
Favorable	 t(8;21)(q22;q22.1)/RUNX1::RUNX1T1^{b,c} inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11^{b,c} Mutated NPM1^{b,d} without FLT3-ITD bZIP in-frame mutated CEBPA^e 		
Intermediate	 Mutated NPM1^{b.d} with FLT3-ITD Wild-type NPM1 with FLT3-ITD t(9;11)(p21.3;q23.3)/MLLT3::KMT2A^{b,f} Cytogenetic and/or molecular abnormalities not classified as favorable or adverse 		
Adverse	 t(6;9)(p23;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged⁹ t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11;p13)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,^h monosomal karyotypeⁱ Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2ⁱ Mutated TP53^k 		

Dohner et al. Blood. 2022. Jul7;blood.2022016867.

- NewYork-Presbyterian

doi: 10.1182/blood.2022016867.

Weill Cornell Medicine

Evolving diagnostic and treatment paradigm for Newly Diagnosed AML

Personalized therapy in AML requires...

A long, detailed discussion with the patient

Based on the disease biology, what's the best treatment and can the patient handle it?

Are there equivalent "best" options?

How do we get the patient through treatment?

Location, logistics, caregivers, availability of medications

Predicted issues with comorbid conditions (e.g. Ferrara criteria) and concomitant medications

- NewYork-Presbyterian

Consideration of how long it will take to achieve remission/response

But, at the end of the day.... In the non-MDACC Real World...

- Can the patient handle anthracycline-based induction, or not?
- If yes, is there a specific reason why you don't want to give it?
 5 TP53 mutations

- NewYork-Presbyterian

- daughter's wedding in two weeks
- another treatment is "just as good, but easier"
- other

Phase 3 Double-blind Study of Chemotherapy + Midostaurin or Placebo in Patients ≤60 Years of Age With Newly Diagnosed FLT3-Mutated AML (RATIFY)

Stone RM, et al. N Engl J Med. 2017;377:454–64.

Weill Cornell Medicine

RATIFY met its primary endpoint: addition of midostaurin to 7+3 improved overall survival

IDH inhibitors + intensive chemotherpy

Gemtuzumab Ozogamicin¹

1. FDA. MYLOTARG® (gemtuzumab ozogamicin). Available from:

https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/OncologicDrugsAdvisoryCommittee/UCM567370.pdf Accessed 13 May 2020

2. FDA. FDA Approves Gemtuzumab Ozogamicin for CD33-positive AML. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-

approves-gemtuzumab-ozogamicin-cd33-positive-aml Accessed 13 May 2020

*This does not include the full indication or risk profile

ALFA-0701 (MyloFrance3): Phase 3 Study Design

a. 3+7 DA=Daunorubicin 60 mg/m² Days 1 to 3 + Cytarabine 200 mg/m² Days 1 to 7 b. Daunorubicin 60 mg/m² Day 1 + Cytarabine 1 g/m²/12h Days 1 to 4 c. Daunorubicin 60 mg/m² Day 1 and 2 + Cytarabine 1 g/m²/12h Days 1 to 4 DA=Daunorubicin+Cytarabine <u>Primary endpoint</u>: EFS <u>Secondary endpoints</u>: RFS, OS, safety

FDA. MYLOTARG[®] (gemtuzumab ozogamicin). Available from:

https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/OncologicDrugsAdvisoryCommittee/UCM567370.pdf Accessed 13 May 2020 Lambert J, et al. Haematologica 2019;104:113–9

ALFA-0701: Event-free survival (primary endpoint)

Adapted from Lambert et al. 2019

Modified intention-to-treat population; Data cut-off date: 1 August 2011

CI, confidence interval; GO, gemtuzumab ozogamicin; HR, hazard ratio

Lambert J et al. Haematologica 2019;104:113-119

Gemtuzumab Ozogamicin in AML Induction Therapy: Meta-analysis of 5 Randomized Trials

CBF AML >60 years

Am J Hematol;2022 Aug 26. doi:10.1002/ajh.26700.

Prebet et al. J Clin Oncol. 2009 Oct1;27(28):4747-53. doi: 10.1200/JCO.2008.21.0674.

Even more intensive...

FLAG-IDA+Venetoclax CIIA + Venetoclax (A) Event-Free Survival (B) **Overall Survival** А Group + All patients Group 🕂 All patients 100-100% 100% 90 90 Ϊţ (%) rival probability 80. 80 -70 -60 -50 -40 -30 -20 -75% 75% Overall survival (%) rival probab survival 70. 50% 50% 60-25% 25% 50. 40 -30 -20 -09 Event-fre 18 Months 24 30 36 18 Months 24 30 Number at risk Number at risk 10. 10 All patients 45 0 All patients 45 25 20 12 18 24 24 Overall Survival Overall Survival ELN Adverse-Risk (C) (D) Time from enrolment (months) Time from enrolment (months) Group - ELN Favorable - ELN Intermediate - ELN Adverse Group - TP53 Mutated - TP53 Wild-type Number at risk 100% 100% (number censored) the statistic states are a probabilit 75% 75% All 50(0) 35 (11) 24 (20) 13(28) 1(40)50(0) 35 (11) 19(19) 12 (26) 1(37)Survival prot 50% 50% 25% 25% p = 0.56p = 0.020% 0% 12 18 24 30 36 12 18 24 30 36 Months Time Number at risk Number at risk ELN Favorable 8 0 TP53 Mutated ELN Intermediate 18 15 11 0 5 -3 TP53 Wild-type ELN Adverse 19 17 10 3 2

DiNardo et al. Am J Hematol. 2022 Aug;97(8):1035-1043. doi: 10.1002/ajh.26601. Epub 2022 May 30.

Kadia et al. Lancet Haematol. 2021 Aug;8(8):e552-e561.

Results of VIALE-A : Azacitidine <u>+</u> venetoclax

Significant OS improvement with azacitidine + venetoclax (Med OS 14.7 vs 9.6 mos)

CR rate: 36.7% vs 17.9% (*P* < .001) CR/CRi rate: 66.4% vs 28.3% (*P* < .001)

Improved responses occurred independent of high-risk biology

DiNardo C, et al. N Engl J Med. 2020;383:617-629.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Place video here

Comparing Outcomes between Liposomal Daunorubicin/Cytarabine (CPX-351) and Hypomethylating agent+Venetoclax (HMA+V) As Frontline Therapy in Acute Myeloid Leukemia

Justin Grenet, MD¹, Akriti G Jain, MD², Madelyn Burkart, MD^{3*}, Julian Waksal, MD⁴, Christopher Famulare, MS^{5*}, Yazan Numan, MD³, Maximilian Stahl, MD⁴, Zoe Mckinnell, MD^{4*}, Brian Ball, MD⁴, Xiaoyue Ma, MS^{6*}, Paul J Christos, Dr.P.H., M.S.^{6*}, Ellen Ritchie, MD⁷, Michael B. Samuel, MD^{8*}, Justin D. Kaner, MD⁸, Sangmin Lee, MD⁹, Aaron D Goldberg, MD, PhD⁴, Shira Dinner, MD³, Kendra Sweet, MD², Gail J. Roboz, MD⁸ and **Pinkal Desai, MD, MPH⁹**

¹New York-Presbyterian/Weill Cornell Medical Center, New York, NY
 ²H. Lee Moffitt Cancer Center, Tampa, FL
 ³Division of Hematology Oncology, Northwestern University, Chicago, IL
 ⁴Memorial Sloan Kettering Cancer Center, New York, NY
 ⁵Department of Population Health Sciences, Weill Cornell Medical College, New York, NY
 ⁶Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY

We conducted a large real-world, multicenter retrospective chart review

- Four large academic centers: MSKCC, Northwestern, Moffitt, Cornell
- A real-world analysis of patient characteristics and outcomes in older AML patients receiving either CPX-351 or HMA+V as frontline therapy
- Primary outcomes: response rate (CR+CRi), relapse free survival (RFS), and overall survival (OS)
- Analyses were conducted for overall population (ages 34-93 yrs) and ages 60-75 yrs
- Most overlap of both treatment groups happened in the age group of 60-75 yrs with very few <60 getting HMA+V and very few >75 getting CPX-351
- Subgroup analyses: TP53, Adverse ELN Risk, Prior myeloid malignancy, prior HMA therapy

60-75 yrs: No significant difference in OS

 Kaplan Meier curve for OS in 60-75yo (excluded 7 patients from CPX-351 group due to long follow up >40mo; excluded 3 from HMA+V group due to missing dates)

Place video here

<u>CR+CRi, 60-75yo</u> CPX-351: 59.2% HMA+V: 54.0% **p = 0.41**

<u>Total "n" and HSCT rates, 60-75yo</u> CPX-351: n = 152 (47.7% underwent HSCT) HMA+V: n = 100 (19% underwent HSCT) **p <0.001**

Multivariable analyses, 60-75yo only

Hazard ratio (95% CI)

0.802 (0.570, 1.127)

0.991 (0.684, 1.436)

0.395 (0.191, 0.820)

0.656 (0.414, 1.038)

0.682 (0.314, 1.480)

0.735 (0.506, 1.067)

CPX-351

2.0

HMA+V

Hazard Ratio

P value

0.204

0.96

0.013

0.072

0.333

0.105

60-75yo only CPX-351: n = 152 (47.7% underwent HSCT) HMA+V: n = 100 (19% underwent HSCT) p <0.001

*Multivariable analysis adjusted for age, ELN risk, prior myeloid malignancy, and prior HMA therapy

- No significant difference in OS in 60-75yo only, despite more than double the rate of HSCT in CPX-351 cohort
- No significant difference in OS in 60-75yo, censoring for HSCT

Higher OS in TP53 positive patients treated with CPX-351

No significant difference in OS between cohorts for additional three subgroups: prior myeloid malignancy, prior HMA use, adverse ELN risk

Overall Survival for Age 60-75

Overall

No HSCT

TP53 status

Prior HMA use

ELN adverse

Prior Myeloid Malignancy

Place video here

Other groups concur...

Matthews et al. Blood Adv (2022) 6 (13): 3997-4005.

Asghari et al. bloodjournal Blood (2019) 134 (Supplement_1) : 3895. http://doi.org/10.1182/blood-2019-130379

Weill Cornell Medicine

- NewYork-Presbyterian

Survival of the Fittest: Hypomethylating Agent/BCL-2 Inhibitor Combination Versus Intensive Chemotherapy As Frontline Treatment for Acute Myeloid Leukemia (NCT04801797)

https://doi.org/10.1182/hem.V19.2.202228

Copyright © 2022 American Society of Hematology

Impact of Venetoclax and Azacitidine in Treatment-Naïve Patients with Acute Myeloid Leukemia and IDH1/2 Mutations

Clin Cancer Res. 2022;28(13):2753-2761. doi:10.1158/1078-0432.CCR-21-3467

Copyright © 2022 American Association for Cancer Research. All rights reserved.

Ivosidenib in Untreated *IDH1-*Mutated AML: Duration of Treatment and Best Overall Response

1. Roboz GJ. Blood. 2020;135:463. 2. Roboz GJ. ASH 2018. Abstr 561. Slide credit: clinicaloptions.com

Ivosidenib and Azacitidine in IDH1-Mutated AML

Weill Cornell Medicine d'NewYork-Presbyterian

Montesinos et al. N Engl J Med.2022 Apr 21;386(16):1519-1531.

Practical Management of Azacitidine and Venetoclax

Pratz et al. Am J Hematol. 2022 Aug 30. doi:10.1002/ajh.26692

Weill Cornell Medicine

- NewYork-Presbyterian

QUAZAR AML-001: Study design and eligibility criteria

International, multicenter, placebo (PBO)-controlled, double-blind, randomized, phase III trial of Oral AZA as maintenance Tx for patients with AML in first remission (NCT01757535)

PRE-RANDOMIZATION RA	ANDOMIZATION		RANDOMIZED T	TREATMENT	Γ PHASE			
 Key eligibility criteria: First CR/CRi with IC ± consolidation Age ≥55 years De novo AML or AML secondary to MDS/CMML ECOG PS score 0-3 Intermediate- or poor- risk cytogenetics Not candidate for HSCT ANC ≥0.5 ×10⁹/L Platelets ≥20 ×10⁹/L 	A Randomization Vithin 4 months days) from CR/CRi Fified by: e: $6-64 / \ge 65$ years for MDS/CMML: es / No togenetic risk: termediate / Poor nsolidation: es / No	Oral AZA 300 mg QD × 14 Days 28-day cycles Placebo QD × 14 Days	BM Aspirate / Response Assessment Every 3 Cycles	CR/CRi 5%-15% M Blasts >15% M Blasts	(Optional) Oral AZA/PBO- × 21 Days ↓ Stop Treatment	Continue Treatment	End of Study	

^aPatients were followed until death, withdrawal of consent, study termination, or loss to follow-up.

AML, acute myeloid leukemia; ANC, absolute neutrophil count; AZA, azacitidine; BM, bone marrow; CMML, chronic myelomonocytic leukemia; CR, complete remission; CRi, CR with incomplete blood count recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HRQoL, health-related quality of life; HSCT, hematopoietic stem cell transplant; IC, induction chemotherapy; IWG, International Working Group; MDS, myelodysplastic syndromes; PBO, placebo.

QUAZAR AML-001: OS

Slide credit: clinicaloptions.com

CO
Oral azacitidine prolongs survival of patients with AML in remission independent of measurable residual disease status

Roboz et al. Blood. 2022 Jan 7:blood.2021013404. doi: 10.1182/blood.2021013404.

Personalized medicine should not be anecdotal medicine.

We must continue to enroll AML patients onto clinical trials, but large trials in all subgroups are not feasible.

Real-world data are becoming increasingly important and we must all work to facilitate high-quality collaborations.

- NewYork-Presbyterian

The Weill Cornell – NY Presbyterian Leukemia Program

- Gail J. Roboz, M.D.
- Ellen K. Ritchie, M.D.
- Pinkal Desai, M.D.
- Michael Samuel, M.D.
- Justin Kaner, M.D.
- David Helfgott, M.D.
- Tania Curcio, N.P.
- Natalie Tafel, P.A.
- Adomah Sakibia Opong, N.P.
- Victoria Mendez, R.N
- Rookmimi Singh, R.N.
- Maureen Thyne, P.A.
- Jill M. Kleczko, MPA, CCRP
- Abeer Elshewehy, BDS, CCRC
- Niamh Savage, BS

WCM Laboratory Collaborators:

- •Monica Guzman, Ph.D.
- •Olivier Elemento, Ph.D.
- Christopher Mason, Ph.D.
- Ari Melnick, M.D.

Discussion

Fit and Unfit AML Patients: How Do We Distinguish? How Do We Treat Differently?

Agnieszka Wierzbowska

Fit and Unfit AML Patients: How Do We Distinguish? How Do We Treat Differently? Assessment of patient fitness to maximize therapy

Agnieszka Wierzbowska

Would you consider this patient fit for intensive treatment?

- A. Yes
- B. No
- C. I do not know
- D. Need more data

- 64, female
- t-AML
- ECOG PS: 1
- brest cancer history 2019 (Tx, sugery)
- ECHO ejection fraction: 52%

Blood test at diagnosis	
WBC	91.29 × 10 ⁹ /L
Hgb, g/L	7.6 g/dL
Platelet count	124 × 10 ⁹ /L
Blast, %	88%

Fictitious patient case created by the speaker for educational purposes only.

Would you consider this patient fit for intensive treatment?

- A. Yes
- B. No
- C. I do not know
- D. Need more data

- 67, female, retired teacher
- AML, no prior myelodysplasia
- ECOG PS 1
- CAD, hypertension, diabetes, serum creatinine 1.2 mg/dL, hypercholesterolemia, hyperuricaemia, psoriasis, GERD, hypothyroidism
- ECHO ejection fraction: 55%

Blood test at diagnosis

WBC	3.29 × 10 ⁹ /L
Hgb, g/L	8.6 g/dL
Platelet count	24 × 10 ⁹ /L
Blast, %	34%

Would you consider this patient fit for intensive treatment?

- A. Yes
- B. No
- C. I do not know
- D. Need more data

- 70, male, smoker
- AML, no prior myelodysplasia
- ECOG PS: 2
- COPD (FEV₁ 78%), peptic ulcer requiring treatment
- ECHO ejection fraction: 52%

Blood test at diagnosis	
WBC	27.1 × 10 ⁹ /L
Hgb, g/L	9.2 g/dL
Platelet count	88 × 10 ⁹ /L
Blast, %	61%

Fictitious patient case created by the speaker for educational purposes only.

Fit or unfit?

What factors define "fitness" for intensive Tx?

How to select therapeutic approach AML in elderly patients?

Selection of the appropriate therapeutic approach should be based on patient-specific factors and biological markers of disease predictive of response

Criteria for patients considered not eligible for intensive chemotherapy

ACCI, Charlson comorbidity index; ELN, European LeukemiaNet; HCT-CI, hematopoietic cell transplantation-comorbidity index; MMSE, Mini-Mental State Examination; Short Physical Performance Battery (SPPB)

Döhner H, et al. Blood. 2017;129(4):424-447.

^{30-day} mortality rate after induction therapy

Impact of age and performance status

*Note that patients <56 years received more aggressive chemotherapy than older patients, making comparisons between patients younger and older than 56 years difficult.

N/A, not applicable.

1. Appelbaum FR, et al. Blood 2006;107:3481-3485; 2. Juliusson G, et al. Blood. 2009;113:4179-4187.

Criteria for patients considered not eligible for intensive chemotherapy

Performance status (ECOG>2)

Comorbidities?

ACCI, Charlson comorbidity index; ELN, European LeukemiaNet; HCT-CI, hematopoietic cell transplantation-comorbidity index; MMSE, Mini-Mental State Examination; Short Physical Performance Battery (SPPB)

Döhner H, et al. Blood. 2017;129(4):424-447.

Comorbid conditions^{1,2}

Comorbidity	Definition	Score
Arrhythmia	Atrial fibrillation, sick sinus syndrome, ventricular arrhythmias	1
Cardiac	Coronary artery disease, congestive heart failure, myocardial infarction, or ejection fraction <50%	
Inflammatory bowel disease	Crohn's disease or ulcerative colitis	
Diabetes	Requiring treatment with insulin or oral hypoglycemics but not controlled with diet alone	
Cerebrovascular accident	Transient ischemic attack or cerebrovascular accident	1
Psychiatric disturbance	Depression/anxiety requiring psychiatric consult and/or treatment at the time of HCT	
Hepatic, mild	Chronic hepatitis, bilirubin > ULN to 1.5× ULN, or AST/ALT > ULN to 2.5× ULN	1
Obesity	Patients with body mass index >35 mg/m ² for adults or with BMI-for-age percentile of \geq 95th percentile for children	1
Infection	Documented infection or fever of unknown etiology requiring antimicrobial treatment before, during, and after the start of conditioning regimen	1
Rheumatologic	Systemic lupus erythematosus, rheumatoid arthritis, polymyositis, mixed connective tissue disease, or polymyalgia rheumatic	2
Peptic ulcer	Requiring treatment	2
Moderate/severe renal	Serum creatinine >2 mg/dL, on dialysis, or prior renal transplantation	2
Moderate pulmonary	DLCO and/or FEV ₁ 66%–80% or dyspnea on slight activity	2
Prior solid malignancy	Treated at any time point in the patient's past history, excluding nonmelanoma skin cancer	
Heart valve disease	Except asymptomatic mitral valve prolapse	3
Severe pulmonary	DLCO and/or FEV ₁ ≤65%, or dyspnea at rest, or requiring oxygen	3
Moderate/severe hepatic	Liver cirrhosis, bilirubin >1.5× ULN, or AST/ALT >2.5× ULN	3

Risk	HCT-CI score	ED (%)		N (\	Me OS (weeks)	
Low	0		3		45	
Intermediate	1–2	_	11		31	
High	>2		29	7	19	

iffusing capacity of the lungs for carbon cell transplantation-comorbidity index; Me

Fit or unfit for intensive chemotherapy?

- 64, female
- t-AML
- ECOG PS: 1
- brest cancer history 2019 (Tx,sugery)
- ECHO ejection fraction: 52%

- 67, female, retired teacher
- AML, no prior myelodysplasia
- ECOG PS 1
- CAD, hypertension, diabetes, serum creatinine 1.2 mg/dL, hypercholesterolemia, hyperuricaemia, psoriasis, GERD, hypothyroidism
- ECHO ejection fraction: 55%

- 70, male, smoker
- AML, no prior myelodysplasia
- ECOG PS: 2
- COPD (FEV₁ 78%), peptic ulcer requiring treatment
- ECHO ejection fraction: 52%

^Criteria for unfitness to intensive chemotherapy

Unfitness defined for at least 1 of 9 criteria

1. Age ≥75 years

2. Congestive heart failure or cardiomyopathy with EF \leq 50%

3. Pulmonary disease with DLCO ≤65% or FEV1 ≤65% or dyspnea at rest or requiring oxygen, or any pleural neoplasm or uncontrolled lung neoplasm

4. On dialysis and age ≥60 yr or uncontrolled renal carcinoma

5. Liver cirrhosis Child B or C or documented liver disease with AST/ALT >3 UNL and age >60 years or any biliary tree carcinoma or uncontrolled liver carcinoma or acute viral hepatitis

6. Active infection resistant to anti-infective therapy

7. Current mental illness requiring psychiatric hospitalization, institutionalization, or intensive outpatient management or cognitive dependence status not controlled by the caregiver

8. ECOG ≥3 not related to leukemia

9. Any other comorbidity judged incompatible with conventional intensive chemotherapy

The Ferrara criteria provide a useful tool to predict early mortality after intensive AML chemotherapy

Accuracy of SIE/SIES/GITMO consensus criteria for unfitness to predict early mortality after intensive chemotherapy in adults with AML or other high-grade myeloid neoplasm

Criteria that have been commonly used in the context of clinical trials

Patient not eligible for intensive chemotherapy:

- Age ≥75 years of age or
- ECOG performance status >2; and / or
- age-related comorbidities, such as severe cardiac disorder (eg, congestive heart failure requiring treatment, ejection fraction ≤ 50%, or chronic stable angina); severe pulmonary disorder (eg, DLCO ≤ 65% or FEV1 ≤ 65%); creatinine clearance < 45 mL/min; hepatic disorder with total bilirubin >1.5 time the upper limit of normal;
- any other comorbidity that the physician assesses to be incompatible with intensive chemotherapy.

Criteria for patients considered not eligible for intensive chemotherapy

ACCI, Charlson comorbidity index; ELN, European LeukemiaNet; HCT-CI, hematopoietic cell transplantation-comorbidity index; MMSE, Mini-Mental State Examination; Short Physical Performance Battery (SPPB)

Döhner H, et al. Blood. 2017;129(4):424-447.

Performance status – SPPB (short physical performance battery)

SPPB			
Test	Instructions	Scoring	
Chair stand test	Have patient cross their arms across their chest and stand from a seated position without the use of their arms five times, as quickly as they can. Measure the time this takes the patient	<11.19 s 11.20–13.69 s 13.70–16.69 s >16.7 s Unable to complete	= 4 = 3 = 2 = 1 = 0
Gait speed test	Measure the time required for the patient to walk 4 m at a normal pace (best out of two attempts)	<4.82 s 4.82–6.20 s 6.21–8.70 s >8.70 s Unable to complete	= 4 = 3 = 2 = 1 = 0
Balance tests			
Side- by-side stand	Have patient stand with their feet together for 10 s	Able to complete Unable to complete (and do not proceed to semi-tandem or tandem stands)	= 1 = 0
Semi- tandem stand	Have patient stand with their feet staggered for 10 s	Able to complete Unable to complete (and do not proceed to tandem stand)	= 1 = 0`
Tandem stand	Have patient stand with one foot directly in front of the other for as long as possible (up to 10 s)	10 s 3–9 s <3 s	= 2 = 1 = 0

AML, acute myeloid leukaemia; ECOG, Eastern Cooperative Oncology Group performance status. Klepin H, et al. J Am Geriatr Soc. 2011;59(10):1837–46. Klepin H, et al. Blood 2013;21:4287–94

Interpretation

- Objective measure of physical performance
- Predicts future disability, hospitalisations, and mortality
- Scores range 0–12
- Score of 12 represents the most physically fit patient
- An association between lower SPPB score and increased risk of death
 - AML >60 years undergoing intensive induction Tx
 - EGOG PS of 0-1

Influence of SPPB score on OS in elderly AML

SPPB is a valuable tool to further risk-stratify those patients with good ECOG PS who may have a lower functional reserve

AML, acute myeloid leukaemia; SPPB, short physical performance battery; OS, overall survival; PS, performance status. Klepin H, et al. *Blood* 2013;21:4287–94

Cognitive function assessmet

100-point modified Mini-Mental State (3MS) exam

Pretreatment cognitive impairment may increase the risk of complications during and after intensive therapy for AML

AML, acute myeloid leukaemia; OS, overall survival. Klepin H, et al. *Blood* 2013;21:4287–94 Prognostic models based on performance status, comorbidity assessment, and cognitive assessment

Evolving criteria for fitness in older adults with AML

Risk category	Patient characteristics
Frail	ECOG PS ≥3 Impaired activities of daily living Major comorbidity (CCI or HCT-CI >1)
Vulnerable	ECOG PS <3 with no major comorbidity Impaired objectively measured physical function (SPPB <9) Impaired cognition (modified mini-mental state score <77)
Fit	Absence of all above risk factors

GA methods, with a focus on cognitive and physical function, improve risk stratification and may inform interventions to improve outcomes for older AML patients

AML, acute myeloid leukaemia; CCI, Charlson comorbidity index; ECOG PS, Eastern Cooperative Oncology Group performance status; GA, geriatric assessment; HCT-CI, hematopoietic cell transplantation-specific comorbidity index; SPPB, short physical performance battery.

Klepin HD. Hematology ASH Educ Program (2014). 2014(1):8–13.

Summary 1

- Fitness refers to a comprehensive evaluation of age, performance status, comorbidities, and functional capacity.
- Age alone should not be the decisive determinant to guide therapy.
- For patients older than 75 years, eligibility to intensive chemotherapy should be evaluated very carefully but age ≥ 75 years should not represent an absolute contraindication to intensive chemotherapy
- There are no generally accepted or validated criteria to consider a patient ineligible for intensive chemotherapy

Physician-effect on treatment decisions

Physicians' personalities contribute to treatment-related decisionmaking for elderly AML patients

Physician uncertainty aversion impacts medical decision making for older patients with acute myeloid leukemia: results of a national survey

Pierre Bories,^{1,2} Sébastien Lamy,^{3,4} Célestine Simand,⁵ Sarah Bertoli,² Cyrille Delpierre,³ Sandra Malak,⁶ Luc Fornecker,⁵ Stéphane Moreau,⁷ Christian Récher² and Antoine Nebout⁸

Physicians who recommend significantly more intensive chemotherapy are:

- averse to uncertainty OR=1.15; P=0.039
- male physicians who do not conform to the expected utility model (assumed as economically irrational) OR = 3.45 *P*=0.01.
- have higher patient volume per physician OR=0.98
 P=0.032

Impact of Physicians' Personalities and Behavioral Traits on Treatment-Related Decision-making for Elderly Acute Myeloid Leukemia

Xia Wu, MD¹, Yi-nan Jiang, MD², Yue-lun Zhang, PhD³, Jia Chen, MD¹, Yue-ying Mao, MD¹, Lu Zhang, MD¹, Dao-bin Zhou, MD¹, Xin-xin Cao, MD¹, and Jian Li, MD¹

Physicians who recommend significantly more intensive chemotherapy are:

- attending physicians with a higher level of extraversion or conscientiousness
- No correlation between physicians' personalities or behavioral traits and medical decisionmaking was observed in chief and associate chief physicians

Fit or unfit?

What factors define selection of the most appropriate therapeutic approach?

US and EU drug approvals for AML 2017–2022

F

	Target	Appro	oval
Midostaurin (+IC)	FLT3	ND	
CPX-351	t-AML, AML-MRC	ND	
Enasidenib	IDH2	R/R	
Gemtuzumab ozogamicin (±IC)*	CD33	ND and R/R*	
Ivosidenib	IDH1	ND and R/R	
Glasdegib (+LDAC)	Sonic hedgehog pathway	ND	
Gilteritinib	FLT3	R/R	
Venetoclax (+AZA/Dec/LDAC) ⁺	BCL-2	ND	
CC-486 (oral azacitidine)	Hypermethylation	Maintenance	

Dieases specific factors – do they matter?

CR and OS rates after induction therapy

Impact of age, performance status, and karyotype

Adverse cytogenetics and sAML are important predictors of poor response to treatment and OS

Phase 3 Ven+AZA trial: Efficacy outcomes

VIALE-A: Ven+AZA vs Pbo+AZA in previously untreated patients ineligible for intensive chemotherapy

Endpoint	Ven+AZA n=286	Pbo+AZA n=145
CR+CRi rate CR rate	66.4% 36.7%	28.3% 17.9%
CR+CRi by initiation of cycle 2	43.4%	7.6%
CR+CRi rate in molecular subgroups		
IDH1/2	75.4%	10.7%
FLT3	72.4%	36.4%
NPM1	66.7%	23.5%
TP53	55.3%	0
Transfusion independence		
Red blood cells	59.8%	35.2%
Platelets	68.5%	49.7%
Event-free survival	9.8 months	7.0 months

CPX-351 versus 7+3 induction in high-risk or sAML: 5-year results of a randomised, open-label, multicentre, phase 3 trial

CPX-351 significantly improved OS vs. conventional 7+3 in older adults with newly diagnosed high-risk/sAML

Lancet JE Lancet Haematol. 2021 Jul;8(7):e481-e491.

Summary 2

- Treatment decision should rely on both patient-related ("fitness") and disease-related (genetic) features
- Adverse genetic/cytogenetic profile is a relative contraindication to intensive chemotherapy, in older, fit patients who are eligible to HSCT
- Patients should be referred to as "fit for" a given treatment strategy

Selection of optimal therapeutic approach

Adapted from Wei AH. Blood. 2021;138:356-358.

Discussion

Case 1: Adult AML

Agnieszka Pluta

Case Presentation

Agnieszka Pluta

Department of Hematology, Medical University of Lodz

Copernicus Provincial Multidisciplinary Oncology and Traumatology Center

Case

A 27-year-old male patient with dyspnea appeared in the Hematology Department (09.2020)

A medical history

- No chronic disorders
- For 1 month, deterioration of exercise tolerance, loss of weight –10 kg, respiratory tract infection without any improvement after oral antibiotics

At admission

• ECOG: 2, dyspnea, enlargement of tonsils and cervical lymph nodes, gingival infiltrations, HR 120/min, normal bubble murmur, abdomen without abnormalities

Hematology	WB smea	ar	
	Blasts	76%	
WBC 174.84 × 10 ³ /μL	Promyelocytes	1%	CRP 78 m
Hgb 5.4 g/dL	Myelocytes	1%	LDH 1690
MCV 92 fL	Metamyelocytes	1%	Creatinine
PLT 32 × 10 ³ /μL	Neutrophils	1%	Uric acid
ANC 11.76 × 10 ³ /μL	Eosinophils	2%	AST 34 UI
Lymph 19.63 × 10 ³ /µL	Lymphocytes	13%	ALT 28 UI,
Mono 140.32 × 10³/μL	Monocytes	5%	Bilirubin C
· · · · · · · · · · · · · · · · · · ·			1

Biochemistry

CRP 78 mg/dL LDH 1690 mg/dL Creatinine 1.1mg/dL Uric acid 7.8 mg/dL AST 34 UI/dL ALT 28 UI/dL Bilirubin 0.9mg/dL

Case

Bone marrow aspiration: 65% myeloblast

Immunophenotype: AML

Cytogenetic analysis: 46,XY,inv(16)(p13q22)[15]/46,XY[1]

Genetic tests:		
NPM1	negative	
<i>FLT3</i> -ITD	negative	
<i>FLT3</i> -TKD	positive	
BCR/ABL	negative	
AML1-ETO	negative	
CBFβ-MYH11	positive	
MLL-PTD	negative	
WT1	positive	
cKIT	negative	

Question

To which risk group should we assign the patient, according to ELN 2022?

- 1. Low-risk group
- 2. Intermediate-risk group
- 3. High-risk group
- 4. Difficult to say

Diagnosis and Management of AML in Adults: 2022 ELN Recommendations From an International Expert Panel

Risk Category ^b	Genetic Abnormality	Concurrent <i>KIT</i> and/or <i>FLT3</i> gene mutation does not alter risk
Favorable	 t(8:21)(q22:q22:1)/PUNY1::PUNY1T1^{b,c} inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11^{b,c} Mutated NPM1^{b,c} without FL13-ITD bZIP in-frame mutated CEBPA^e 	categorization!
Intermediate	 Mutated <i>NPM1</i>^{b,d} with <i>FLT3</i>-ITD Wild-type <i>NPM1</i> with <i>FLT3</i>-ITD t(9;11)(p21.3;q23.3)/<i>MLLT3</i>::<i>KMT2A</i>^{b,f} Cytogenetic and/or molecular abnormalities not classified as favorable or adverse 	
Adverse	 t(6;9)(p23;q34.1)/<i>DEK</i>::<i>NUP214</i> t(v;11q23.3)/<i>KMT2A</i>-rearranged⁹ t(9;22)(q34.1;q11.2)/<i>BCR</i>::<i>ABL1</i> t(8;16)(p11;p13)/<i>KAT6A</i>::<i>CREBBP</i> inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/<i>GATA2</i>, <i>MECOM(EVI1)</i> t(3q26.2;v)/<i>MECOM(EVI1</i>)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,^h monosomal karyotypeⁱ Mutated <i>ASXL1</i>, <i>BCOR</i>, <i>EZH2</i>, <i>RUNX1</i>, <i>SF3B1</i>, <i>SRSF2</i>, <i>STAG2</i>, <i>U2AF1</i>, or <i>ZRSR2ⁱ</i> Mutated <i>TP53^k</i> 	

Question

What is the best choice for induction treatment?

- 1. DA (daunorubicin; cytarabine) + midostaurin
- 2. DA + gemtuzumab ozogamicin
- 3. DA + cladribine (DAC)
- 4. DA + venetoclax

Fit AML Patients

Heuser M, et al. Ann Oncol. 2020.

Low-Risk AML Patients: 3+7+ GO

Meta-analysis

- 5 randomized trials (n = 3325)
- Without impact on CR, CRi
- Prolongation of 5-year OS
- Decreased relapse risk (P = .0001)
- Dose 3mg/m² equal efficacy as 6 mg/m², but with less toxicity

Gemtuzumab ozogamicin improves treatment outcomes in low- and intermediate-risk genetic groups in AML

Fit AML Patients

Heuser M, et al. Ann Oncol. 2020.

CALGB 10603, RATIFY Trial

- Median follow-up 59 m-cy
- Median OS 74.7 m-cy
- Median EFS in midostaurin arm 8.2 months and 3.0 months in placebo arm (*P* = .002)

PALG Observation: FLT3-ITD⁺ NK-AML Patients

- Retrospective analysis
- n = 227 samples from newly diagnosed NK-AML for *FLT3*-ITD and *NPM1* mutations
- Patients treated in 9 PALG centers in the years 1999–2014
- CR rate: DA vs DAC 73.4% (91/124) vs 81.6% (84/103); P = .14

Case

The patient received 09-10.2020 induction treatment DA + midostaurin

- 11.2020 CR1 MRD: LAIP (-) + CBF-MYH11 (-)
- 11.2020-02.2021 consolidation treatment (3× HD AraC + midostaurin)
 - Taking into consideration that it was a low-risk AML with mutation *FLT3*-TKD, maintenance treatment and alloHSCT were not performed
 - The patient was under observation CR1 MRD (-)

09.2021 relapse

- Clonal evolution: 47,XY,inv(16)(p13q22)+8[23]/46,XY,inv(16)(p13q22), t(1;17)(p21;q21) [3]; 46XY[4], mutation *FLT3*-ITD (-), *FLT3*-TKD (-), *CBFB-MYH11* (+), *cKIT* (+)
 - Reinduction cycle: CLAG-M -> CR2 MRD (-)
 - MUD alloHSCT 12.2021 -> CR2 MRD (-) 08.2022

Summary: Open Questions

- Should MRD monitoring include all subclones of AML?
- Is *cKIT* mutation always associated with an unfavorable prognosis in CBF AML?

Discussion

Case 2: Adult AML

Anna Torrent

Global Leukemia Academy EU Meeting September 23–24, 2022

> AML Clinical Case

Anna Torrent, MD Clinical Hematology Department ICO-Hospital Germans Trias i Pujol Institut de Recerca contra la Leucemia Josep Carreras Badalona

Case Presentation

39-yr-old male (Rumania), actorGilbert syndrome06/2020: pancytopenia and asthenia

Peripheral Blood

WBC 2.1x10⁹/L (N 1.3 \times 10⁹/L) Hb 12.4 g/dL, Volume 99.4 fL Plat 138 \times 10⁹/L Dacrocytes, 25% erythroblast No blast

Bone Marrow Biopsy >10% dysplasia in all cell lines 2% blasts (Auer Rods) Normal karyotype NGS: WT1 VAF 36.76% No fibrosis

MDS-EB-2

Туре	Dysplastic lineages	Cytopenias ¹	Ring sideroblasts in erythroid elements of BM	Blasts	Cytogenetics
MDS-EB					
MDS-EB-1	0-3	1-3	None or any	PB 2~4% or BM 5~9%, no Auer rods	Any
MDS-EB-2	0-3	1-3	None or any	PB 5~19% or PM 10%~19% or Aue	Any
MDS-MLD	2 or 3	1-3	RS < 15% (or < 5% ²)	PB < 1% BM < 5% No Auer rods	Any, unless fulfill criteria for isolate del(5q)

IPSS-R 2.5 (low risk), WPSS 3 (high risk)

Question 1

Which is the best treatment option?

- 1. Azacitidine
- 2. Clinical trial
- 3. Allogeneic bone marrow transplantation
- 4. Azacitidine + SCT
- 5. Watch and wait

Case Presentation

10/2020 Asthenia

<u>Analytics</u>: WBC 8.01x10e9/L, 59% myeloid blasts, Hb 78 g/L, plat 45 × 10⁹/L. Dacrocytes, dysplastic neutrophils, 61% erythroblasts

LDH 678 U/L (N 135-248 U/L).

Bone Marrow >10% dysplasia in all cell lines 59% blasts (no Auer rods), CD34+ 47,XY,+8[11]/46,XY[9] *FLT3-ITD* ratio >0.5 NGS: *FLT3-ITD* (50%), *ZRSR2* (VAF 10%), *WT1* (VAF 53%)

AML with myelodysplasia-related changes

ITD-FLT3 AML

- 30% of newly diagnosed AML carry a genetic modification in the *FLT3* gene:
 - 23% *ITD-FLT3*: kinase autoinhibition by internal tandem duplication \rightarrow Poor prognosis, higher risk of treatment failure with high relapse risk (Ratio >0.5)
 - 7% TKD-FLT3: activation of FLT3 by tyrosine kinase domain \rightarrow Prognostic impact debated

Туре	Dose	Target	First generation FLT3i:
First generation, type I	400 mg BID	FLT3-ITD, RAF, VEGFR1/2/3, PDGFRβ, KIT, RET	sorafenib, midostaurin, lestaurtinib
First generation, type I	50 mg BID	FLT3-ITD, FLT3-TKD, PKC, SYK, FLK-1, AKT, PKA, KIT, FGR, SRC, PDGFRα/β, VEGFR1/2	Second generation FLT3i: gilteritinib, quizartinib, crenolanib
Second generation, type II	60 mg once a day	FLT3-ITD, KIT, PDGFR	>efficacy, <off-target effects<="" td=""></off-target>
Second generation, type I	120 mg once a day	FLT3-ITD, FLT3-TKD, LTK, ALK, AXL	
Second generation, type I	100 mg TID	FLT3-ITD, FLT3-TKD, PDGFRβ	
	Type First generation, type I First generation, type I Second generation, type I Second generation, type I Second generation, type I	TypeDoseFirst generation, type I400 mg BIDFirst generation, type I50 mg BIDSecond generation, type II60 mg once a daySecond generation, type I120 mg once a daySecond generation, type I100 mg TID	TypeDoseTargetFirst generation, type I400 mg BIDFLT3-ITD, RAF, VEGFR1/2/3, PDGFR6, KIT, RETFirst generation, type I50 mg BIDFLT3-ITD, FLT3-TKD, PKC, SYK, FLK-1, AKT, PKA, KJT, FGR, SRC, PDGFRα/β, VEGFR1/2Second generation, type I60 mg once a dayFLT3-ITD, FLT3-TKD, LTX3-TKD, LTX5, VEGFR1/2Second generation, type I120 mg once a dayFLT3-ITD, FLT3-TKD, LTX5, ALK, AXLSecond generation, type I100 mg TIDFLT3-ITD, FLT3-TKD, PLT3-TKD, PDGFR6

ITD-FLT3 AML

RATIFY Study: phase III, randomized, double-blind, placebo-controlled trial

ITD-FLT3 AML

QuANTUM-FIRST Study: phase III, randomized, double-blind, placebo-controlled trial

Treatment of FLT3-AML

Idarubicin 12 mg/m2/d iv (d 1–3) Cytarabine 200 mg/m2/d iv (d 1–7) Midostaurin 50 mg/12h po (d 8–22)

Complications

- Febrile neutropenia with no focus: meropenem, vancomycin and amphotericin.
- Herpetic stomatitis

CT FLAG-QUIDA:

Idarubicin 10 mg/m2/d iv (d2–4) Fludarabine 30 mg/m2/d iv (d2–5) Cytarabine 2000 mg/m2/d (d2–5) Quizartinib 60 mg/d (d6–20)

Complications

- Febrile neutropenia due to anal fissure: meropenem
- Herpetic stomatitis

Gilteritinib 120 mg/d po (d1–28) × 2 cycles No complications Complete Response

Partial Response (22% blasts)

Non-Response (20% blasts)

Case Continuation

04/03/2021 Haploidentical SCT (5/10)

- Conditioning: Thiotepa, fludarabine, and busulfan
- Prophylaxis GVHD: cyclophosphamide post-SCT and tacrolimus
- $5 \times 10^{6} \text{ CD34/kg}$

Complications

- *E.coli* bacteriemia due to anal fissure
- Acute GVHD: skin grade III \rightarrow glucocorticoids 1 mg/kg/12h po
- Reactivation of CMV: pre-emptive treatment with valganciclovir

CR, negative MRD, Normal NGS and 100% donor chimerism.

Question 2

What is next to prevent relapse?

- 1. Prophylactic DLI
- 2. Maintenance with midostaurin
- 3. Watch and wait
- 4. Prophylactic DLI + FLT3i
- 5. Maintenance with sorafenib

Maintenance Therapy

RADIUS Study: phase II, randomized, open-label trial SOC vs midostaurin FLT3-ITD AML

Maintenance Therapy

SORMAIN Study: phase II, randomized, double-blind trial **sorafenib** vs placebo

Burchert A, et al. J Clin Oncol. 2020;38:2993-3002.

Maintenance Therapy: Ongoing Trials

MORPHO Study: phase III, randomized, double-blind trial gilteritinib vs placebo in CR1 after SCT.

GOSSAMER Study: phase II/III. Maintenance with **gilteritinib** vs placebo (CR1 after HDAC)

Case continuation

Case continuation

Question 3

Do you think the patient is cured? What's next?

- 1. Of course
- 2. Probably no. Watch and wait, second SCT
- 3. Definitely no. Second SCT after 3–6 cycles of AZA
- 4. Probably no. AZA × 6 and maintenance with sorafenib
- 5. No. Palliative care

Case Continuation

Conclusions

- *FLT3-ITD* AML has poor prognosis, higher risk of treatment failure, with high-relapse risk (ratio >0.5)
- In front-line therapy of *FLT3*-mutated AML, a combination of chemotherapy and midostaurin improves OS
- Other TKI (quizartinib and gilteritinib) improve OS in patients with relapsed or refractory FLT3-mutated AML
- Ongoing post-SCT maintenance therapy studies are using FLT3specific TKI

Thank you

Discussion

Optimizing Management of Relapsed/Refractory AML

Naval Daver

Optimizing Management of Relapsed/Refractory AML

> GLA SEPT 2022

Naval Daver, MD Director, Leukemia Research Alliance Program, Associate Professor Department of Leukemia MD Anderson Cancer Center

Ē

Treatment of AML (Accelerated Progress 2017–2020): History

Since its introduction in the early 1970s, 7+3 therapy (cytarabine for 7 days + anthracycline for 3 days) has been the standard of care for AML

Year	1975	1980	1990	1995	2000	2005	2009	2013	2022
5-year survival	6.3%	6.8%	11.4%	17.3%	16.8%	25.7%	28.1%	27%	??

AML, acute myeloid leukemia; APL, acute promyelocytic leukemia; FDA, United States Food & Drug Administration; HSCT, hematopoietic stem cell transplantation; R/R, relapsed/refractory.

Emerging Molecular Therapies in AML

- FLT3-ITD mutations: Add FLT3 inhibitor (gilteritinib, midostaurin, sorafenib), consider allo HSCT and post-HSCT FLT3i
- IDH1/2 mutations: Add IDH inhibitor enasidenib (IDH2) or ivosidenib (IDH1)
- *NPM1* mutation in diploid CG: cytarabine sensitivity
- TP53 mutation: Consider decitabine 10 days ± others (GO, venetoclax); refer to allo HSCT; role of anti-CD47 (magrolimab)
- MLL-AML; t(11q23;---): Menin inhibitors

FLT3 inhibitors in R/R AML

F

FLT3-Mutated AML – Types of FLT3 Inhibitors

- Type I: Bind receptor "active" conformation near ATP pocket or activation loop; ITD and TKD
- Type II: Bind receptor
 "inactive" conformation
 near ATP pocket; ITD only

*Second-generation FLT3 inhibitors. Daver N et al. *Leukemia*. 2019;33:299-312.

ADMIRAL: Longer Follow-Up Confirms OS Benefit With Gilteritinib in R/R *FLT3* Mutant AML

Perl AE, et al. Blood. 2022;139:3366-3375.

Mechanisms of Resistance to FLT3 Inhibitors

Short N, et al. Cancer Discov. 2020;10:506-525.

Venetoclax Combines Synergistically With Quizartinib^{1,2}

Cell lines were treated with combination – \downarrow MCL-1, \downarrow BCL-X_L

Venetoclax combined with quizartinib prolonged survival and reduced tumor burden in FLT3-ITD+ xenograft models

1. Yilmaz M, et al. Blood. 2021;138: Abstract 370; 2. Singh Mali R, et al. Haematologica. 2021;106:1034-1046.

VEN + GILT – Summary of Best Responses

The mCRc rate in this study was **75**%,¹ whereas the CRc rate in the ADMIRAL phase III study for single-agent GILT was **54.3%** (using the same response parameters)²

mCRc, modified composite complete remission; MLFS, morphologic leukemia-free state. 1. Daver N, et al. *J Clin Oncol*. 2022:JCO2200602; 2. Perl AE, et al. *New Engl J Med*. 2019;381:1728-1740.

VEN + GILT Demonstrated Deep Reductions in *FLT3* Allelic Burden in Patients Achieving mCRc

<i>FLT3</i> -ITD burden, n (%)	<10 ⁻² (1%)	<10 ⁻³	<10 ⁻⁴	
Cycle 1 Day 28	9 (30.0)	3 (10)	0	
Any time on therapy	18 (60.0)*	13 (43.3)	7 (23.3)	

30/34 *FLT3*-ITD mCRc patients were evaluable for longitudinal reduction in *FLT3*-ITD using an assay with sensitivity of 10^{-6}

The molecular best response ($<10^{-2}$) of VEN + GILT was **60.0%** in *FLT3*-ITD-mutated AML achieving mCRc,¹ whereas the molecular best response ($<10^{-2}$) for GILT alone in a subset analysis from CHRYSALIS was **25%**²

Lowest Level of FLT3-ITD+ Clones Achieved

GILT, gilteritinib; mCRc, modified composite complete remission; RP2D, recommended Phase 2 dose; Ven, venetoclax. 1. Daver N, et al. *Blood*. 2021;138: Abstract 691; 2. Levis MJ, et al. *Blood* Adv. 2018;2:825-831.

OS by Transplant or Response Status

OS by Transplant Status (FLT3^{mut+} Patients)

OS by Best Response Status

(FLT3^{mut+} Patients)

- Median duration of follow-up was 15.1 months (range, 0.8 to 25.3)
- Median OS for FLT3-ITD patients was 10.0 months (95% CI: 6.6, 13.2)

HSCT, hematopoietic stem cell transplantation; ITD, internal tandem duplication; MLFS, morphologic leukemia-free state; NE, not estimable; NR, not reached; OS, overall survival. Daver N, et al. ASH 2021. Abstract 691.

IDH inhibitors in R/R AML

Characteristics of IDH-Mutated AML

- IDH mutations occur in ~20% of AML
- IDH1 in ~8% AML, IDH2 in ~12% AML
- \uparrow prevalence with \uparrow patient age
- Hot-spot mutations in enzymatic active site¹
- *IDH1*-R132, *IDH2*-R140, or *IDH2*-R172
- Can be acquired at progression²
 - ~10% to 15% of AML from MDS
 - ~20% to 25% of AML from MPN

MDS, myelodysplastic syndrome; MPNs, myeloproliferative neoplasms.

1. Dang L, et al. Trends Mol Med. 2010;16:387-397; 2. Chou WC, et al. Leukemia. 2011;25:246-253; 3. Molenaar RJ, et al. Leukemia. 2015;29(11):2134-2142.

IDH1 or IDH2 Inhibitor Monotherapy^{1,2}

1. DiNardo CD, et al. N Engl J Med. 2018;378:2386-2398; 2. Stein EM, et al. Blood. 2017;130:722-731.

Practical Considerations With IDH Inhibitors

- Few grade 3 nonhematologic toxicities¹
 - Those to note include diarrhea, fatigue, and pyrexia²
- May take 3 to 4 cycles to respond; late responders noted in studies to date
- Hematologic toxicities are common, particularly during the first cycle of therapy
- Monitor azoles and CYP drug-drug interactions
- Differentiation syndrome: seen during the first 2 cycles^{2–4}

1. DiNardo CD, et al. N Engl J Med. 2018;378:2386-2398; 2. Roboz G, et al. J Clin Oncol. 2019;37(suppl 15):7038; 3. Stein EM, et al. Blood. 2017;130:722-731; 4. Fathi AT, et al. JAMA Oncol. 2018;4:1106-1110.

Within-Patient Salvage Rates When Switching Between HMA+VEN $\leftarrow \rightarrow$ IDHi-Based Regimens (MDACC)

IVO + VEN +/- AZA: Response Outcomes

IDH1 Clearance by ddPCR**

*CRc: CR + CRh + CRi **ddPCR: digital droplet PCR (sensitivity: 0.1% to 0.25%) Lachowiez CA, et la. *J Clin Oncol*. 2022;40(suppl):7018.

Menin inhibitors in *MLL*r and *NPM1*m R/R AML

Revumenib (SNDX-5613) Is a Potent Selective Protein-Protein Interaction Inhibitor of Menin

Currently being evaluated in the phase I/II AUGMENT-101 study (N = 54)

Median age was 49 years

- 82% (n = 44) of patients had AML
- 65% (n = 35) had *MLL*r leukemia
- 19% (n = 10) had mutated NPM1 leukemia

Two parallel dose-escalation cohorts

- Arm A: patients not taking strong CYP3A4 inhibitors
- Arm B: patients taking strong CYP3A4 inhibitors
- SYNDX-5613 dosing: orally every 12 hours in continuous 28-day cycles

MTD was 276 mg every 12 hours in arm A and 163 mg every 12 hours in arm B

Best Overall Response	Overall (N = 54), n (%)
CRc (CR + CRh + CRp + CRi/MLFS)	20 (44.4)
CR + CRh	10 (22.2)
CR	7 (15.6)
CRh	3 (6.7)
СКр	3 (6.7)
CRi/MLFS	7 (15.6)

CRh, CR with partial hematologic recovery; MLFS, morphological leukemia-free state; MTD, maximum tolerated dose. Stein E, et al. *Blood.* 2021;138:699.

These materials are provided to you solely as an educational resource for your personal use. Any commercial use or distribution of these materials or any portion thereof is strice, provided to you solely as an educational resource for your personal use.

Non-molecularly selected approaches to R/R AML

IMGN632 + AZA/VEN Triplet Is Safe and Active in CD123-Positive R/R AML

Phase 1b/2 study designed to determine the safety, tolerability, and activity of IMGN632 combined with AZA and VEN in CD123-positive AML

Results

```
Efficacy was seen across all cohorts/doses and schedules (N = 29)
```

ORR: 55%; cCR rate: 31%

Higher-intensity cohorts (n = 20)

ORR: 75%; cCR rate: 40%

No TLS, VOD, capillary leak, or cytokine release were observed

30-day mortality: 0%

Best Decrease in BM Blast for Higher-Intensity Cohorts

ORR, overall response rate; TLS, tumor lysis syndrome; VOD, veno-occlusive disease. Daver N, et al. *Blood.* 2021;138:372.

Improving cytotoxic therapy: Back to VEN again?

FLAG-IDA + VEN in AML

- FLAG-IDA + VEN evaluated in R/R AML, then newly diagnosed AML
- 68 patients prescribed: ND AML = 29; R/R AML = 39

NR, no remission; PD, progressive disease. DiNardo CD, et al. *J Clin Oncol*. 2021;39:2768-2778.

Immune-based approaches in AML

Immune-Based Approaches in AML May Soon Provide Another Treatment Modality

- Two major approaches
 - Antibody–drug conjugates (CD33, CD123, CLL1)
 - Adaptive or innate immune system—harnessing therapies
- Bispecific antibodies (CD3 × AML antigen, CD47 × CD3, others)
- Immune checkpoint-based approaches: T-cell and macrophage checkpoints
- CAR T, CAR NK, high-volume hn-NK cells
- Vaccines

CAR, chimeric antigen receptor; NK, natural killer. Short N, et al. *Cancer Discov*. 2020;10:506-525.

Immune Strategies to Kill AML, Potentially Mutation Agnostic

ADAPTIVE

- Recruiting anti-CD3 T cells: BiTEs linking to CD3 and targeting CD33/123
- CAR Ts with modified CD3 killer cells (success in ALL, lymphoma, MM)
- Targets beyond CD33/123 (eg, CLL1, IL1RAP, TIM3, CD70)

INNATE (appears to be more resilient and preserved in AML)

- Recruiting macrophages: targeting CD47 on AML (magrolimab, lemzoparlimab) or SIRP-alpha on macrophages (Trillium, CC95251, ALX148)
- Recruiting NK cells: allo NK-CAR Ts; NK engineered cells (hn, CD38 ko, IL15); repeated infusions

ALL, acute lymphocytic leukemia; BiTE, bispecific T-cell engager; MM, multiple myeloma. Short N, et al. *Cancer Discov.* 2020;10:506-525.

Anti-CLL1 CARTs in Children With R/R AML

- Second-generation CLL1 CAR T cells 0.3 million/kg to 1 million/kg single dose post lymphodepletion with Flu-CTX
- 11 children with R/R AML treated
- 9 responses = 82%
 - 5 CR MRD-negative
 - 3 CR MRD-positive
 - 1 PR
- 9 of 11 made it to HSCT with durable responses

MRD, minimal residual disease; PR, partial remission. Zhang H, et al. *J Clin Oncol*. 2021;39(Suppl). Abstract 10000.

Off-the-Shelf Cell-Based Cancer Immunotherapy iPSC Product Platform for Mass Production of Universal NK Cell and T-Cell Products

Fate Therapeutics. https://fatetherapeutics.com/about-us/our-cells-of-interest/

FT516/FT538: Monotherapy in Relapsed/Refractory AML

Phase I studies (n = 12 treated)

- 3 doses per cycle (D1, D8, D15) × 2 cycles; each cycle 28 days
- Lympho-conditioning: Cyclophosphamide 500 mg/m2 IV \times Fludarabine 30 mg/m² IV \times 3 days
- FT516 -- IL-2 6MU SC with each dose FT516; FT538 endogenous IL2 (no external IL2 needed)
- Median 3 (1 to 6) prior Rx lines, 9/11 adverse ELN risk
- 5 of 12 (42%) responses (4 CRi + 1 MLFS)
- FT516 (n = 9): 3 CRi + 1 MLFS (90M and 300M cells); FT538 (n = 3): 1 CRi (100M cells)
- No observed DLTs, No CRS, ICANS, or GVHD of any grade Ongoing remission >6 months in 2 FT516 patients without additional intervention, FT538 CRi ongoing
- Dose escalation continues: FT516 at 900M; and FT538 at 300M, 1B, 1.5B per dose

ClinicalTrials.gov. Accessed September 2, 2022. https://www.clinicaltrials.gov/ct2/show/NCT04023071; ClinicalTrials.gov. Accessed September 2, 2022. https://clinicaltrials.gov/ct2/show/NCT04614636.

Conclusions

- Rational combinations of targeted therapy with venetoclax or with HMA + venetoclax may enhance efficacy (response, molecular clearance, early survival): selection of patients tailored to goal of therapy
- Dose optimization, early bone marrow assessment, and growth factors to safely deliver combination regimens need to be very carefully evaluated and implemented
- Use of molecular clearance may be a useful early surrogate of efficacy in certain combinations such as with FLT3, NPM1 clearance, but maybe not all mutations
- Careful assessment and long-term follow-up of ongoing single-arm studies, with rapidly performed focused, randomized clinical trials needed to confirm benefit

Leukemia Questions: ndaver@mdanderson.org

Discussion

Interactive Discussion: Treatment Landscape Evolution

All faculty

What method is routinely used at your department for MRD monitoring

- 1. Multicolor flow cytometry (MFC)
- 2. PCR
- 3. FMC and PCR
- 4. All
- 5. None

What is the average time for conventional cytogenetic analysis

- 1. 3–5 days
- 2. 5–7 days
- **3**. 7–10 days
- 4. 10–14 days
- 5. >14 days

Which novel therapies are available (reimbursed?) in your country?

- 1. Gemtuzumab ozogamicin
- 2. Midostaurin
- 3. Gilteritinib
- 4. Venetoclax
- 5. CPX-351
- 6. Glasdegib

Session Close

Gail J. Roboz and Naval Daver

APTITUDE HEALTH

What age group is considered elderly ALL patients?

- 1. ≥50 years
- 2. ≥55 years
- 3. ≥60 years
- **4**. ≥65 years
- **5**. ≥70 years

Which of the following factors are important in assessing AML patients at diagnosis? Select all that apply.

- 1. Adverse genetic alterations
- 2. Age
- 3. Comorbidities
- 4. Performance status
- 5. Prior cytotoxic therapy
- 6. Prior myelodysplasia

Which of the following is not true regarding HMA + venetoclax in AML?

- 1. The CR/CRi with HMA+VEN in the VIALE-A was >65%
- 2. HMA+VEN improved median OS compared with HMA alone
- 3. Lab or clinical TLS is not seen with HMA+VEN in AML
- The recommended daily dose of venetoclax (without azoles) was 400 mg PO Qday in VIALE-A study
- 5. Neutropenia is commonly seen with HMA+VEN regimen

Closing Remarks

Gail J. Roboz and Naval Daver

Thank you!

- > Thank you to our sponsors, expert presenters, and to you for your participation
- > Please complete the **evaluation link** that will be sent to you via chat
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website in our Ask the Experts section

THANK YOU!

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

