

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 24 September 2022

Virtual Breakout: Adult ALL

APTITUDE HEALTH

Welcome and Meeting Overview

Elias Jabbour

FACULTY

Elias Jabbour, MD MD Anderson Cancer Center Houston, TX, USA

Nicola Gökbuget, MD University Hospital Frankfurt, Germany

Nicolas Boissel, MD, PhD Hôpital Saint-Louis, France

Jose María Ribera, MD, PhD Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Barcelona, Spain

CHAIR

Virtual Breakout – Adult ALL Sessions (Day 2)

24 September 2022, 11.00 – 13.45 CEST

Chair: Dr Elias Jabbour

Time (CEST)	Title	Speaker
11.00 – 11.10	Session Open	Elias Jabbour
11.10 – 11.35	Optim izing First-Line Therapy in Adult and Older ALL: Integration of Immunotherapy Into Frontline Regimens	Nicolas Boissel
11.35 – 12.00	Current Treatment Options for Relapsed ALL in Adult and Older Patients	Nicola Gökbuget
12.00 – 12.40	 ALL Case - Based Panel Discussion Relapsed/Refractory Case 1 Relapsed/Refractory Case 2 	Moderator: Elias Jabbour Loic Vasseur Anjali Cremer All faculty
12.40 – 12.50	Break	
12.50 – 13.10	Beyond the Horizon: New and Future Treatment Approaches for Adult and Older ALL Patients	Nicola Gökbuget
13.10 – 13.35	Interactive Discussion: Treatment Landscape Evolution	Moderator: Elias Jabbour All faculty
13.35 – 13.45	Session Close	Elias Jabbour

Virtual Breakout – AML Sessions (Day 2)

24 September 2022, 14.30 - 17.15 CEST

Chairs: Dr Gail J. Roboz/Dr Naval Daver

Time (CEST)	Title	Speaker
14.30 – 14.40	Session Open	Gail J. Roboz and Naval Daver
14.40 – 15.00	Personalized Induction and Maintenance Approaches for AML	Gail J. Roboz
15.00 – 15.25	Fit and Unfit AML Patients: How Do We Distinguish? How Do We Treat Differently?	Agnieszka Wierzbowska
15.25 – 16.05	 AML Case -Based Panel Discussion Relapsed/Refractory Case 1 Relapsed/Refractory Case 2 	Moderators: Gail J. Roboz and Naval Daver Agnieszka Pluta Anna Torrent All faculty
16.05 – 16.15	Break	
16.15 – 16.40	Optimizing Management of Relapsed/Refractory AML	Naval Daver
16.40 – 17.05	Interactive Discussion: Treatment Landscape Evolution	Moderators: Gail J. Roboz and Naval Daver All faculty
17.05 – 17.15	Session Close	Gail J. Roboz and Naval Daver

Introduction to the Voting System

Elias Jabbour

What age group is considered elderly ALL patients?

- **1**. ≥50 years
- 2. \geq 55 years
- 3. ≥60 years
- **4**. ≥65 years
- **5**. ≥70 years

Which of the following is NOT true for treating ALL?

- 1. Inotuzumab and blinatumomab + chemotherapy has produced 90% CR rates in salvage therapy and in first line in older patients
- 2. Blinatumomab and ponatinib can be used as a chemotherapy-free regimen in Ph+ ALL
- 3. MRD– CR does not correlate strongly with outcome
- 4. Since 1999, median survival for ALL patients older than 60 has been increasing with each successive decade

Optimizing First-Line Therapy in Adult and Older ALL: Integration of Immunotherapy Into Frontline Regimens

Nicolas Boissel

Global Leukemia Academy 24 September 2022

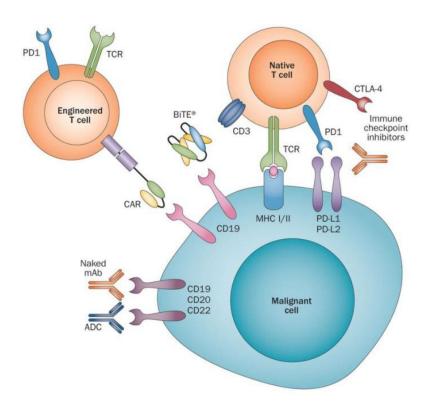
Optimizing First-Line Therapy in Adult and Older ALL: Integration of Immunotherapy

Nicolas Boissel

Unité Adolescents et Jeunes Adultes

Hôpital Saint-Louis, AP-HP

Institut de Recherche Saint-Louis, Université de Paris, France



Disclosures

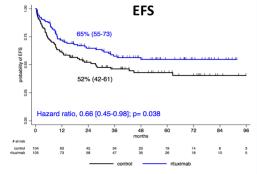
Honoraria (consulting, advisory role)	Amgen Ariad-Incyte Bristol Myers Squibb Celgene Jazz Pharma	Novartis Pfizer Sanofi Servier Shire
Research funding	Amgen Bristol Myers Squibb	Novartis Jazz Pharma

Immuno-oncology Therapies in ALL

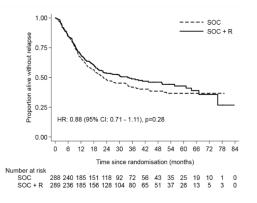
- Antibody-drug conjugate
 - Inotuzumab ozogamicin (BESPONSA®)
 - Antibody-drug conjugate
 - R/R CD22+ ALL in adults
- CD19-CD3 immune cell engager
 - Blinatumomab (BLINCYTO®)
 - Bispecific T-cell engager
 - R/R CD19+ ALL in adults/children
 - MRD+ B-ALL in adults
 - Consolidation in children with first relapse HR Ph– B-ALL
- CD19 CART
 - Tisagenlecleucel (KYMRIAH®)
 - CD19/4-1BB/CD3z CAR T cells
 - CD19+ ALL in children, adolescents and young adults, second relapse, first relapse post-HSCT (<26 years)
 - Brexucabtagene autoleucel (TECARTUS®)
 - CD19/4-1BB/CD3z CAR T cells
 - R/R CD19+ ALL in adults

CD20 Monoclonal Antibodies

• CD20 expressed in 1/3 of B-ALL

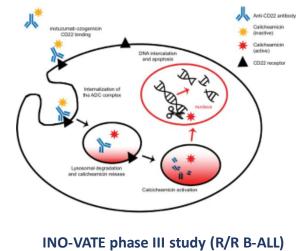

(upregulated by steroids)

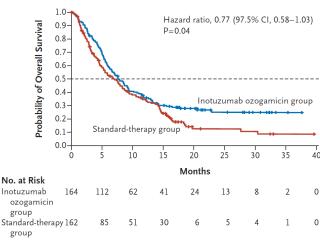
- What have we learned from phase III studies?
 - R-GRAALL-2005 and UKALL-14^{1,2}
 - Rituximab given throughout the protocol in CD20+ ALL patients reduces the risk of relapse and improves EFS¹
 - Rituximab given during induction in all patients does not improve EFS²


• Pending questions/issues

- Should rituximab be given regardless of CD20 expression?
- Mechanisms? (direct toxicity, ADCC, CDC, decreases anti-asparaginase immunization . . .)
- Not approved, but widely used with occasional reimbursement issues
- New-generation CD20 mAb may provide similar benefit³

Phase III R-GRAALL-2005 study, CD20+ Ph- B-ALL¹


Phase III UKALL-14, Ph- B-ALL²



^{1.} Maury S, et al. *N Engl J Med*. 2016;375:1044-1053; 2. Marks DI, et al. *Blood*. 2019;134:739; 3. Chew S, et al. *Best Pract Res Clin Haematol*. 2020;33:101226.

Inotuzumab Ozogamicin

- Inotuzumab ozogamicin is a CD22 monoclonal antibody conjugated to the cytotoxic antibiotic calicheamicin¹
- Inotuzumab is approved in R/R B-ALL
- Pivotal study (INO-VATE) in R/R B-ALL (n = 218)²
 - Overall response rate: 80.7% vs 29.4% for SOC
 - Complete MRD response (<0.01%): 78.4% vs 28.1% for SOC
 - 2-year OS: 23% vs 10% for SOC
- Safety profile
 - Cytopenia (febrile neutropenia, thrombocytopenia)
 - Grade 3 hepatic toxicity³
 - Veno-occlusive disease, mostly observed after allo-SCT
- Anecdotal data in MRD+ ALL

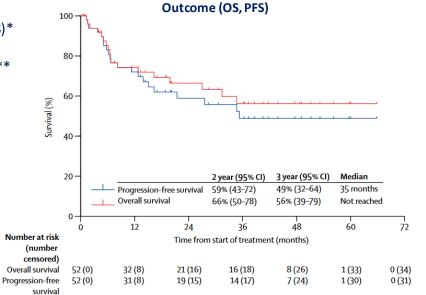
Inotuzumab Ozogamicin in Frontline B-ALL

		Age, years	Patients, N	Endpoint	NCT
GIMEMA	ALL2418, MRD study	18+	76	MRD	NCT03610438
MDACC	MRD study	18+	40	RFS	NCT03441061
MDACC	HCVD (+ Blin)	14+	80	RFS	NCT02877303
NCI/ALLIANCE	A041703 (+ Blin)	18+	64	EFS	NCT03739814
MDACC	HCVD + INO, ≥60 years	60+	276	MTD/PFS	NCT01371630
GMALL	INITIAL-1	56–74	45	EFS	NCT03460522
ALLIANCE	A041501*	18–39	310	EFS	NCT03150693
EWALL	EWALL-INO	55+	130	OS	NCT03249870
COG	ALL1732*	1–25, HR	NA	DFS	NCT03959085
ALLTOGETHER	ALLTOGETHER-1*	1–45, IR-high	NA	DFS	NCT04307576
GRAALL	2022-B*	18–65, SR and HR	480	DFS	Pending

Comments

- In combination with chemotherapy, ± in place of anthracycline
- In patients with no indication for allo-HSCT
 - Elderly patients
 - Young patients with no VHR features

*Phase III studies.


MiniHCVD + Inotuzumab ± Rituximab *Ph– ALL in older adults*

Patient characteristics

	Patients (n=52)
Age (years)	68 (64-72)
Sex	
Male	32 (62%)
Female	20 (38%)
ECOG performance status ≥2	7 (13%)
Median white blood cell count (10° cells per L)	3.0 (1.5-5.6)
White blood cell count ≥50%	4 (8%)
Peripheral blasts (%)	11 (0-45)
Bone marrow blasts ≥50%	43 (83%)
Karyotype	
Diploid	16 (31%)
Low hypodiploidy/triploidy	11 (21%)
t(4;11)	0
High hyperdiploidy	5 (10%)
Tetraploidy	3 (6%)
Complex	1 (2%)
Miscellaneous	<mark>6 (12%)</mark>
Not done or insufficient metaphases	10 (19%)
Median CD22 expression in the bone marrow (%)	
CD20 expression ≥20% of cells in the bone marrow	31 (60%)
Central nervous system disease at diagnosis	3 (6%)

Early response

- Overall response, 98% (47/48)*
- CR, 85%; CRp, 10%; CRh, 2%
- MRD negativity, 78% (36/46)**

Safety

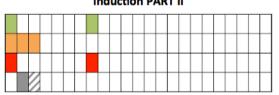
- 33% grade 3+ liver AEs
- 4 VOD, 1 after allo-SCT

EWALL-INO Phase II Study *Ph– ALL in older adults*

- N = 130 patients with Ph– BCP-ALL
- Age 55+ years
- Sequential INO for first 2 courses
 - $0.8/0.5/0.5\,mg/m^2\,for\,cycle\,1$
 - $0.5/0.5\,mg/m^2\,for\,cycle\,2$
- Followed by 6 INO-free consolidation cycles and maintenance

Induction PART I

Prephase



DEX, 10 mg D-5 to D-1 Single IT

DEX, 20 mg D1-2, D8-9, D15-16, D22-23 VCR, 2 mg* flat dose D1/8/15/22 Triple IT D2, leucovorin 15 mg D3 INO, 0.8 mg/m² D1, 0.5 mg/m2 D8 and D15 *G-CSF, 15 until recovery (ANC >0.5 G/L)*

DEX, 20 mg D1 and D8 CY, 300 mg/m² D1-3 Triple IT D2, leucovorin 15 mg D3 INO, 0.5 mg/m² D1 and D8 *G-CSF, 15 until recovery*

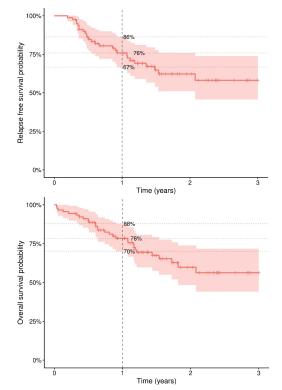
European Working Group for Adult Acute Lymphoblastic Leukemia

* reduced to 1 mg flat dose if age>70y

EWALL-INO Phase II Study

Patient characteristics

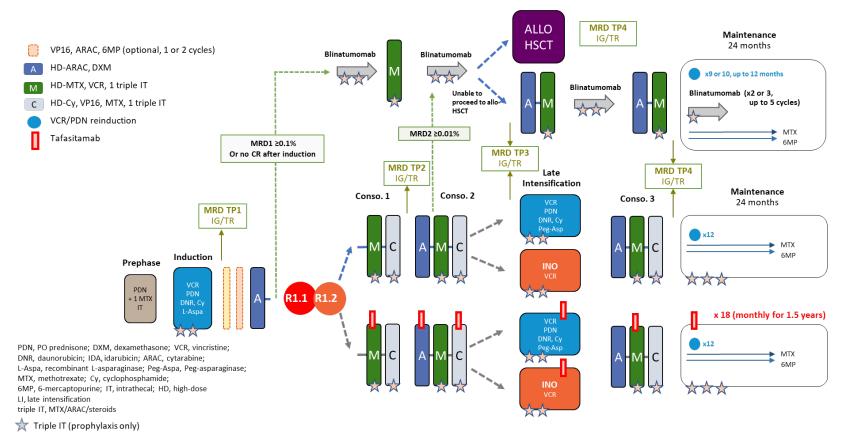
Patients	
Sex: male/female	39/51
Median age, years (range)	69 (55–84)
Median WBC, Giga/L (range)	4.6 (0.5–601)
Median CD22, % (IQR)	86.5 (60.7–97)
Oncogenetics Low hypodiploidy/neartriploidy Ph-like <i>KMT2A</i> -r Others	25 (28%) 10 (11%) 9 (10%) 46
Median follow-up, years (range)	1.18 (0.3–3.5)


Early response (post-ind 2)

- Overall response, 89% (80/90)
- CR, 80%; CRp, 9%
- MRD negativity, 73% (49/67)

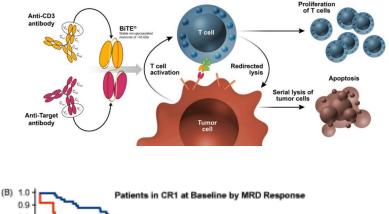
Liver toxicity 8.8% grade 3+ liver AEs

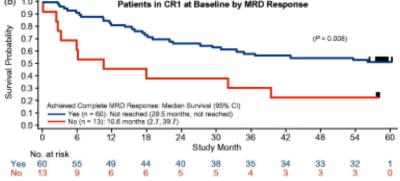
• 3 VOD, 1 after allo-HSCT


Outcome (RFS, OS)

European Working Group for Adult Acute Lymphoblastic Leukemia

GRAALL-2022 Ph- BCP-ALL





Slide courtesy of N. Boissel.

Blinatumomab in MRD+ Patients

- Blinatumomab is a bispecific T-cell engager that redirects T-cell cytotoxicity against CD19+ target cells
- Blinatumomab was first approved in R/R and MRD+ B-cell ALL¹
- Single-agent blinatumomab in MRD+ B-ALL (BLAST study)^{2,3}
 - Complete MRD response (n = 113): 78% after 1 cycle
 - 5-year OS (n = 110): 50% in complete MRD responders
 - MRD response is predictive of outcome
- Safety profile (MRD setting, n = 116)²
 - Grade 3+ neurotoxicity: 13%
 - Cytokine release syndrome: 3%
 - Mostly occurring during first cycle

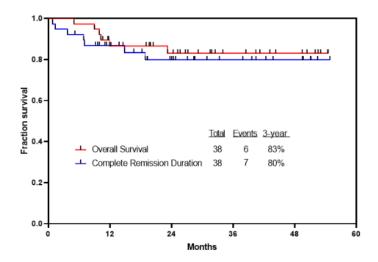
Blinatumomab in Frontline Ph– ALL

	Age, years	Patients, N	Primary endpoint	NCT
NCI ECOG study (randomized study)*	30–70	509	OS	NCT02003222
MDACC study (MRD)	18+	40	RFS	NCT02458014
MDACC Hyper-CVAD study	14+	60	RFS	NCT02877303
GIMEMA study	18–65	149	MRD at week 14	NCT03367299
HOVON study (frontline)	18–70	80	MRD after cycle 1	NCT03541085
PETHEMA (high-risk)	30–55	38	MRD after cycle 2	NCT03523429
GMALL study (MOLACT-1, MRD)	18+	30	MRD after 1 cycle	NCT03109093
GRAALL-QUEST study (high-risk)	18–59	95	MRD after 1 cycle	NCT02617004
EWALL-BOLD study	56–74	50	MRD after cycle 2	NCT03480438
NCI SWOG study	65	44	3-year OS	NCT02143414
AMGEN (Golden Gate study)*	55+ (40+ with comorbidities)	274	EFS ^{MRD}	NCT04994717

Comments

- As single drug in CR, with few exceptions (HOVON)
- Frequent MRD studies based on BLAST results
- High-risk groups regardless of MRD response

*Few phase III studies.


Hyper-CVAD + Blinatumomab (+ rituximab/ofatumumab)* MDACC

Patient characteristics (N = 34)

Characteristic	N (%) / median [range]
Age (years)	37 [17-59]
ECOG performance status ≥2	8 (21)
WBC (x10 ⁹ /L)	3.1 [0.5-360.9]
Karyotype	
Diploid	11 (29)
High hyperdiploidy	3 (8)
Low hypodiploidy / near triploidy	6 (16)
KMT2A rearranged	3 (8)
Complex	3 (8)
Others	12 (32)
CD19 expression	99.8 [41.9-100]
CD20 expression ≥20%	17/33 (52)
CRLF2+	6/32 (19)
TP53 mutation	10/37 (27)
Response	
CR after induction	26/32 (81)
CR at any time	32/32 (100)
MRD negativity after induction	22/26 (85)
MRD negativity at any time	37/38 (97)

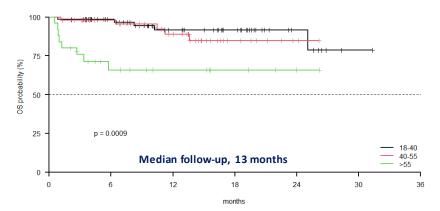
Safety Grade 3+ neurotoxicity, 11%

Outcome (OS, CRD)

Median follow-up, 27 months

GIMEMA Phase II Trial (LAL2317) *Blinatumomab in consolidation (2 cycles)*

Patient characteristics


Characteristics	N = 146
Male sex, %	54
Age (years), median (range)	41 (18–65)
Age group (years), %	
18–40	47
41–55	35
>55	18
WBC (10 ⁹ /L), median (range)	4.43 (4–474)
>30,%	27
<30,%	73
Genetics	
<i>KMT2A-AFF4,</i> n (%)	12 (8.5)
<i>E2A-PBX1,</i> n (%)	5 (3.5)
Ph-like signature, n/N (%)	31/108 (28.7)
<i>IKZF1</i> del, n/N (%)	40/84 (48)
<i>CDKN2A/B</i> del, n/N (%)	38/84 (45)
ABL class/CLRF2/JAK2-r,%	3.8 (each)
Clinical risk class, %	
SR*	62
HR	38

MRD response

- 95% MRD- after blinatumomab 1
- 81% MRD+ converted to MRD– after blinatumomab 1

Outcome

*SR: WBC <30×10⁹/L, non-pro-B phenotype, non-HR cytogenetics.

GRAALL-B-2014-QUEST (HR B-ALL)

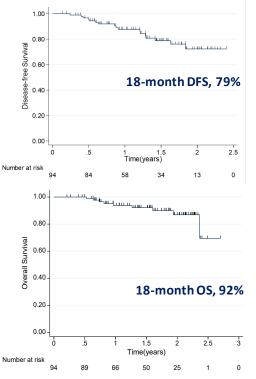
Blinatumomab in consolidation/maintenance (5 cycles)

HR Ph-B-ALL (MRD+, KMT2A, IKZF1) N = 94Age (years), median (range) 34.6 (18.1-60.0) Sex. male/female 51/43 WBC (G/L), median (range) 12 (1-449) **Oncogenic subgroup** KMT2A-r, n (%) 16 (17) ZNF384-r, n (%) 10(11) DUX4/ERG, n (%) 12 (13) Ph-like, n (%) 17 (18) Hypo/NearT, n (%) 7(7) B-other. n (%) 24 (26) Unknown, n (%) 8 (9) IKZF1 intragenic deletion, n (%) 37/93 (40) VHR (eligible for allo-HSCT) 49 (52)

Patient characteristics

Boissel N, et al. ASH 2021. Abstract 1232.

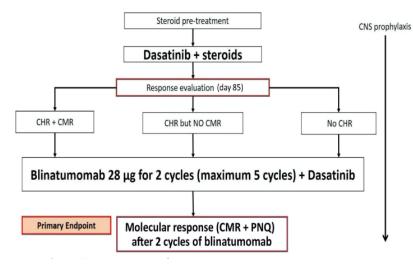
MRD response

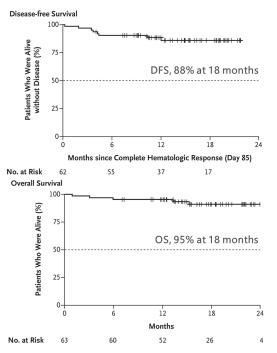

- MRD response after 1 cycle
 - <0.01% in 89% of patients</p>
 - Undetectable in 74% of patients

Factors associated with undetectable MRD

- Low MRD prior to blin
- Not age, WBC, or oncogenic subgroup

Safety Grade 3+ neurotoxicity, 7%

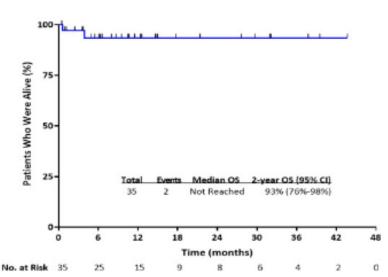

Outcome (DFS, OS)


Median follow-up, 20 months

GIMEMA D-ALBA Study *Dasatinib-blinatumomab frontline*

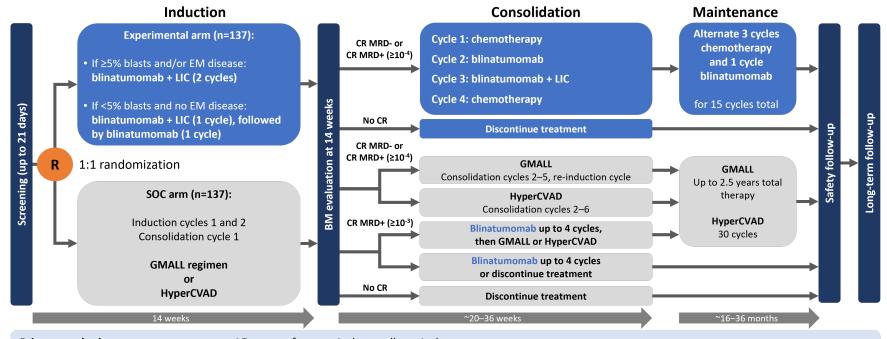
- N = 63 patients (median age, 54 years)
- CR rate, 62/63 (98%)
- CMR rate
 - 17/59 (29%) after dasatinib/steroids/ITT
 - 33/55 (60%) after 2 blinatumomab/dasatinib cycles

Outcome (DFS, OS)


- Median follow-up, 18 months
- Choice of post-consolidation Tx made by the investigators (including 24 HSCT)

Blinatumomab + Ponatinib MDACC

Patient characteristics


Characteristic N (%) / median [range]	Category	ND Ph+ ALL N = 35	R/R Ph+ ALL N = 14	CML-LBP N=6
Age (years)		57 [22-83]	38 [24-61]	69 [29-82]
CD19 expression		99.8 [74.9- 100]	99.9 [98.6- 100]	99.7 [98.3- 99.9]
BCR-ABL1		26 (74)	13 (93)	0
transcript	p190 p210	9 (26)	1 (7)	6 (100)
Line of therapy	Frontline Primary refractory Salvage 1 Salvage 2+	35 (100) 0 0 0	0 2 (14) 6 (43) 6 (43)	4 (67) 0 1 (17) 1 (17)
Response	U U			
CR		21/23 (91)	11/13 (85)	4/6 (67)
CR/CRi		22/23 (96)	12/13 (92)	5/6 (83)
CMR after 1 cycle CMR overall		21/33 (64) 28/33 (85)	10/14 (71) 11/14 (79)	1/6 (17) 2/6 (33)

Safety 2 pts discontinued ponatinib: 1 stroke, 1 DVT 1 pt discontinued blinatumomab: neurotoxicity

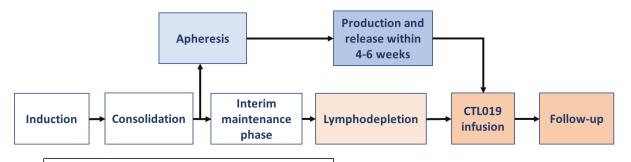
Outcome (ND Ph+ALL)

Golden Gate Study: Phase III Study Design Older patients with Ph-ALL

Primary endpoints: treatment-emergent AEs, event-free survival, overall survival **Secondary endpoints:** CR rate, MRD response, relapse-free survival

NCT04994717. https://clinicaltrials.gov/ct2/show/NCT04994717. Study 20190360 protocol.

CD19 CAR T Cells in ALL


- Tisa-cel approved in second relapse or first relapse after HSCT in patients aged <26 years with B-ALL^{1,2}
- Bruxa-cel approved (by FDA) in R/R B-ALL adult patients³
- Overall results in children/adults with R/R B-ALL
 - 60%–90% of overall response rate
 - Complete MRD response in >80%
 - 30%–60% relapse rate
- Challenges
 - 1. Safety: CRS/ICANS
 - 2. Persistence (and CD19+ relapses)
 - 3. CD19–relapses

CD19 CAR T Toward Frontline Therapy

CASSIOPEIA trial

- Patients: children and AYAs (1-25 years)
- CD19+ B-ALL
- De novo HR (NCI) B-ALL in CR1 with MRD1 ≥ 0.1% at the end of induction and MRD ≥ 0.05% at the end of consolidation

Primary objective : DFS at 5 years

Target : 140 infused pts within 4 years

1. Apheresis may be performed at the end of induction or consolidation phases

2. CTL019 may be infused as soon as it is available

Summary

- The ceiling of chemotherapy intensification has been reached in Ph- adult ALL
- Immunotherapies and small molecules lead to encouraging results in R/R setting
- Several parameters guide the development in frontline
 - Patient age, condition, and comorbidities
 - Disease characteristics and MRD response
 - Eligibility to allo-HSCT
 - Drug safety profile
- Many fields are being explored
 - The best way to combine immunotherapies, small molecules, HSCT
 - The use of sequential immunotherapy targeting the same antigen
 - The place of MRD as surrogate marker

Current Treatment Options for Relapsed ALL in Adult and Older Patients

Nicola Gökbuget

Current Treatment Options for Relapsed ALL in Adult and Older Patients

Nicola Gökbuget

Potential Conflicts of Interest

Speaker Honoraria, Travel Support, Advisory Board

- Amgen
- Celgene
- Gilead
- Novartis
- Pfizer
- Jazz Pharmaceuticals
- Incyte
- Autolus

Research Support (institutional)

- Amgen
- Pfizer
- Novartis
- Servier
- Jazz Pharmaceuticals
- Incyte

Topics of the Talk

1. Definition of Relapse

- 2. Results of Standard Chemotherapy
- 3. Results of Immunotherapy in Relapsed/Refractory ALL
 - Blinatumomab
 - Inotuzumab
 - CAR T
- 4. How to Optimize the Use of Immunotherapies
- 5. Consideration for Sequencing of Immunotherapies
- 6. Relapsed T-ALL
- 7. General Considerations for Relapsed ALL

Definitions: What Do We Speak About?

Primary refractory ALL

Early relapse

Refractory relapse (second relapse)

BM Relapse

- <5% MRD
- >5% <**5**0%
- >50%

Late relapse

Lymph nodes CNS (CSF, brain) Testis Other extranodal

Combinations with BM

Topics of the Talk

1. Definition of Relapse

2. Results of Standard Chemotherapy

- 3. Results of Immunotherapy in Relapsed/Refractory ALL
 - Blinatumomab
 - Inotuzumab
 - CAR T
- 4. How to Optimize the Use of Immunotherapies
- 5. Consideration for Sequencing of Immunotherapies
- 6. Relapsed T-ALL
- 7. General Considerations for Relapsed ALL

Results of Standard Chemotherapy in R/R ALL

Kantarjian Cancer 2019, New Engl J Med 2017

SOC Arms in	INO-VATE	TOWER
N	162	134
Age	47 (18–79)	41 (18–78)
BM Blast <50%	30%	22%
Salvage 1	63%	48%
CR	31%	25%
MRD-neg	28%*	48%**

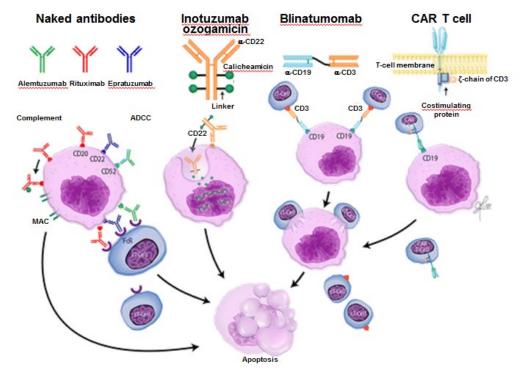
*Below the threshold for MRD (Flow)

**Negative MRD (Ig/TCR)

Topics of the Talk

1. Definition of Relapse

2. Results of Standard Chemotherapy

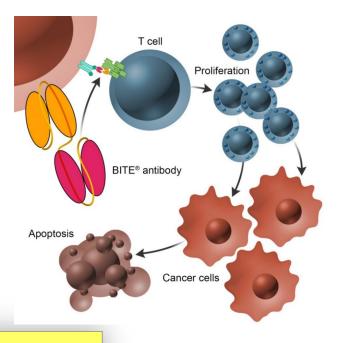

3. Results of Immunotherapy in Relapsed/Refractory ALL

- Blinatumomab
- Inotuzumab
- CAR T

4. How to Optimize the Use of Immunotherapies

- 5. Consideration for Sequencing of Immunotherapies
- 6. Relapsed T-ALL
- 7. General Considerations for Relapsed ALL

Immunotherapy Approaches to the Treatment of Hematologic Malignancies


Major advantage: Targeted therapy with different mechanism of action!

Blinatumomab: Bispecific Antibody CD19-CD3

- Engagement by BiTE[®] antibody constructs leads to activation and polyclonal expansion of T cells (CD4/CD8)¹
- Activation of T cells requires presence of target cells²
- Transient increase of cytokines (IL10,IL6, IFNg)

Activity

depends on:

- 1. Target CD19
- 2. Functional T-cells
- 3. Access to blast cells

1. Klinger M, et al. *Blood*. 2012;119:6226-6233; 2. Baeuerle PA, et al. *Cancer Res*. 2009;69:4941-4944.

Blinatumomab in R/R B-Precursor ALL: TOWER

Kantarjian, et al. N Engl J Med. 2017

Patient Characteristics

Overall Results

Blina

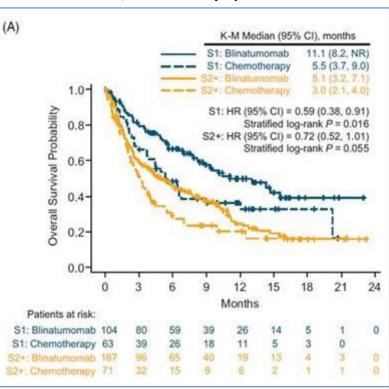
271

Chemo

134

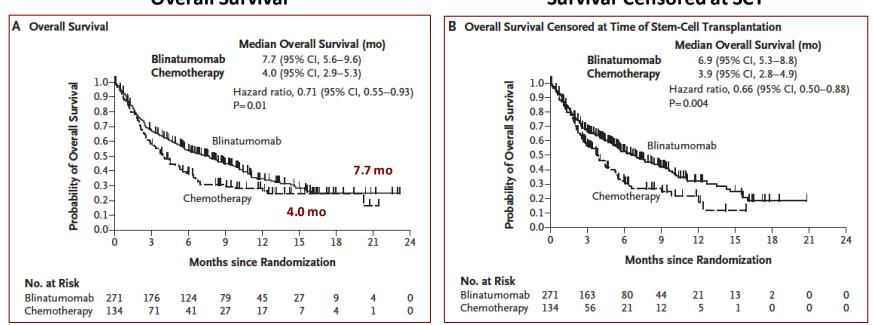
	Blina	SOC	
Ν	271	134	Evaluable
Age (median, years)	41	41	CR/CRp/CRi
Salvage 1	42%	48%	CR
Salvage 2	34%	32%	CN
Later salvage	25%	20%	CRi
First remission >12 mo	0	0	
Prior SCT	35%	34%	CRp
Ph-positive	0	0	
Blasts in BM >50%	74%	78%	
PB blasts/µl	4400	5000	Mol CR (PCR)

CR/CRp/CRi	44%	25%
CR	34%	16%
CRi	1.5%	4.5%
CRp	9%	4.5%
Mol CR (PCR)	76%	48%
000		


Blinatumomab in R/R B-Precursor ALL: TOWER

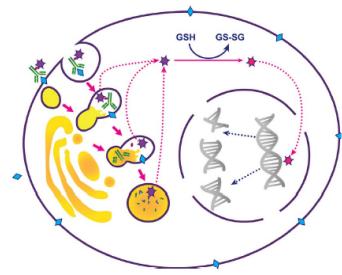
Results of Remission Induction (CR/CRp/CRi) by Subgroups and Outcome by Salvage Line

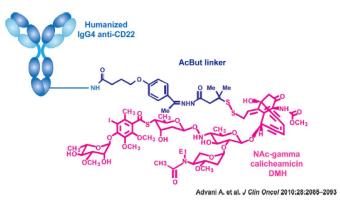
Kantarjian, et al. N Engl J Med. 2017.


	Blina	Chemo
Age		
<35 yrs	43%	25%
>35 yrs	45%	24%
Salvage line		
First	53%	35%
Second	40%↓	16%
Third	35%	11%
Previous allo SCT		,
Yes	40%	11%
No	46%	32%
BM blasts		1
<50%	65% 🕈	34%
>50%	34%	21%

Dombret, et al. Leuk&Lymph. 2019.

Blinatumomab in R/R B-Precursor ALL: TOWER


Kantarjian, et al. N Engl J Med. 2017



Overall Survival

Survival Censored at SCT

Inotuzumab: Conjugated Antibody CD22

Mechanism of Action

- Binding to surface CD22 receptors of target cells
- Internalization as a CD22-ADC complex
- ADC traffics from early to late lysosomes
- Linker cleavage and release of inactive calicheamicin
- Activated by intracellular thiol groups
- Intercalation in DNA
- Double-strand DNA break formation
- Apoptosis induction
- Calicheamicin activity independent of cell cycle progression

Inotuzumab in R/R B-Precursor ALL: INO-VATE

Kantarjian, et al. New Engl J Med. 2016; Kantarjian, et al. Cancer. 2019

Patient Characteristics

Overall Results

	Ino	SOC
N	109	109
Age (median, years)	47	47
Salvage 1	67%	63%
Salvage 2	32%	36%
Later salvage	0	0
First remission >12 mo	43%	35%
Prior SCT	16%	20%
Ph-positive	13%	17%
Blasts in BM >50%	71%	72%
PB blasts/µl	175	39

	Ino	SOC	
CR/CRi	81%	29%	
CR	36%	17%	
CRi	45%	12%	
	700/	200/	
MRD CR	78%	28%	

Inotuzumab in R/R B-Precursor ALL: INO-VATE


Factors for Achievement of Response

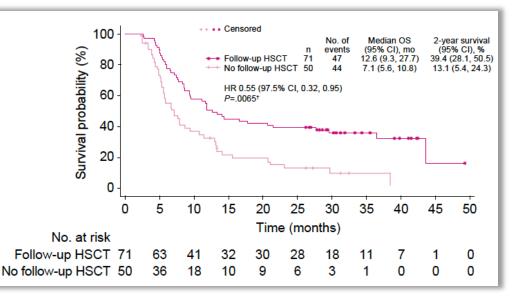
Kantarjian, et al. N Engl J Med. 2016.

	Ino	Chemo
Prior remission duration		
<12 mo	77%	24%
>12 mo	87%	39%
Salvage line		
First	88%	29%
Second	67%	31%
Age		
<55 yrs	80% 🔱	32%
>55 yrs	81%	25%
Previous allo SCT		
Yes	76%	27%
No	81%	30%
BM blasts		
<50%	87%	41%
>50%	78%	24%
PH-positive	79%	44%
	↓	

Overall Survival

Kantarjian, et al. Cancer. 2019.

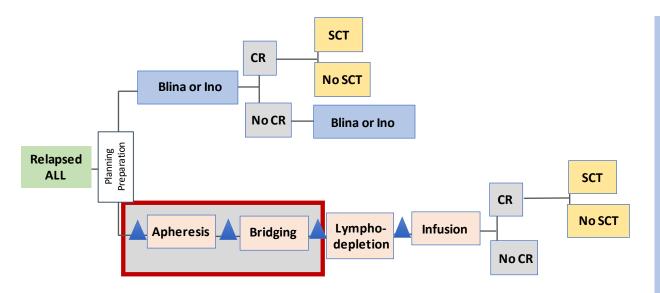
Optimized Use


- Not more than 2 cycles before SCT (VOD risk)
- No double-alkylators for conditioning

Inotuzumab in R/R B-Precursor ALL: INO-VATE

SOC Ino Ν 162 164 HSCT any time 48% 22% HSCT before further chemo 43% 11% HSCT direct after CR/CRi Proportion of IIT pts 10% 40% **Proportion of CR pts** 54% 34% •

HSCT Realization After Study Treatment


Overall Survival by HSCT

CD19/CD22 Antibodies in Adult ALL

- Different patient population
- High MRD response rates, but also high relapse rates
- Better outcomes if used in first salvage
- <u>Survival in SCT pts only; potentially high TRM!</u>
- Activity in Ph-positive ALL
- Toxicity profile favorable compared to SOC (eg, infections)
 - Blina: neurologic events
 - Ino: VOD
- Negative prognostic impact Blin: blast in BM >50%; Ino: WBC >10.000/μL
- No/limited data on late relapses
- No/limited data on extramedullary relapses
- Number of cycles needed not clear

Comparison of Inotuzumab/Blinatumomab vs CAR T-Cell Strategies

Heterogeneity of CAR T Trials

- CAR structure
- Vector
- Autologous/allogeneic
- T-cell selection/subset
- Bridging (chemo, blina, INO)
- Lymphodepletion
- Infusion Schedule
- Production time
- Selected sites
- Leukaemia burden at infusion
- Persistence of CAR T cells
- Subsequent SCT

CD19 CAR T Cells in Relapsed/Refractory Adult ALL

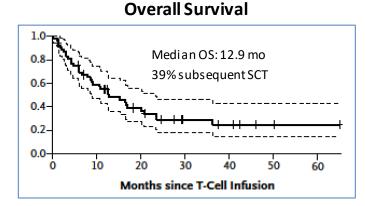
Park JH, et al. N Engl J Med. 2018

Inclusion criteria

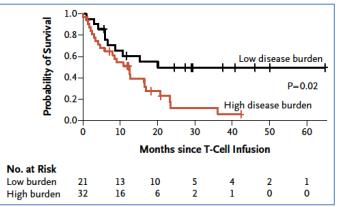
- R/R ALL or ALL in CR
- No specification for type of relapse

Patient characteristics

 >5% BM blasts:
 51%

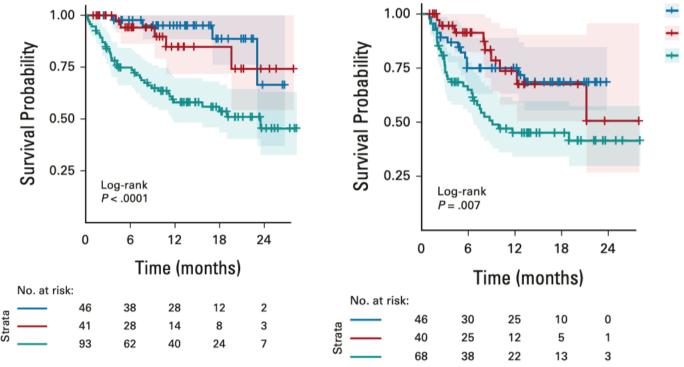

 <5% BM blasts + extram:</td>
 9%

 0.01-5% MRD:
 28%


 <0.01% no detect MRD</td>
 11%

Response rates

Recruited: 83 Treated: 53 64%) CRi: 44/53 (83%) Intent-to-treat:44/83 (53%)

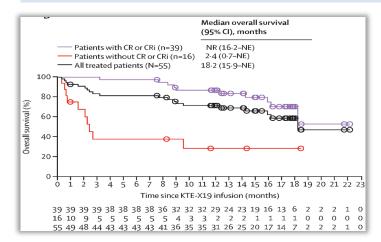


Overall Survival According to Disease Burden

Disease Burden Impacts Outcomes in Pediatric and Young Adult B-Cell Acute Lymphoblastic Leukemia After Commercial Tisagenlecleucel: Results From the Pediatric Real World CAR Consortium (PRWCC)

Schultz, et al. JCO. 2021

- 🗕 No detectable disease
- Low-disease burden
- 🗕 High-disease burden


CAR T Cells in Relapsed/Refractory ADULT ALL

Shah, et al. Lancet. 2021

Patient Characteristics (Treated; N = 55)

Age	40 (28–52)y
ECOG 1	71%
PH-positive	27%
≥3 therapies	47%
Blina	45%
Ino	22%
Allo SCT	42%
Primrefr	33%
BM blast before condi	tioning
≤5%	9%
>5–25%	13%
>25%	62%
Median	59% (25–87%)

	Treated	Enrolled
Total N	55	71
CR/CRi	73%	55%
Aplastic	5%	6%
No response	16%	15%
Unknown	5%	24%
Median DOR	13 mo	13 mo
Median RFS	12 mo	7 mo
Median OS	18 mo	19 mo

Do We Need a Transplant After CAR-T-Cell Therapy?

Greenbaum, et al. Front Oncol. 2021

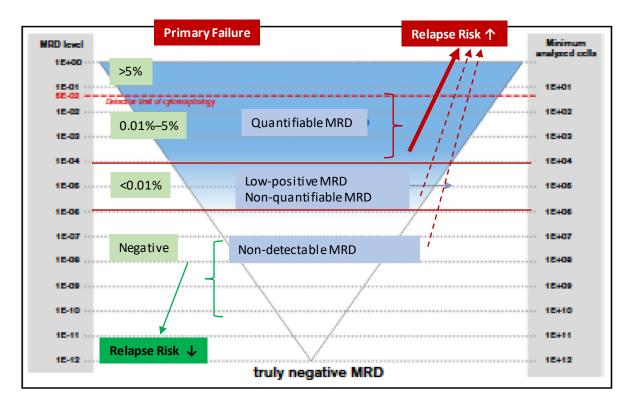
Study	# Patients	CAR	ALLO	NO ALLO
Park <i>et al.</i>	43	CD19-28z	N=17 Relapse in 35% TRM 35%	N= 26 Relapse <mark>65%</mark>
Lee <i>et al</i> .	51	CD19-28z	N=21 Relapse <mark>9%</mark>	N=7 Relapse <mark>86%</mark>
Pan <i>et al.</i>	45	CD19- 41BBz	N=27 Relapse <mark>7%</mark> TRM 7%	N=18 Relapse 50%
Jacoby <i>et al.</i>	20	CD19-28z	N=14 Relapse <mark>14%</mark>	N=7 Relapse <mark>51%</mark>

Most groups recommend SCT after CAR T in adult ALL

Ambiguous situation for relapse after SCT Potential factors for decision making

- Leukemia burden before CAR T
- CD19 expression before CAR T
- MRD after CAR T
- Persistence of CAR
- Persistence of B-cell aplasia

CAR T Cells in Adult ALL


- Promising data in selected, mostly younger patient populations but later treatment lines
- Limited data in "real" adults
- Limited availability in standard of care
- Complex process
- <u>Need for subsequent SCT not clear</u>
- Limited activity in higher leukemia burden ie, refractoriness to bridging

- No comparability with CD19/CD22 antibodies
- No/limited data for extramedullary relapses

Topics of the Talk

- 1. Definition of Relapse
- 2. Results of Standard Chemotherapy
- 3. Results of Immunotherapy in Relapsed/Refractory ALL
- 4. How to Optimize the Use of Immunotherapies
 - MRD setting
- 5. Consideration for Sequencing of Immunotherapies
- 6. Relapsed T-ALL
- 7. General Considerations for Relapsed ALL

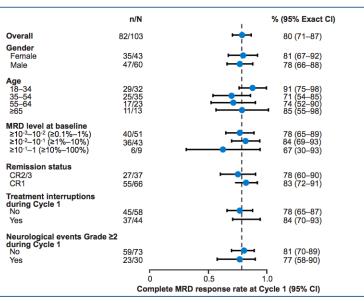
Response and Loss of Response in ALL: A Continuum!

Blinatumomab in MRD-Positive ALL

Gökbuget, et al. Blood. 2018

Selected inclusion criteria

- CD19-positive B-precursor ALL
- HematologicCR
- MRD ≥10⁻³
- No prior SCT

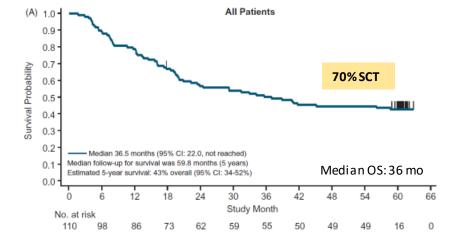

Treatment

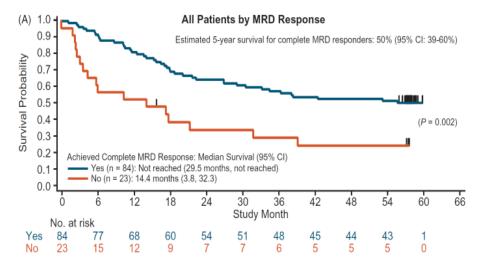
15 μg/m² as 4-wk civ (=1 cycle) i.th. prophylaxis

Primary endpoint

<u>MolCR</u>: Complete MRD response after 1 cycle (MRD-neg with sensitivity of at least 10–4 by PCR in reference lab)

Results	
Evaluable	110
Medianage	45 (18–76) yrs
Second/later CR	35%
MolCR:	78%
Median OS	36 mo
- Mol CR y/n	40 vs 12 mo
Median RFS	19 mo
- Mol CR y/n	35 vs 7 mo
- First/later CR	25 vs 11 mo


CR, complete remission; MRD, minimal residual disease; SCT, stem-cell transplantation.


Blinatumomab in MRD-Positive ALL

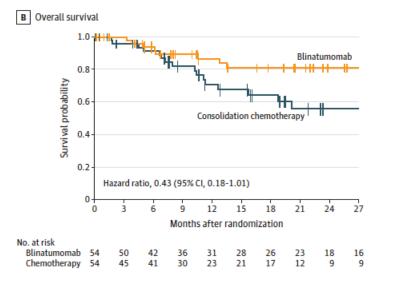
Gökbuget, et al. Leuk Lymphoma. 2020

Overall Survival: Ph-negative patients with BCP-ALL and MRD

Overall Survival by Complete MRD Response: All patients analyzed

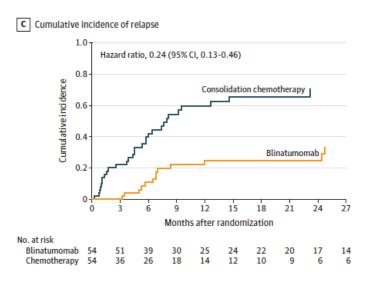
Can Blinatumomab Replace Intensive Chemotherapy Consolidation? Pediatric Relapse

Brown PA. JAMA. 2021: High- and Intermediate-Risk Pediatric R/R ALL

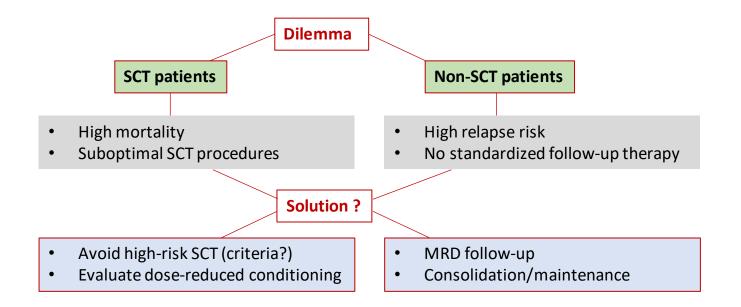

_	Blinatumomab	Blinatumomab	
Induction			SCT
	Chemo	Chemo	

Locatelli, et al. JAMA. 2021: High-Risk Pediatric R/R ALL

Induction Chemo Chemo Chemo	Blinatumomab SCT Chemo
-----------------------------	------------------------------


Blinatumomab vs Chemotherapy Consolidation: DFS/OS Locatelli, et al. JAMA. 2021

- Better DFS and OS
- Lower toxicity
- Improved MRD response in blinatumomabvs chemotherapy arm


Overall Survival

Relapse Incidence

Do We Need SCT After Achievement of MolCR in MRD-Positive ALL?

- MRD persistence is the most unfavorable prognostic factor in ALL
- 2-4 cycles of blinatumomab are unlikely to cure this disease subset

Topics of the Talk

- 1. Definition of Relapse
- 2. Results of Standard Chemotherapy
- 3. Results of Immunotherapy in Relapsed/Refractory ALL
- 4. How to Optimize the Use of Immunotherapies
 - MRD setting
 - Further approaches
- 5. Consideration for Sequencing of Immunotherapies
- 6. Relapsed T-ALL
- 7. General Considerations for Relapsed ALL

Immunotherapy in Adult ALL: Optimized Use

- Reducing leukemia burden
- Optimal target expression
- Avoiding target loss
- Avoiding relapse from extramedullary compartment
- Develop predictive parameters
 - Early response
- Continuation/maintenance or
- Optimized SCT

Blinatumomab in R/R B-Precursor ALL– Role of Debulking in Italian Registry Trial

Bonifacio, et al. Front Oncol. 2022

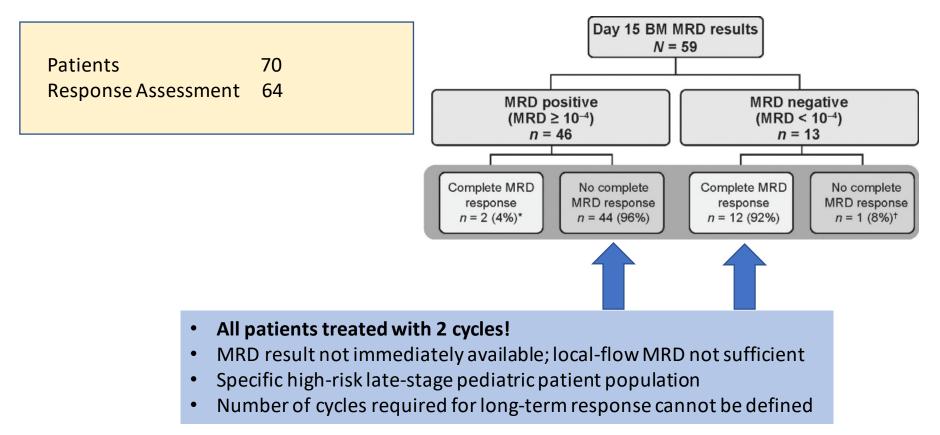
Patient Characteristics (N = 34)

Age:	45 (20–75) yrs
Ph-positive:	38%
Prior SCT	50%
First line:	20%

Debulking Strategies (invest. choice)

HD steroids:	21%
Low-intensive chemo:	53%
Intensive chemo:	15%
TKI ± steroid ± chemo:	12%

Blast Count Before/After Debulking


	Before	After
N	34	22
<20%	21%	82%
20–49%	18%	9%
>50%	59%	9%
Median	69 (6–90%)	8 (0–80%)

Immunotherapy in Adult ALL: Optimized Use

- Reducing leukemia burden
- Optimal target expression
- Avoiding target loss
- Avoiding relapse from extramedullary compartment
- Develop predictive parameters
 - Early response
- Continuation/maintenance or
- Optimized SCT

Blinatumomab: Day 15 Response in R/R Pediatric ALL

Brown, et al. BJH. 2020

Immunotherapy in Adult ALL: Optimized Use

- Reducing leukemia burden
- Optimal target expression
- Avoiding target loss
- Avoiding relapse from extramedullary compartment
- Develop predictive parameters
 - Early response
- Continuation/maintenance or
- Optimized SCT

Topics of the Talk

1. Definition of Relapse

2. Results of Standard Chemotherapy

3. Results of Immunotherapy in Relapsed/Refractory ALL

4. How to Optimize the Use of Immunotherapies

5. Consideration for Sequencing of Immunotherapies

6. Relapsed T-ALL

7. General Considerations for Relapsed ALL

Chemoimmunotherapy in R/R B-Precursor ALL

Jabbour, et al. Cancer. 2021

Patient 1–67

Mini Hyper-CVD × 8 Inotuzumab Cycle 1: d 3 1.8–1.3. mg/m² Cycle 2–4: d3 1.3–1.0 mg/m² Rituximab 2 × /cycle if CD20>20% Pomp Maintenance 3 years SCT: Physicians choice

Patient 68-:

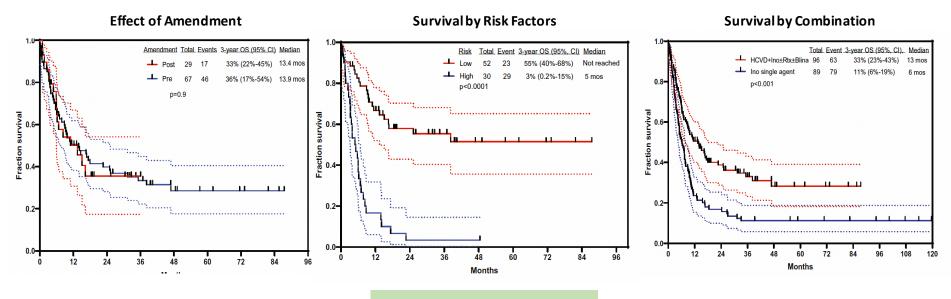
 Mini Hyper-CVD x 4

 Inotuzumab

 Cycle 1:
 d2 0.6 mg/m², d8 0.3 mg/m²

 Cycle 2–4:
 d2 0.3 mg/m², d7 0.3 mg/m²

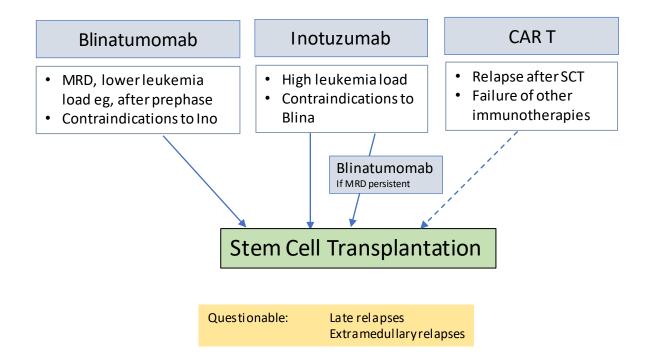
Blinatumomab 4 cycles


Maintenance shortened (12 courses)

3 × Blina every 3 courses

Best Overall Response (ORR)

_	
ORR:	80% (76%/90%)
CR	57%
CRp	20%
CRi	3%
ED	7% (10%/0%)
Failure	13%
MRD-neg:	57% at response
MRD-neg:	83%
ORR	
Salvage 1	91%
Salvage 2	59%
Salvage ≥3	57%
Ũ	


Chemoimmunotherapy in R/R B-Precursor ALL Jabbour, et al. *Cancer.* 2021

Adverse features CD22 expression <70%, or *KMT2A* rearrangements, or Low hypodiploidy/near triploidy

Treatment of R/R B-Precursor ALL – Potential Decision-Making: Blinatumomab-Inotuzumab-CAR-T-Cells

Adapted from Dhakala, et al. Leuk Lymph. 2019

What About Sequencing Blinatumomab and CAR T Cells? Myers, et al. JCO. 2021

1.00 Characteristic All Blina No CR **Blina** CR **Blina Naive** Partie laterature 412 31 42 339 Ν 0.75 No blina/low CR 64% 91% 93% 93% <.0001 and the set of the set MRD-neg CR 88% 61% 93% 90% <.0001 Blina/low 0.50 -74% CIR 24 mo 42% 43% 40% 0.0001* No blina/high RFS 24 mo 56% 23% 57% 59% < 0.0001* 0.25 -Blina/high 38% .0001* OS 24 mo 65% 76% 66% + Censored 0.00 *Naivevs Blina noCR nohi 167 81 26 11 107 40 176 12 notow 36 11 yes/hi 41 23 yesild 80 Ó 20 40 60

Overall Survival

Survival in months

CAR T Cells in Relapse Algorithm

Buechner, et al. Front Pediatrics. 2022

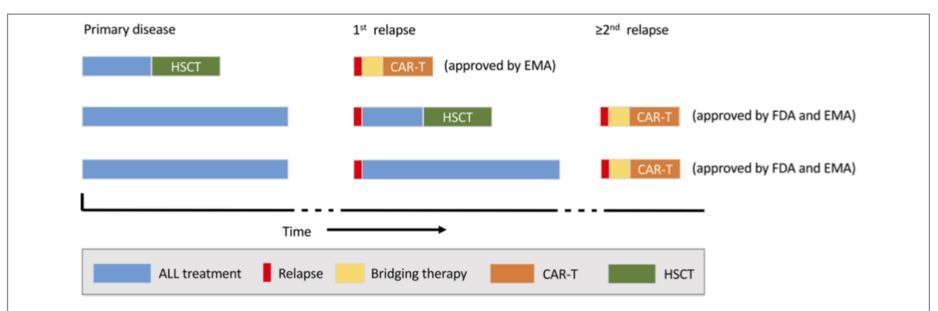


FIGURE 2 | Current indications for commercial chimeric antigen receptor (CAR) T-cell therapy (tisagenlecleucel). The possible timing of CAR-T (orange) within the treatment sequence for acute lymphoblast leukaemia (ALL) and relative to haematopoietic stem cell transplantation (HSCT; blue) is shown. EMA, European Medicines Agency; FDA, US Food and Drug Administration.

R/R ALL: MoAbs and CAR T Cells

First salvage based on evidence and availability, ie, MoAbs

Intercomparability of CAR T cells questionable

CAR T cells in SOC reserved for later lines

- Cost issues
- Delays in availability

How will things change when MoAbs become part of first line?

More clinical trials for CAR T cells needed

- Need for subsequent SCT?
- Decision criteria for SCT?
- Standards for bridging?
- Data for earlier lines, eg, MRD setting

Topics of the Talk

- 1. Definition of Relapse
- 2. Results of Standard Chemotherapy
- 3. Results of Immunotherapy in Relapsed/Refractory ALL
- 4. How to Optimize the Use of Immunotherapies
- 5. Consideration for Sequencing of Immunotherapies

6. Relapsed T-ALL

7. General Considerations for Relapsed ALL

GMALL Approach to Relapsed T-ALL

Late Relapse:	Repeated induction ± Bortezomib
Early Relapse:	Nelarabine/cyclo
Experimental:	Venetoclax + induction CD38 Antibody + induction Dasatinib Anti-CD3–CAR T cells High doses MTX/asparaginase In vitro drug testing

Extramedullary:

Individual approach

N. Gökbuget 9/2022

Topics of the Talk

- 1. Definition of Relapse
- 2. Results of Standard Chemotherapy
- 3. Results of Immunotherapy in Relapsed/Refractory ALL
- 4. How to Optimize the Use of Immunotherapies
- 5. Consideration for Sequencing of Immunotherapies

6. Relapsed T-ALL

7. General Considerations for Relapsed ALL

General Treatment Issues in R/R ALL

- 1. Re-establish MRD test (clonal evolution?)
- 2. Initiate RNA-sequencing
- 3. Initiate prephase treatment as soon as all diagnostics are done
- 4. Plan CNS prophylaxis
- 5. Treatment plan with regular reassessment (at least 4 weekly)
- 6. Plan SCT
- 7. Avoid interruptions and delays
- 8. Avoid long-term single drug treatment
- 9. Head for cycling consolidation/maintenance

Case 1: Adult ALL

Loic Vasseur

Clinical Case Presentation: ALL in Relapse

Loïc Vasseur Adolescent and Young Adult Hematology Unit Saint Louis Hospital Assistance Publique-Hôpitaux de Paris (AP-HP) Paris, France 23rd September 2022

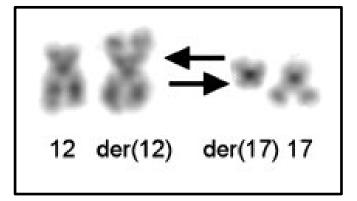
<u>At diagnosis</u>

20y-old male patient, engineering student, w/o medical history

Leukocytes: 1.1 G/L, no CNS infiltration

Pro-BALL

t(12;17), +X with ZNF384-TAF15, IKZF1wt

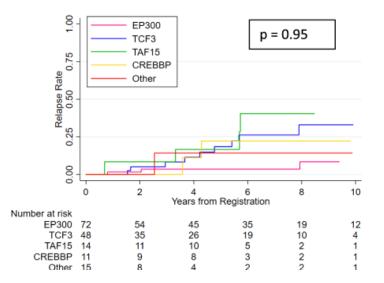

GRAALL-2014 (pediatric inspired)

MRD1 (week-6): 2×10^{-4} , MRD2 (week 12): <0 (by IG/TR qPCR)

Bone marrow relapse during maintenance phase

CR1 duration: 20 months No CNS infiltration CD19+, CD22+, same molecular characteristics

Nyquist KB, Thorsen J, Zeller B, Haaland A, Trøen G, Heim S, et al. Identification of the TAF15–ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t(12;17)(p13;q12). *Cancer Genetics*. 2011;204(3):147-152.


ZNF384-rearranged ALL

<u>ZNF384</u>

Transcription factor Fusion with: *EWSR1, EP300, TCF3, TAF15, CREBBP, BMP2K*... Overexpression of hematopoietic stem cell genes

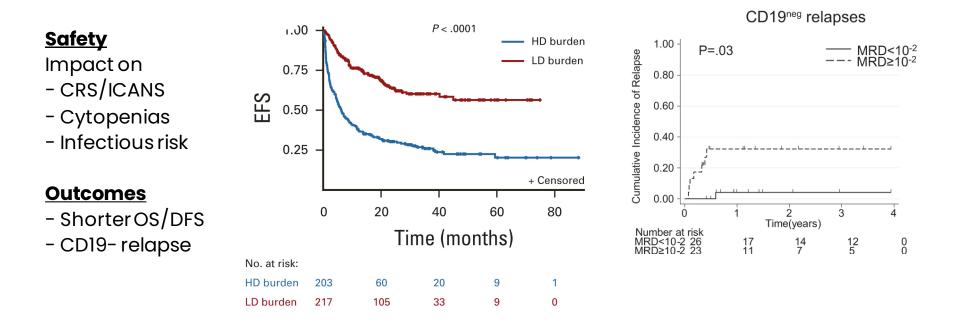
ZNF384-r BCP-ALL

3-5% of BCP-ALL CD10+ low CD13/CD33+ CD25+ Cases of mixed-phenotype ALL and myeloid switch Intermediaterisk

Hirabayashi S, Butler ER, Ohki K, Kiyokawa N, Bergmann AK, Möricke A, et al. Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. *Leukemia*. 2021;35(11):3272-3277. Alexander TB, Gu Z, lacobucci I, Dickerson K, Choi JK, Xu B, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. *Nature*. 2018;562(7727):373-379.

Chemotherapy base salvage

HD AraC, mitoxantrone, VP-16, asparaginase Hyperammonemic encephalopathy Failure (85% blasts) at D35 Decision of proceed to CAR T-cell therapy Successful apheresis (TNC: 0.7 × 10⁸/kg, CD3+: 5.7 × 10⁸/kg)


WHICH BRIDGING STRATEGY WOULD YOU CHOOSE FOR <u>THIS PATIENT?</u>

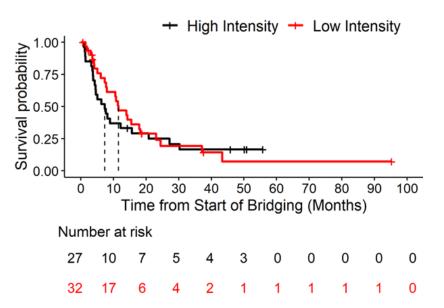
A. Blinatumomab

B. Inotuzumab with chemotherapy

- C. Inotuzumab monotherapy
- D. Weekly VCR-DEX
- E. Chemotherapy with hyperCVAD

Tumor burden before CAR T cells

Myers RM, Taraseviciute A, Steinberg SM, Lamble AJ, Sheppard J, Yates B, et al. Blinatumomab Nonresponse and High-Disease Burden Are Associated With Inferior Outcomes After CD19-CAR for B-ALL. *J Clin Oncol.* 2022;40(9):932-944.


Dourthe ME, Rabian F, Yakouben K, Chevillon F, Cabannes-Hamy A, Méchinaud F, et al. Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia. 2021;35(12):3383-3393.

Bridging strategy

Low vs high intensity

Prevent disease progression Reduce tumor burden Limit risk of complications

No demonstration of higherintensity bridging strategy

Perica K, Flynn J, Curran KJ, Rivere I, Wang X, Senechal B, et al. Impact of bridging chemotherapy on clinical outcome of CD19 CAR T therapy in adult acute lymphoblastic leukemia. *Leukemia*. 2021;35(11):3268-3271.

Decision to proceed to CAR T-cell therapy

Bridging therapy

- Weekly VCR/DEX + ITT (D1, D8): peripheral blasts at D15
- HDAC (D15): colitis, septic shock, transfer to ICU (norepinephrin), persistant peripheral blasts
- Inotuzumab ozogamicin (D28, D35)
- Prelymphodepletion (D45): cytopenia, 6% of BM blasts

CAR T-cell therapy

Lymphodepletion

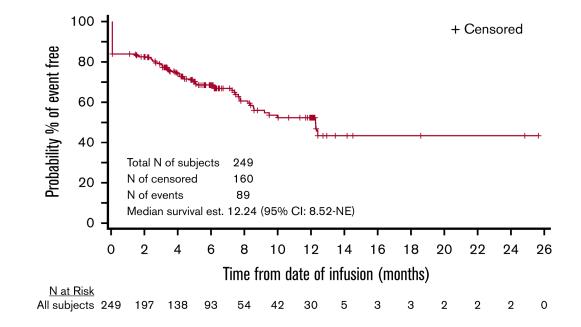
 $Cy 500 mg/m^2 D - 4$, D - 3, FLU $30 mg/m^2 D - 5 to D - 2$

Tisagenlecleucel

Fever at D1 Hypotension at D3 (volume expansion), treatment with tocilizumab ICU D3 to D6 : DEX for 2 days at D5 and D6, no vasopressor $T_{max} = D9$, $C_{max} = 1.200/\mu L$ Neutrophil recovery at D9 with G-CSF Discharge at D16

D28 evaluation

B-cell aplasia Complete remission, MRD: 1 × 10⁻⁴



A. HSCT B. Follow-up C. Blinatumomab

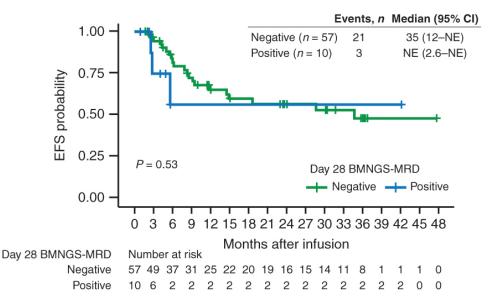
Real-world data of CAR T

CIBMTR

N = 410 patients CR rate: 86.8% PFS 6 months: 38.7% (30.5-46.9)

Pasquini MC, Hu ZH, Curran K, Laetsch T, Locke F, Rouce R, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. *Blood Adv.* 2020;4(21):5414-5424.

MRD after CAR T cells

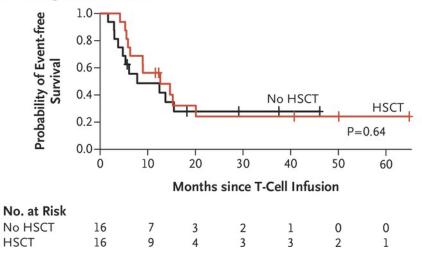

MRD M1 CIBMTR

85.5% of CR

MRD- in CR patients: 99.1% (115/116) 46% of MRD- before infusion

ENSIGN, ELIANA

MRD NGS (sensitivity 10⁻⁶) No difference at D28 in CR patients Long-term responders



Pulsipher MA, Han X, Maude SL, Laetsch TW, Qayed M, Rives S, et al. Next-Generation Sequencing of Minimal Residual Disease for Predicting Relapse after Tisagenlecleucel in Children and Young Adults with Acute Lymphoblastic Leukemia. *Blood Cancer Discov.* 2022;3(1):66-81.

HSCT after CAR T cells

<u>HSCT</u>

CIBMTR: n = 34 (16;5%) MSKCC: n=17 (38.6%) No difference in HSCT in CR MRDpatients Event-free Survival, According to HSCT Status

Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):449-459.

Follow-up after CAR T cells

MRD1 control at 1.5 months: undetectable

MRD control at 2 months: positive not quantifiable (1 out of 2 targets, sensitivity 10⁻⁴)

MRD control at 2.5 months: undetectable

At 6 months without further therapy

- Persistence of complete MRD response
- Persistence of B-cell aplasia
- Back to engineering school

Case 2: Adult ALL

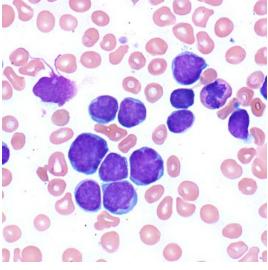
Anjali Cremer

GMALL German Multicenter Study Group for Adult Acute Lymphoblastic Leukemia

FRANKFURT CANCER INSTITUTE

Clinical Case: Relapsed/Refractory Adult ALL

Global Leukemia Academy EU Meeting

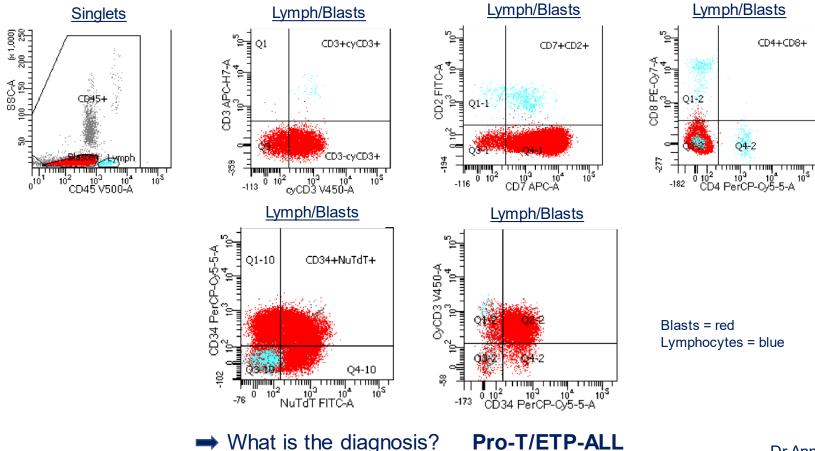

Dr med Anjali Cremer

University Hospital Frankfurt Department of Hematology/Oncology

September 23–24, 2022

Clinical Characteristics

- Female, 42 yr
- Presents with fatigue, dyspnea, and cough lasting a few weeks, weight loss during the last month
- Leukocytes 264/nL, thrombocytes 208/nL, Hb 8.3 g/dL, blasts 72%



Carton and

www.cap.org

Initial Immunophenotype

Dr Anne Wilke

Risk Factors

High leukocyte counts	>30 G/L B-cell precursor ALL
Subtype	Pro-B, early T, mature T
Late CR	>3 weeks (after Induction II)
Cytogenetics/Molecular aberrations	t(9;22) – <i>BCR-ABL</i> t(4;11) – <i>KMT2A-AFF1</i>
Minimal residual disease (MRD)	MRD level >10 ⁻⁴ MRD increase >10 ⁻⁴ after previous CR

- 1. Early T-ALL, MRD positive (after Consolidation I)
- 2. Early T-ALL, MRD negative (after Consolidation I)
- 3. Mature T-ALL, MRD positive (after Consolidation I)
- 4. Thymic T-ALL, MRD positive (after Consolidation I)
- 5. Thymic T-ALL, MRD negative (after consolidation I)

Treatment

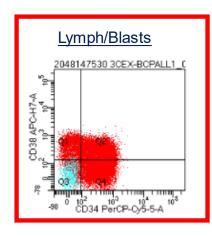
- 11/2020 Primary diagnosis: Early T-cell precursor ALL
- 11-12/2020: GMALL study protocol: Induction I, Induction II
 > MRD positive <10⁻⁴
- 2/2021: Consolidation I
 - > hCR, PET: negative, MRD positive 2 × 10⁻⁴
- 3/2021: Consolidation III instead of II bridge to transplant to avoid PEG-asparaginase toxicity
 > MRD positive 5 × 10⁻⁴
- 4/2021: Nelarabine (1500 mg/m² d1, 3, 5)
 - > MRD before SCT: MRD 2 × 10⁻³
- 5/2021: Allogeneic stem cell transplantation MUD, fludarabine 30 mg/m² day –6 until –3, TBI 2 × 2 Gy d –3, –2

Treatment After SCT

MRD

- 5/2021 Before SCT: 2 × 10⁻³
- 7/2021 After SCT: <3 × 10⁻⁵
- 8/2021
- 9/2021
- 10/2021
- <3 × 10⁻⁵ <3 × 10⁻⁵
- 3 × 10⁻⁴

Chimerism

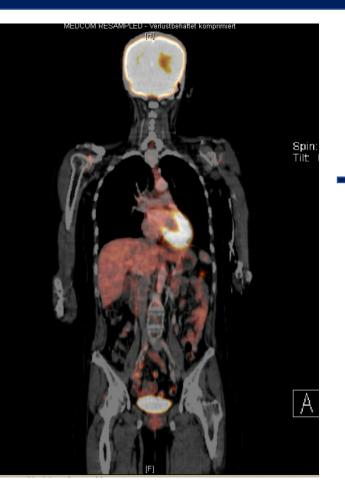

- 7/2021 After SCT: <3 × 10⁻⁵
- 8/2021
- 9/2021
- 10/2021

<3 × 10⁻⁵ 100%

100% 100%

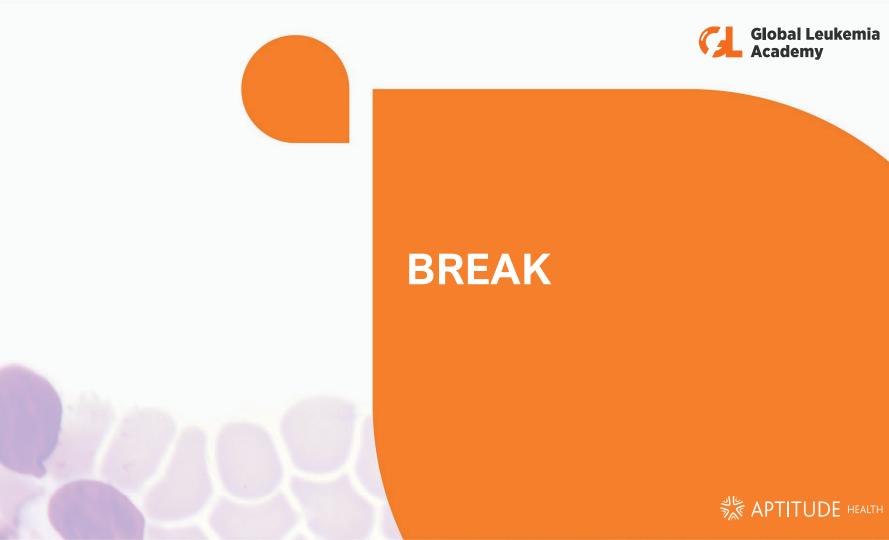
Treatment

 Daratumumab cycle 1–2
 Donor lymphocyte infusion (DLI) up to 0.5 × 10⁷ CD3+ cells


Treatment After SCT

MRD

- 5/2021 Before SCT: 2 × 10⁻³
- 7/2021 After SCT: <3 × 10⁻⁵
- 8/2021
- 9/2021
- 10/2021


<3 × 10⁻⁵ 3 × 10⁻⁴

<3 × 10⁻⁵

Treatment

 Daratumumab cycle 1–2
 Donor lymphocyte infusion (DLI) up to 0.5 × 10⁷ CD3+ cells

Beyond the Horizon: New and Future Treatment Approaches for Adult and Older ALL Patients

Nicola Gökbuget

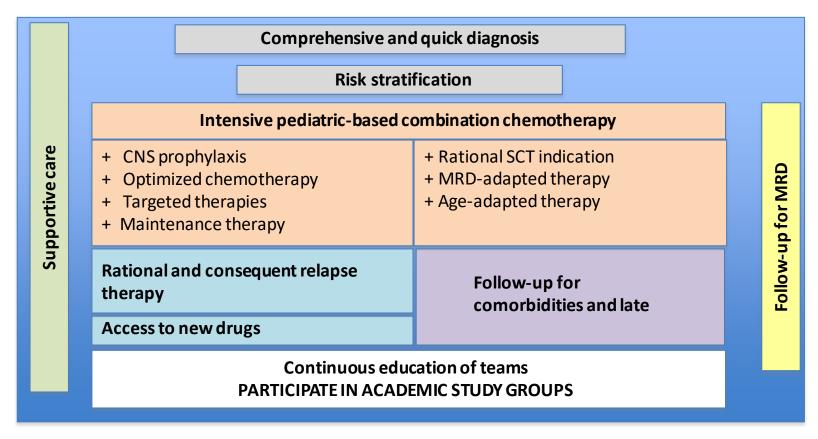
Beyond the Horizon: New and Future Treatment Approaches for Adult and Older ALL Patients

Nicola Gökbuget

Gökbuget 9/2021

Potential Conflicts of Interest

Speaker Honoraria, Travel Support, Advisory Board

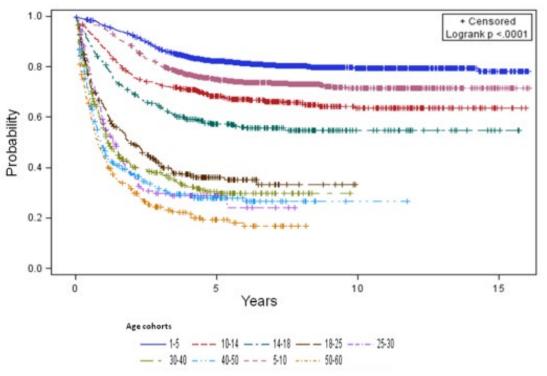

- Amgen
- Celgene
- Gilead
- Novartis
- Pfizer
- Jazz Pharmaceuticals
- Incyte
- Autolus

Research Support (institutional)

- Amgen
- Pfizer
- Novartis
- Servier
- Jazz Pharmaceuticals
- Incyte

Gökbuget 9/2021

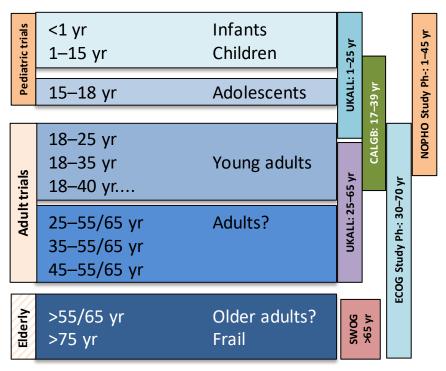
Modern Management of ALL for All Age Groups



Selection of Topics

1. Age Groups

- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions
- 8. Personalized Medicine in ALL
- 9. Late Effects


Treatment Results in ALL Depends on Age: Children vs Adults

Essential factors for decreasing survival with increasing age

- Lower-dose intensity and higher risk of complications
- Increasing proportion of patients with high-risk features
 - Pro B-ALL
 - MLL rearranged ALL
 - Hypodiploid ALL
 - Early T-ALL
 - (Ph-positive)
- Unknown factors of disease biology

What Is the Meaning of "Young" and 'Old' in the ALL World?

Will we come to new, reasonable age definitions,

eg, depending on general condition and comorbidities and planned treatments?

Selection of Topics

- 1. Age Groups
- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions
- 8. Personalized Medicine in ALL
- 9. Late Effects

Diversity of Adult ALL

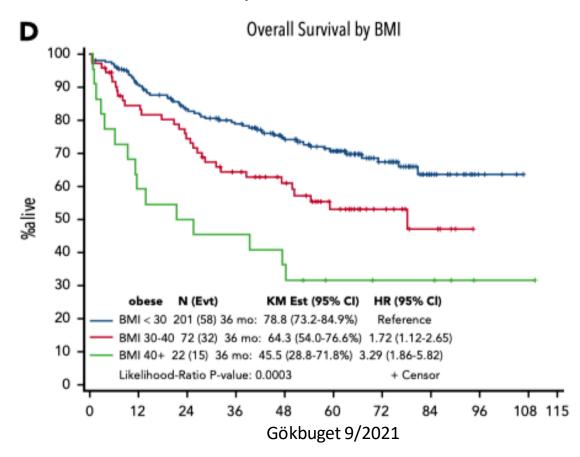
At First diagnosis

During First-Line Treatment

1. Clinical

- Bone marrow involvement
- Extramedullary involvement
- Blood counts
- Age
- ECOG status
- Comorbidities
- BMI

2. Biological


- Subtype
- Genetic aberrations
 - Translocations
 - Other genetic aberrations like mutations, deletions
 - Aberrant gene expression
 - Gene polymorphisms

- 1. Cytologic response
- 2. Molecular response
- 3. Clinical toxicities/complications

Risk factors for

- Non-response
- Complications
- Early death
- Death in CR
- Molecular failure
- Relapse
- Late complications

Pediatric Regimen in AYA (17–39 yr) Stock, et al. *Blood.* 2019.

Diversity of Adult ALL

At First diagnosis

During First-Line Treatment

1. Clinical

- Bone marrow involvement
- Extramedullary involvement
- Blood counts
- Age
- ECOG status
- Comorbidities
- BMI

2. Biological

- Subtype
- Genetic aberrations
 - Translocations
 - Other genetic aberrations like mutations, deletions
 - Aberrant gene expression
 - Gene polymorphisms

- 1. Cytologic response
- 2. Molecular response
- 3. Clinical toxicities/complications

Risk factors for

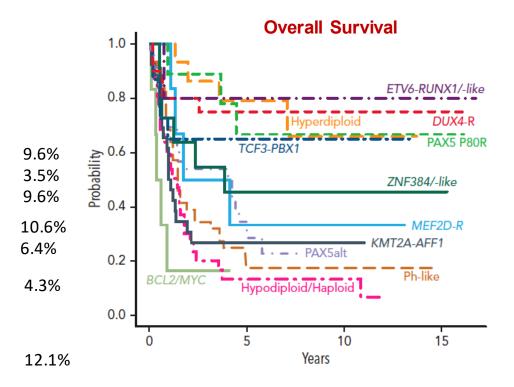
- Non-response
- Complications
- Early death
- Death in CR
- Molecular failure
- Relapse
- Late complications

International Consensus Classification of Myeloid Neoplasms and Acute Leukemia: Integrating Morphological, Clinical, and Genomic Data

Arber, et al. *Blood*. 2022.

Table 28. Classification of acute lymphoblastic leukemia (synonym: lymphoblastic leukemia/lymphoma)

B-acute lymphoblastic leukemia (B-ALL) B-ALL with recurrent genetic abnormalities B-ALLwith t(9;22)(q34.1;q11.2)/BCR::ABL1 with lymphoid only involvement with multilineage involvement B-ALLwith t(v;11q23.3)/KMT2A rearranged B-ALL with t(12;21)(p13.2;q22.1)/ETV6::RUNX1 **B-ALL**, hyperdiploid B-ALL, low hypodiploid B-ALL, near haploid B-ALL with t(5:14)(g31.1:g32.3)/IL3::IGH B-ALL with t(1;19)(q23.3;p13.3)/TCF3::PBX1 B-ALL, BCR:: ABL1-like, ABL-1 class rearranged B-ALL, BCR::ABL1-like , JAK-STAT activated B-ALL. BCR::ABL1-like , NOS B-ALL with iAMP21 B-ALL with MYC rearrangement B-ALL with DUX4 rearrangement B-ALL with *MEF2D* rearrangement B-ALL with ZNF384(362) rearrangement B-ALL with NUTM1 rearrangement B-ALL with HLF rearrangement B-ALL with UBTF::ATXN7L3/PAN3,CDX2 ("CDX2/UBTF") B-ALL with mutated *IKZF1* N159Y B-ALLwith mutated PAX5 P80R Provisional entity: B-ALL, ETV6::RUNX1-like Provisional entity: B-ALL, with PAX5 alteration Provisional entity: B-ALL, with mutated ZEB2 (p.H1038R)/IGH::CEBPE Provisional entity: B-ALL, ZNF384 rearranged-like Provisional entity: B-ALL. KMT2A rearranged-like

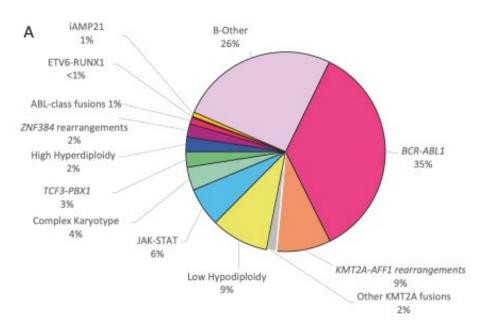

New Subtypes Excellent DUX4 ZNS384 Variable NUTM1 Good IK7F1 Intermediate PAX5P80R Intermediate MYC Poor MFFD2 Poor CDX2/UBTF Poor HLF Very poor

Molecular Classification in Adult Ph-Negative B-Precursor ALL

Paietta, et al. Blood. 2021.

UKALLXII/ECOG-ACRIN E2993; 1993–2006 N = 1229 Tested: 264

Molecular subgroup	Number of patients	%
DUX4-R	22	7.8
ETV6-RUNX1/-like*	5	1.8
TCF3-PBX1	15	5.3
KMT2A-AFF1	27	9.6
KMT2A-non-AFF1	10	3.5
PAX5alt	27	9.6
PAX5 P80R	10	3.5
Ph-like CRLF2-R	30	10.6
Ph-like non-CRLF2-R	18	6.4
ZNF384-R/-like*	11	3.9
MEF2D-R	6	2.1
BCL2/MYC	12	4.3
ZEB2/CEBPE	4	1.4
iAMP21	3	1.1
TCF3-HLF	1	0.4
нн	16	5.7
LH/NH	34	12.1


Prognostic Impact of Molecular Aberrations in B-Precursor ALL

Moorman, et al. Leukemia. 2022.

De novo ALL 25–65 yr (UKALL14): N = 652

Frequency of Aberrations

Suggested Risk Groups

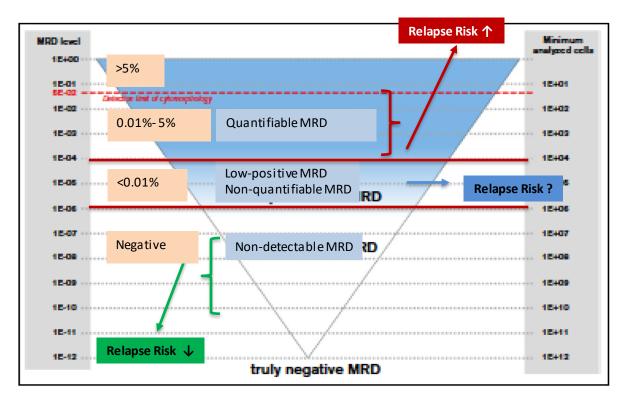
Genetic Risk Group	Definition	Freq
Standard risk (SR)	BCP-ALL with <i>ZNF384</i> -r, HeH and other abnormalities	34%
High risk (HR)	<i>KMT2</i> A-r	10%
Very High Risk (VHR)	Low hypodiploid, complex karyotype, JAK-STAT abnormalities	19%
Tyrosine kinase activating (TKA) fusions	BCR-ABL1, ABL-class fusions	36%

1

Diversity of Adult ALL

At First Diagnosis

- 1. Clinical
 - Bone marrow involvement
 - Extramedullary involvement
 - Blood counts
 - Age
 - ECOG status
 - Comorbidities
- 2. Biological
 - Subtype
 - Genetic aberrations
 - Translocations
 - Other genetic aberrations like mutations, deletions
 - Aberrant gene expression
 - Gene polymorphisms

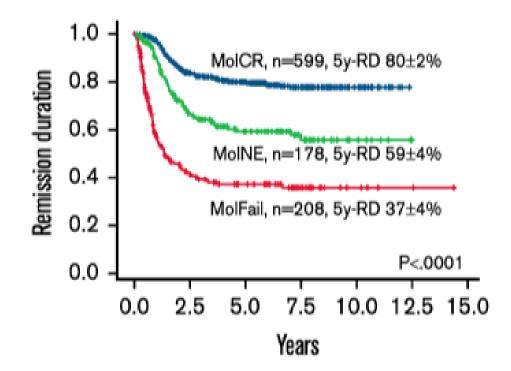

During First-Line Treatment

- 1. Cytologic response
- 2. Molecular response
- 3. Clinical toxicities/complications

Risk factors for

- Non-response
- Complications
- Early death
- Death in CR
- Molecular failure
- Relapse
- Late complications

What Does MRD Mean?


Minimal Residual Disease

Relevance of MRD Level in Correlation with Sensitivity

Clarification of Intermediate MRD by NGS (week 16)

Kotrova, et al. Blood Advances. 2022.

Total N:	1019	
MolCR: MolFail MolNE	603 (59% 238 (23% 178 (17%	<i>(</i> ₀)
MRD insu MRD <10 MRD <10 MRD not) ⁻⁴ , quant) ⁻⁴ not q	50 (28%) 4 (2%) 57 (32%) 67 (38%)

Diagnostics and Risk Stratification

- All pts sequencing (genome, RNA, SNP)?
- Risk stratification integrating molecular and MRD markers?
- New goals of risk stratification?
- MRD sensitivity? How deep will we go? Consequences? Bone marrow vs PB vs other sites?

Selection of Topics

- 1. Age Groups
- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions
- 8. Personalized Medicine in ALL
- 9. Late Effects

Outcomes of Younger Adults With Pediatric-Based Therapies

Author	Ν	Age	CR	OS
Ribera, 2008	81	29 (15–30)	98%	69% (6y)
Huguet, 2009	225	31 (15–60)	93%	60% (3y)
Gökbuget, 2010	1226	35 (15–55)	91%	60%/67% ^a (3y)
Haiat, 2011	40	33 (18–55)	90%	75% (3y)
Rijneveld, 2011	54	26 (17–40)	91%	72% (2y)
Rytting, 2014	85	21 (13–39)	94%	74% (3y)
De Angelo, 2015	92	28 (18–50)	85%	67% (4y)
Stock, 2019	295	24 (17–39)	89%	73% (3y)

For Several Decades, Many Adult ALL Study Groups Have Used Pediatric-Based Regimens¹

Gökbuget 9/2021

^a Asparaginase doses at start of induction.
1. Boissel N et al. *J Adolesc Young Adult Oncol*. 2015;4:118-128.

Further Treatment Optimization in Younger Patients With ALL

- Asparaginase-intensification
- Rituximab in CD20-positive ALL
- Maintenance therapy
- Optimized management of T-ALL/LBL
- Targeted therapy in molecular failure
- Stem Cell transplantation

Further Treatment Optimization in Younger Patients With ALL

- Asparaginase-intensification
- Rituximab in CD20-positive ALL
- Maintenance therapy
- Optimized management of T-ALL/LBL
- Targeted therapy in molecular failure
- Stem Cell transplantation

- Immunotherapy in First Line for B-Prec
 - to replace chemotherapy cycles
 - to replace SCT
- Optimized management of T-ALL/LBL
 - Nelarabin?
 - Asparaginase?
 - New compounds
 - Bortezomib
 - CD38 antibodies
 - Venetoclax

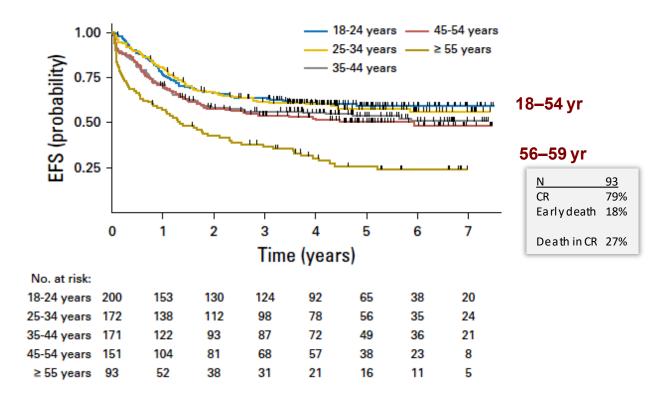
Selection and Sequencing of Immunotherapies

First-Line: Principles Including Pediatric Relapse

Replace Induction				
Blina and/orIno	Standard chemotherapy/Dose-reduced chemotherapy			
Replace consolidat	tion			
Induction	Blina and/orIno	Standard chemotherapy		
Add consolidation	_			
Induction	Blina and/orIno	Standard chemotherapy		
Add consolidation	in MRD+			
Induction	Blina	SCT or chemotherapy		
Replace SCT in HR	incl MRD+			
Induction	Consolidation	Blina		
Replace SCT in HR	incl MRD+			

How to achieve marketing authorization? How to achieve reimbursement?

De Novo: Younger Patients 18–55 yr, Ph-Negative

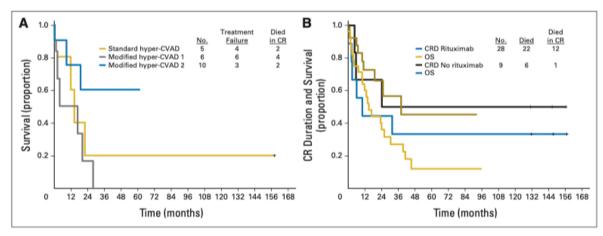

- Replacement of intensive, toxic chemotherapies by immunotherapy
- Optimization of pediatric-based therapy
- Focus on ALL-type compounds
- Reduction of SCT
- New targeted approaches for high-risk patients (to be defined)
- Improve patient involvement

Selection of Topics

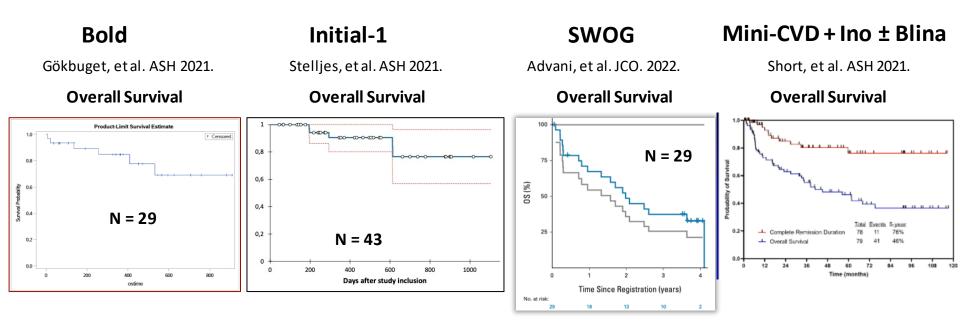
- 1. Age Groups
- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions
- 8. Personalized Medicine in ALL
- 9. Late Effects

Upper Age Limit for a Pediatric-Inspired Therapy?

Huguet, et al. J Clin Oncol. 2018.



Hyper-CVAD in Older Patients (>60 yr)

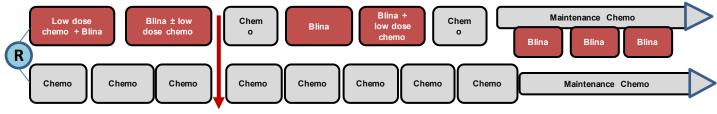

Thomas, et al. JCO. 2010.

Total 58 CR 88% RD 3 yr 53% OS 3 yr 29% Death in CR: N = 18 (31%)

Standard hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone) regimen Standard, modified hyper-CVAD 1 with rituximab inclusive of anthracycline intensification, Modified hyper-CVAD 2 with rituximab eliminating anthracycline intensification are depicted.

New Immunotherapy Approaches in Older Patients

Blinatumomab Alternating With Low-Intensity Chemotherapy vs Chemotherapy Standard of Care in Ph/BCR-ABL–Negative Older ALL Patients


Major inclusion criteria

• ≥55 years of age

Primary Endpoints

- Event Free Survival (EFS)
- Overall Survival (OS): time from randomization(enrollment) until death due to any cause Patient Number: 274

Design: global, randomized pivotal phase III trial after safety run-in

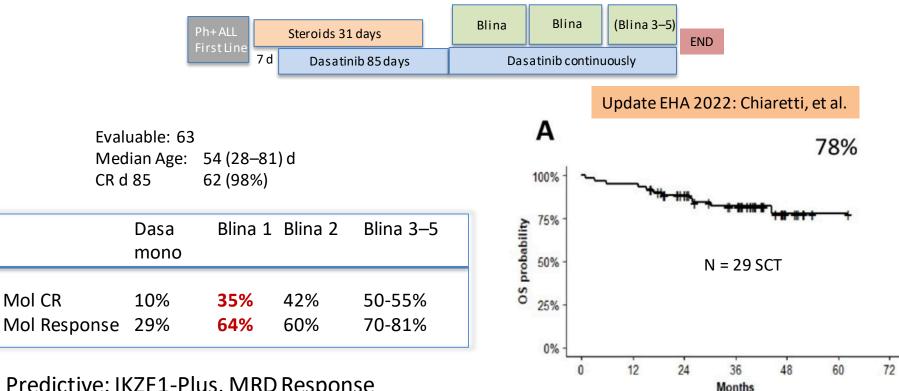
GMALL Elderly or reduced Hyper-CVAD

De Novo: Older Patients >55–? Yr, Ph-Negative

- New age limits
- Full integration of MRD-based therapy
- Dose-reduced chemo + immunotherapy in first line
- Selective role of SCT
- Optimization of care standards
- Frail: chemo-free regimens

Selection of Topics

- 1. Age Groups
- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions
- 8. Personalized Medicine in ALL
- 9. Late Effects

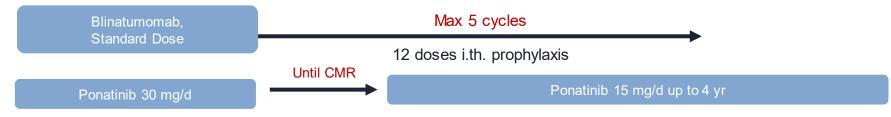

Management of Ph/BCR-ABL–Positive ALL: First Line

Foa and Chiaretti. N Engl J Med. 2022.

able 1. Trials of Tyrosine Kinase Inhibitors (TKIs) for Frontline Treatment of Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia.*							
Study Group and Regimen	No. of Patients	Age	CHR	Molecular Response†	Disease-free Survival	Overall Survival	Allo-SCT Allocation
		median (range)			percent		
First-generation TKI							
GMALL ¹⁷	92		96				
Imatinib+CHT, alternating regimen	47	46 yr (21–65)		26 after cycle 2 of induction	52 at 2 yr (EPR)	36 at 2 yr	77
Imatinib+CHT, concurrent regimen	45	41 yr (19–63)		27 after cycle 2 of induction	61 at 2 yr (EPR)	43 at 2 yr	77
GMALL ¹⁸ : imatinib vs. CHT (induction)	55						
Imatinib	28	66 yr (54–79)	96	5.6×10⁻⁵ at wk 4†	29.5 at 18 mo	57 at 18 mo	NA
СНТ	27	68 yr (58–78)	50	3.2×10 [⊸] at wk 4†	35 at 18 mo	41 at 18 mo	
GRAALL ¹⁹ : imatinib + CHT	30	65.8 yr (58–78)	72	NA	58 at 1 yr (RFS)	66 at 1 yr	NA
GRAALL ²⁰ : imatinib+CHT	45	45 yr (16–59)	96	29 after induction	51 at 18 mo	65 at 18 mo	48
GRAALL ²¹ (updated): imatinib+CHT	45	45 yr (16–59)	96	29 after induction	44 at 4 yr	52 at 4 yr	53
GRAALL ²² : group 1, imatinib+low-dose CHT; group 2, imatinib+CHT	268	47 yr (18–59)	Group 1: 98 Group 2: 91	Group 1: 28.6 Group 2: 22.6 After cycle 2 of induction	54 at 5 yr	45 at 5 yr	63
JALSG ²³ : imatinib+CHT	80	45 yr (15–64)	96	NA	60 at 1 yr (EFS)	76 at 1 yr	61
JALSG ²⁴ (updated): imatinib+CHT	99	45 yr (15–64)	97	NA	50 at 5 yr	43 at 5 yr	61
PETHEMA ²⁵ : imatinib + CHT	30	44 yr (8–62)	90	21 after induction	30 at 4 yr	30 at 4 yr	53
PETHEMA ²⁶ : imatinib + low-dose CHT	29	38 yr (NA)	100	39 after induction	63 at 2 yr (EFS)	NA	90
NILG ²⁷ : imatinib+CHT	59	45 yr (20.4–66)	92	25 at wk 10	39 at 5 yr	38 at 5 yr	57
Canada ²⁸ : imatinib+CHT	32	46 yr (18–60)	94	10 after induction	50 at 3 yr (EFS)	53 at 3 yr	50
UKALL ²⁹ : imatinib+CHT	175	42 yr (16–64)	92	NA	50 at 4 yr (RFS)	38 at 4 yr	46
GIMEMA ³⁰ : imatinib only	29	69 yr (61—83)	100	4 after induction	48 at 1 yr	74 at 1 yr	NA
GIMEMA ³¹ : imatinib followed by CHT	49	45.9 yr (16.9–59.7)	100	NA	50 at 3 yr	69 at 3 yr	
MDACC ³² (updated): imatinib+CHT	45	51 yr (17–84)	93	20 after induction	43 at 5 yr	43 at 5 yr	18

Blinatumomab in First-Line Ph-Positive ALL: D-ALBA Trial

Foa, et al. N Engl J Med. 2020.

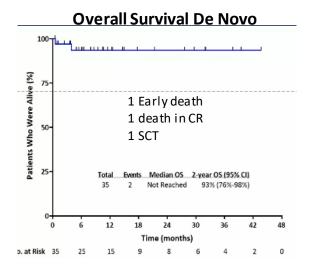


Predictive: IKZF1-Plus, MRD Response

Ponatinib and Blinatumomab in First-Line Ph+ ALL

Short, et al. EHA 2022.

• Age ≥18 yr, de novo Ph+ ALL or R/R Ph+ ALL or CML-LBP



Patient Characteristics

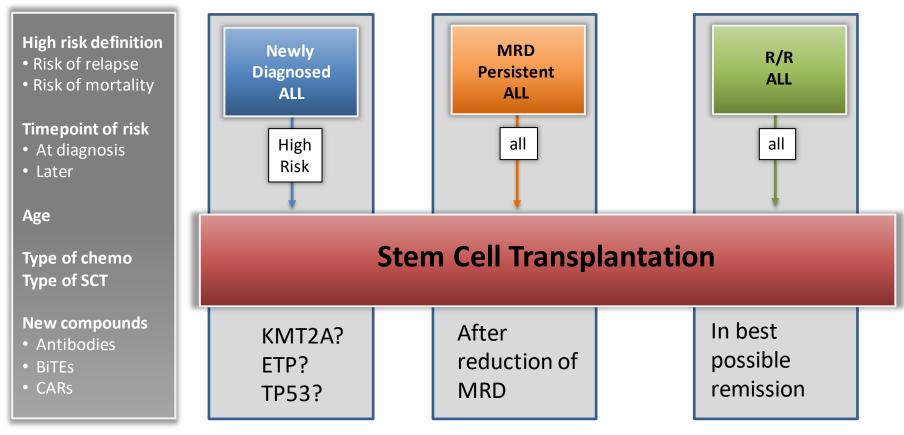
N 35 Age 51 (22–83) *12/35 in CR at inclusion!

Response and Outcome De Novo

	De novo
CR/CRi (Total)	96 %
CMR (cycle 1/Total)	64% / 85 % 11/15 (73%) NGS -
EFS (2 yr)	93 %
OS (2 yr)	93 %

De Novo, Ph-Positive

- Risk stratification
- Reduction of SCT
- Post-transplant strategies for HR
- Integration of immunotherapy
- Definition of optimal TKI (tolerance and efficacy)

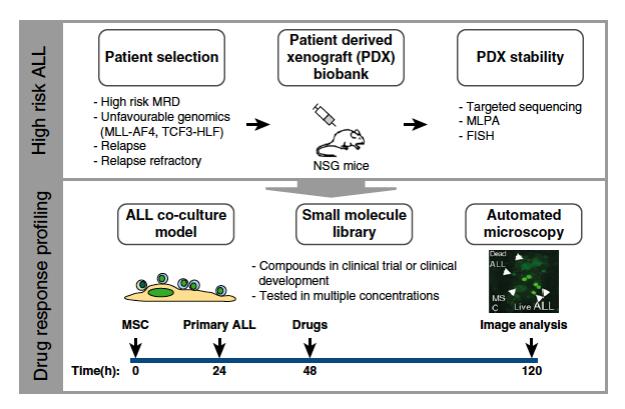

Selection of Topics

- 1. Age Groups
- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions:
 - Can Immunotherapy Replace Chemo?
 - Role of SCT
- 8. Personalized Medicine in ALL
- 9. Late Effects

Blinatumomab/Inotuzumab in First Line for Adult ALL

- Promising results from phase II trials, but without long-term follow-up
 - High CR rates
 - Trend to lower relapse rates
 - Still considerable morbidity/mortality in older pts
- Few randomized trials
- Costs/reimbursement?
- Available for all: MRD based Blinatumomab
- Role of CAR T: ± SCT, earlier lines, clinical trails
- Open questions
 - Can treatment intensity be reduced by immunotherapy
 - Combination of new compounds
 - Clinical trial designs
 - Reimbursement and marketing authorization

Place of Allo HSCT in Adult ALL – Current Considerations



Selection of Topics

- 1. Age Groups
- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions
- 8. Personalized Medicine in ALL
- 9. Late Effects

Ex Vivo Drug Response Profiling in Drug-Resistant ALL

Frismantas, et al. Blood. 2017.

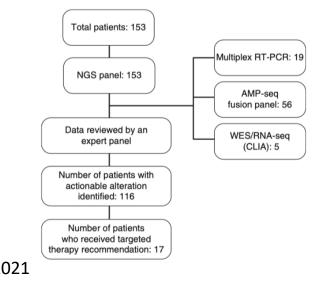
Gökbuget 9/2021

Ex Vivo Drug Response Profiling in Drug-Resistant ALL Frismantas, et al. *Blood.* 2017.

- 60 drugs on 68 ALL, samples mostly from resistant disease
- Cocultures of bone marrow stromal cells
- Patient-derived xenografts retained the original pattern of mutations found

Exceptional Responses

- BCL2-inhibitor venetoclax was highly active in some ALLs predicting in vivo activity as a single agent and in combination with Dexa/VCR
- Dasatinib activity in 2 independent T-ALL cohorts
- A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission.


LEAP Consortium Trial in Pediatric HR or R/R Leukemias or MDS

Pikman, et al. Cancer Discovery. 2021.

- 15 major institutions
- DNA-based NGS and RNA-based fusion testing
- Multidisciplinary tumor board
- Ex-vivo drug testing

ALL: 49 (56 relapse/4 newly diagnosed) T-ALL 10/49

LEAP Consortium Trial in Pediatric HR or R/R Leukemias or MDS Pikman, et al. *Cancer Discovery*. 2021.

Patient number	Disease		Proposed drug or target/pathway inhibitor I	Drug used	Tier	attr to t	icity ibuted argeted rapy	How targeted therapy was accessed?	Detected with NGS only
18	B-ALL, refractory	EPOR-IGH	Ruxolitinib	Ruxolitinib		3	None	Clinical trial (NCT02723994)	X)
16	B-ALL, relapsed	NRAS	MEK inhibitor			3			Х
			mTOR inhibitor	Everolimus	;	5	None	Off label	
37	B-ALL, relapsed	NUP214-ABL1	lmatinib/dasatini	b Dasatinib		3	None	Off label	×
38	B-ALL, relapsed	RCSD1-ABL2	lmatinib/dasatini	b Imatinib		3	a	Off label	Х
43	B-ALL, relapsed	NRAS, KRAS	MEK inhibitor	Trametinib		3	None	Off label	Х
55	B-ALL, relapsed	ABL1 p.T315I	Ponatinib	Ponatinib		1	None	FDA-authorized indication	X
153	B-ALL, relapsed	TCF3-HLF	Venetoclax	Venetoclax	(3	a	Off label	

Relapsed/Refractory ALL

- Sequential/combined therapies
- Role of CAR T cells
- Management of pts without SCT option
- Integration of further compounds T-ALL
 - Targeted drugs
- New study designs and international trials

Selection of Topics

- 1. Age Groups
- 2. Diagnostics
- 3. Risk Stratification
- 4. Younger Patients
- 5. Older Patients
- 6. Ph-Positive ALL
- 7. Overarching Questions
- 8. Personalized Medicine in ALL
- 9. Late Effects

Gökbuget 9/2021

GMALL Trial on Medical Conditions in Long Term Survivors (>5 yr) of ALL

GMALL Trials 02/84–07/03

Comorbidities (N = 538) ECOG (N = 522)

No comorbidity	66%
Skin	18%
Lung	8%
Cardiac	13%
Gastrointestinal	6%
Neurologic	27%
Kidney/Liver	10%
Eyes	12%
Endocrine (f/m)	24%/17%
Infections	12%
Fatigue	13%
GvHD	15%
Osteonecrosis	8%
Malignancy	4%
Hypothyreosis	5%
Hyperthyreosis	1%

0	70%
1	24%
2	4%
3	2%
4	<1%

Gökbuget 9/2021

Gökbuget, et al. In revision.

Osteonecrosis in ALL: Pathogenesis and Risk Factors

Kuhlen, et al. Blood Advances. 2017.

Pathogenetic Mechanisms

Imbalance between the actual and the required bone perfusion,

- Intravascular clotting/embolism (intraluminal obliteration)
- Increased marrow pressure (extraluminal obliteration)
- Direct blood vessel injury
- Direct toxic effects on osteoblasts and osteocytes

Clinical Factors

- Female age (in children)
- Adolescent age

ALL Therapy

- Steroid (continuous exposure, dexa > pred)
- Asparaginase?
- Methotrexate

Germline Polymorphisms

- Pharmacodynamics of chemotherapy
- Bone metabolism
- Adipogenesis
- Glutamate signaling pathway
- Mesenchymal stem cell differentiation

Hypertriglyceridemia Hypertonia

Gökbuget 9/2021

Incidence of Osteonecrosis in a Pediatric Regimen Used for Adults

Mogensen, et al. Haematologica. 2017.

Total:	1,489 ALL pts (1–45 yr)
Osteonecrosis:	N = 67 (4.5%)
Cum. Incidence* 5y:	6.3% (4.9–8.0%)
*Kaplan-Meier	

Risk factors: Adolescents vs children: Adults vs children: Adolescents vs adults:	20% (15–27%) vs 2.2% (1.4-3.3%); p <.0001 15% (7.5–29%) vs 2.2% (1.4-3.3%); p <.0001 Similar
Female vs male:	7.5 (5.5–10.0)% vs 5.2 (3.6–7.7)% ; p = 0.02

Future Management of ALL

 High volume of "privileged" centers All new drugs available All diagnostic tests available Clinical trials quickly established Motivated patients 	Creative new regimens
 Standard "first world" centers Drugs only in trials or if reimbursement is guaranteed Diagnostic tests Multicenter trials with long setup, high logistic challenges and long duration 	Creation of accepted evidence
Standard "second- or third-world" centers	Can achieve a lot with "some" standards

Interactive Discussion: Treatment Landscape Evolution

All faculty

Session Close

Elias Jabbour

What age group is considered elderly ALL patients?

- **1**. ≥50 years
- 2. \geq 55 years
- 3. ≥60 years
- **4**. ≥65 years
- **5**. ≥70 years

Which of the following is NOT true for treating ALL?

- 1. Inotuzumab and blinatumomab + chemotherapy has produced 90% CR rates in salvage therapy and in first line in older patients
- 2. Blinatumomab and ponatinib can be used as a chemotherapy-free regimen in Ph+ ALL
- 3. MRD– CR does not correlate strongly with outcome
- 4. Since 1999, median survival for ALL patients older than 60 has been increasing with each successive decade

Closing Remarks

Elias Jabbour

Virtual Breakout – AML Sessions (Day 2)

24 September 2022, 14.30 - 17.15 CEST

Chairs: Dr Gail J. Roboz/Dr Naval Daver

Time (CEST)	Title	Speaker
14.30 – 14.40	Session Open	Gail J. Roboz and Naval Daver
14.40 – 15.00	Personalized Induction and Maintenance Approaches for AML	Gail J. Roboz
15.00 – 15.25	Fit and Unfit AML Patients: How Do We Distinguish? How Do We Treat Differently?	Agnieszka Wierzbowska
15.25 – 16.05	 AML Case -Based Panel Discussion Relapsed/Refractory Case 1 Relapsed/Refractory Case 2 	Moderators: Gail J. Roboz and Naval Daver Agnieszka Pluta Anna Torrent All faculty
16.05 – 16.15	Break	
16.15 – 16.40	Optimizing Management of Relapsed/Refractory AML	Naval Daver
16.40 – 17.05	Interactive Discussion: Treatment Landscape Evolution	Moderators: Gail J. Roboz and Naval Daver All faculty
17.05 – 17.15	Session Close	Gail J. Roboz and Naval Daver

Thank you!

- > Thank you to our sponsors, expert presenters, and to you for your participation
- > Please complete the **evaluation link** that will be sent to you via chat
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website in our Ask the Experts section

THANK YOU!

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

