

#### Founding Sponsor *Platinum*



# Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

25 March 2022





# Welcome and Meeting Overview

**Elias Jabbour** 





## **Meet the Faculty**



Elias Jabbour, MD MD Anderson Cancer Center Houston, TX, USA



Franco Locatelli, MD IRCCS Bambino Gesù Children's Hospital, Rome, Italy



Naval Daver, MD MD Anderson Cancer Center Houston, TX, USA

Global Leukemia Academy



Jose María Ribera, MD, PhD Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Barcelona, Spain



FACULTY

Rob Pieters, MD, PhD Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands



Roberta Demichelis, MD Instituto Nacional de Ciencias Medicas v Nutricion Salvador Zubiran, Mexico City, Mexico



Sergio Giralt, MD Memorial Sloan Kettering Cancer Center, New York, NY, USA



Eunice Wang, MD Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA



Wellington Silva Fernandes, MD Instituto do Cancer do Estado de São Paulo (ICESP), Brazil



Paola Omaña. MD Central Military Hospital Colombia, Bogotá, Colombia



Stephanie Dixon, MD, MPH St. Jude Children's Research Hospital, Memphis, TN, USA



Adriana Seber, MD GRAACC, Federal University of São Paulo, Brazil



Erica Almeida Viana, MD GRAACC, Federal University of São Paulo, Brazil

## **Objectives of the Program**

Understand current treatment patterns and recent developments in acute leukemias including incorporation of new technologies and immunotherapies

#### Discuss the role of MRD in managing and monitoring acute leukemias

Discuss optimal management of longterm toxicities in pediatric ALL

Review treatment recommendations for AYA ALL patients Discuss risk stratification and treatment approaches for AML patients and high-risk subgroups



# **Virtual Plenary Sessions (Day 1)**

**Chair: Elias Jabbour** 

| TIME (UTC-3)  | TITLE                                                                                                                                                                                                 | SPEAKER                                                                          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 18.00 – 18.10 | Welcome and meeting overview; introduction to the voting system                                                                                                                                       | Elias Jabbour                                                                    |
| 18.10 - 18.40 | Recent developments in acute leukemias                                                                                                                                                                | Elias Jabbour                                                                    |
| 18.40 - 19.00 | Review of prognostic value of MRD in acute leukemias                                                                                                                                                  | José Maria Ribera                                                                |
| 19.00 – 19.20 | Current and future role of transplantation in acute leukemias                                                                                                                                         | Sergio Giralt                                                                    |
| 19.20 – 19.50 | Leukemia board discussion<br>• AYA ALL case plus discussion (15 min) – Erica Viana (Bra)<br>• AML case plus discussion (15 min) – Paola Omaña (Col)                                                   | Moderator: Elias Jabbour<br>All faculty                                          |
| 19.50 - 20.00 | Break                                                                                                                                                                                                 |                                                                                  |
| 20.00 - 20.20 | Optimal management and treatment coordination of long-term toxicities in pediatric leukemias                                                                                                          | Stephanie Dixon                                                                  |
| 20.20 – 20.40 | AYA ALL patients – what is the current treatment approach for this diverse patient population? Special considerations for adolescents and young adults                                                | Rob Pieters                                                                      |
| 20.40 – 21.10 | <ul> <li>Debate on sequencing CD19-targeted approaches</li> <li>Monoclonal antibodies and bispecifics first (10 min)</li> <li>CAR T first (10 min)</li> <li>Discussion and voting (10 min)</li> </ul> | Moderator: Franco Locatelli<br>Elias Jabbour<br>José Maria Ribera<br>All faculty |
| 21.10–21.30   | Genetic characterization and risk stratification of AML                                                                                                                                               | Eunice Wang                                                                      |
| 21.30 – 21.50 | Therapeutic approaches in high-risk and older AML patients                                                                                                                                            | Naval Daver                                                                      |
| 21.50 – 22.00 | Session close                                                                                                                                                                                         | Elias Jabbour                                                                    |



## Virtual Breakout – Adult Leukemia Patients (Day 2)

**Co-chairs: Elias Jabbour and Naval Daver** 

| TIME (UTC-3)  | TITLE                                                                                                                                                                                                                                                                     | SPEAKER           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 10.00 - 10.10 | ALL session open                                                                                                                                                                                                                                                          | Elias Jabbour     |
| 10.10 - 10.30 | $Optimizing \ first-line \ therapy in \ adult \ and \ older \ ALL \ -integration \ of \ immunotherapy into \ frontline \ regimens$                                                                                                                                        | Elias Jabbour     |
| 10.30 – 10.50 | Current treatment options for relapsed ALL in adult and elderly patients                                                                                                                                                                                                  | José Maria Ribera |
| 10.50 – 11.20 | <ul> <li>ALL case-based panel discussion</li> <li>Case 1 (10 min) – Paola Omaña (Col)</li> <li>Case 2 (10 min) – Roberta Demichelis (Mex)</li> <li>Discussion (10 min) – Panelists: Roberta Demichelis, Wellington Silva Fernandes, Paola Omaña</li> </ul>                | All               |
| 11.20 – 11.30 | Break                                                                                                                                                                                                                                                                     |                   |
| 11.30 – 11.35 | AML session open                                                                                                                                                                                                                                                          | Naval Daver       |
| 11.35–11.55   | Personalized induction and maintenance approaches for AML                                                                                                                                                                                                                 | Eunice Wang       |
| 11.55 – 12.15 | Optimizing management of relapsed/refractory AML                                                                                                                                                                                                                          | Naval Daver       |
| 12.15 – 12.45 | <ul> <li>AML case-based panel discussion</li> <li>Case 1 (10 min) – Wellington Silva Fernandes (Bra)</li> <li>Case 2 (10 min) – Roberta Demichelis (Mex)</li> <li>Discussion (10 min) – Panelists: Roberta Demichelis, Wellington Silva Fernandes, Paola Omaña</li> </ul> | All               |
| 12.45 – 13.00 | Session close                                                                                                                                                                                                                                                             | Naval Daver       |



## Virtual Breakout – Pediatric Leukemia Patients (Day 2)

Co-chair: Franco Locatelli

| TIME (UTC-3)  | TITLE                                                                                                                                                                                                                                                                            | SPEAKER          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 10.00 - 10.10 | Session open                                                                                                                                                                                                                                                                     | Franco Locatelli |
| 10.10 - 10.30 | The use of MRD and genetics for risk stratification and therapy guidance in pediatric ALL                                                                                                                                                                                        | Rob Pieters      |
| 10.30 – 10.50 | First-line treatment of pediatric ALL, including HSCT                                                                                                                                                                                                                            | Christina Peters |
| 10.50 – 11.10 | Current treatment options for relapsed ALL in children, including HSCT                                                                                                                                                                                                           | Franco Locatelli |
| 11.10 – 11.25 | Bispecifics for pediatric and AYA B-ALL                                                                                                                                                                                                                                          | Christina Peters |
| 11.25 – 11.55 | <ul> <li>ALL case-based panel discussion</li> <li>Case 1 (10 min) – Irene Medina (Mex)</li> <li>Case 2 (10 min) – Jorge Buitrago (Col)</li> <li>Discussion (10 min) – Panelists: Maria Sara Felice, Oscar Gonzáles Ramella, Adriana Seber, Carlos<br/>Andrés Portilla</li> </ul> | All              |
| 11.55 – 12.00 | Break                                                                                                                                                                                                                                                                            |                  |
| 12.00 – 12.20 | Current treatment options for pediatric AML                                                                                                                                                                                                                                      | Franco Locatelli |
| 12.20 – 12.50 | <ul> <li>AML case-based panel discussion</li> <li>Case 1 (10 min) – Luisina Peruzzo (Arg)</li> <li>Case 2 (10 min) – Erica Viana (Bra)</li> <li>Discussion (10 min) – Panelists: Maria Sara Felice, Oscar Gonzáles Ramella, Adriana Seber, Carlos<br/>Andrés Portilla</li> </ul> | All              |
| 12.50 - 13.00 | Session close                                                                                                                                                                                                                                                                    | Franco Locatelli |





# Introduction to the Voting System

**Elias Jabbour** 







In which country do you practice?

- 1. Argentina
- 2. Brazil
- 3. Canada
- 4. Colombia
- 5. Chile
- 6. Mexico
- 7. Peru
- 8. Other





Which patients do you treat?

- 1. Adults only
- 2. Children only
- 3. Adults and children
- 4. Other





Which of the following is NOT true?

- 1. Inotuzumab and blinatumomab + chemotherapy is active in both frontline and salvage for ALL
- 2. ALK inhibitors can be combined with other therapy modalities in Ph+ ALL
- 3. MRD is highly prognostic for relapse and survival in Ph-negative ALL
- 4. CAR T approaches are active beyond 2L in Ph-negative ALL





In AML the MRD assessment by RT-qPCR is especially useful for

- 1. FLT3 ITD
- 2. NPM1 mutation
- 3. Biallelic CEBPA mutation
- 4. SF3B1 mutation
- 5. ASXL1 mutation





# Recent developments in acute leukemias

**Elias Jabbour** 





## **Recent Developments in Acute Leukemia**

Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center, Houston, TX

2022



#### ALL: Survival by Decade (MDACC 1985–2020)



Years

#### **Reasons for Recent Success in Adult ALL**

- Addition of TKIs (ponatinib) +/- blinatumomab to chemoRx in Ph+ ALL
- Addition of rituximab to chemoRx in Burkitt and pre–B-ALL
- Potential benefit of addition of CD19 antibody construct blinatumomab, and of CD22 monoclonal antibody inotuzumab to chemoRx in salvage and frontline ALL Rx
- CAR T therapy
- Importance of MRD in CR (at CR vs 3 mos; NGS)

#### HyperCVAD + Ponatinib in Ph+ ALL

- 86 pts Rx; median age 47 yrs (39–61); median FU 48 mos (10–100)
- CR 68/68 (100%); FCM-MRD negative 85/86 (99%); CMR 84%; 3/5-yr OS 80/76%, EFS 76/71%
   Overall Survival
   <u>6-Month Landmark</u>



Jabbour E, et al. Lancet Hematol. 2018;618:( and update December 2020); Short et al. Blood. 2019;134:Abstract 283.

#### IT x8 vs IT x12 in Ph+ ALL 6M Landmark: CNS Relapse-Free Survival



#### Blinatumomab and Inotuzumab in R/R Ph+ ALL

#### Blina vs SOC

- CR/CRh 36% vs 25%
- 1-yr OS 41% vs 31%



Ino vs SOC

- CR/CRi 73% vs 56%
- 1-yr PFS 20% vs 4.8%



#### Ram baldi et al. Cancer. 2019;126:304-310.

#### Stock W, et al. Cancer. 2020;127(6):905-913.

#### Dasatinib + Blinatumomab (D-ALBA) in Newly-Dx Ph+ ALL – Update

- 64 pts Rx; median age 54 yrs (24–82).
   Median FU 27 mos
- Molecular response (32/53 = 60%)
  - 22 CMR (41%)
- 29/58 (50%) who started blina have SCT
- 9 relapses: 4 hematologic, 4 CNS, 1 nodal
- 24-mos OS 88%, DFS 80%
- Outcome better if MR: DFS 100% vs 80% (P = .028)
- Outcome worse if IKZF1+: 2-yr OS 84% vs 54% (P = .026)



#### Ponatinib + Blinatumomab in Ph+ ALL: MRD Response Rates

• 50 pts with ND Ph+ (n=30) median age 73 yrs (22–83), R/R Ph+ ALL (n=14), CML-BP (n=6)

CMR MMR No MMR



Short et al. Blood. 2021;140:abstract 2298.

#### Ponatinib + Blinatumomab in Ph+ ALL: Dynamic of MRD Response



## Ponatinib + Blinatumomab in Ph+ ALL: Survival Median follow-up: 10 months (range, 1–41)

#### **Overall Cohort**

#### **FL Cohort**



Short et al. Blood. 2021;140:abstract 2298.

#### **Ponatinib-Blinatumomab in Ph+ ALL vs Historical Data**



### **MRD** in **ALL**

- Meta-analysis of 39 studies (pediatric and adult), including 13,637 patients with all ALL subtypes
- Prognostic impact of MRD clearance consistent across therapies, MRD method, timing, level of cutoff and subtypes



Berry DA. JAM A Oncol. 2017;3(7):e170580.

#### **Dynamics of MRD: Outcomes**



#### **NGS Identified Patients With Improved EFS**



EFS was significantly worse in the NGS MRD+/flow cytometry MRD– group than patients who were MRD– by both methods (P = .036).

Six patients were identified as NGS MRD- and MFC MRD+.

Wood B, et al. Blood. 2018; 131(12):1350-1359.

#### MRD in ALL: NGS vs FCM

- 74 pts Rx (66% HCVAD; 34% mini-HCVD)
- 32/84 (38%) discordant (ie, MRD– by MFC but MRD+ by NGS)
  - 60% at CR and 25% @ midconsolidation
- MRD– by NGS highly predictive at CR







<u>5-year OS rates</u> MRD– by MFC and NGS: 90% MRD– by MFC + MRD+ by NGS: 62% MRD+ by MFC and NGS: 61%

Short et al. Blood. 2020;136:abstract 583.

#### **Blinatumomab for MRD+ ALL in CR1/CR2**

- 113 pts Rx. Post-blina MRD– 88/113 = 78%
- 110 evaluated (blasts <5%, MRD+); 74 received alloSCT. Median FU 53 mo</p>
- Median OS 36.5 mo; 4-yr OS 45%; 4-yr OS if MRD– 52%
- Continuous CR 30/74 post-alloSCT (40%); 12/36 without SCT (33%)



#### Blinatumomab for MRD+ ALL in CR1/CR2+

- 37 pts Rx. Post blina MRD– 27/37 = 73%; 83% in Ph– ALL
  - 70% after C1
- Median number of cycles 3 (1–9); Median F/U = 31 mos (5–70+)
- 14 pts 0.01 to <0.1%: 3-yr OS 77%; 23 pts ≥0.1%: 3-yr OS 61%
- 3-yr OS 67%; 3-yr OS if MRD– 72%



### Inotuzumab Ozogamicin in MRD+ ALL

- 16 pts in CR1 (n = 11) or CR2 (n = 5) with FCM MRD >0.01
- Rx with INO 0.6 mg/m<sup>2</sup> D1, 0.3 mg/m<sup>2</sup> D8 and 0.3/0.3 D1/D8 in later courses. 10 had Ph+ ALL Rx with ponatinib (n = 9) or dasatinib (n = 1)
- Median INO 3 courses (1–6)
- Response 8/16 (50%) MRD–: 4/6 (67%) by FCM, 4/10 Ph+ ALL (40%) by PCR—4 other Ph+ ALL had MMR
- Blina exposure no: 5/7 (71%); yes: 3/9 (33%)
- 5 responders had later alloSCT
- 1 VOD post INO ×5

Figure 1: Overall survival and progression-free survival for the entire cohort (N=16)



Short et al. Blood. 2021;138:abstract 2299.

### Hyper-CVAD + Blinatumomab in B-ALL: Regimen



Maintenance phase





Short et al. Blood. 2021;136:abstract 1233.

#### Hyper-CVAD + Blinatumomab in B-ALL

| Response            | n/N (%)     |
|---------------------|-------------|
| CR post induction   | 26/32 (81)  |
| CR any time         | 32/32 (100) |
| MRD- post induction | 24/34 (71)  |
| MRD- anytime        | 33/34 (97)  |
| 30-day mortality    | 0           |

\*6 pts in CR, 4 pts MRD- at start





Short et al. Blood. 2021;138:abstract 1233.

#### Hyper-CVAD + Blina + InO in B-ALL: Regimen



#### Hyper-CVAD + Blina + InO in B-ALL: Outcomes


#### **MDACC ALL:** Survival by Decades for ≥60 Years

Overall Survival of Pts ≥60 by decade





# Mini-HCVD + INO ± Blina in Older ALL: Modified Design





**Consolidation phase** 



| •    | (mg/m²) | (mg/m²)        |  |  |  |  |  |
|------|---------|----------------|--|--|--|--|--|
| C1   | 0.9     | 0.6 D2, 0.3 D8 |  |  |  |  |  |
| C2-4 | 0.6     | 0.3 D2 and D8  |  |  |  |  |  |

#### Total INO dose = 2.7 mg/m<sup>2</sup>

\*Ursodiol 300 mg tid for VOD prophylaxis

#### **Maintenance phase**



# Mini-HCVD + Inotuzumab/Blinatumomab in Older ALL

- 79 pts; median age 68 yrs (60– 87)
- ORR 72/73 = 99%;CR 65/73 = 89%; MRD-73/78 = 94%
- 9 MDS/AML (12%)—7/9 had TP53-mutated ALL (all 70+ yrs)
- 28 deaths in CR (38%); 7 from sepsis
- 10 relapses (14%)
- VOD 6/75 = 8%



# INO + Blina in Older ALL: Amended Design (pts ≥70 years)

Induction (D1-14) Dexa 20 mg D1–4 and VCR 1 mg D4 Blinatumomab 1' Rituximab if CD20+ IT MTX, Ara-C Blinatumomab for 2 weeks **Consolidation phase Dose per day** INO\* Total dose 5 2 3 4 (mg/m<sup>2</sup>) (mg/m²) **C1** 0.6 D1, 0.3 D8 0.9 C2-C40.3 D1 and D8 0.6 Maintenance phase Total INO dose =  $2.7 \text{ mg/m}^2$ 2 3 4 \*Ursodiol 300 mg tid for VOD prophylaxis 6 months

# Blinatumomab/Inotuzumab vs ChemoRx in R/R ALL

 Marrow CR Blina vs SOC: 44% vs 25%

#### Ino vs SOC: 74% vs 31%



Kantarjian H, et al. N Engl J Med. 2017;376:836-847.

Kantarjian H, et al. N Engl J Med. 2016;375:740; Kantarjian H, et al. Cancer. 2019;125(14):2474-2487.

# Mini-HCVD + INO ± Blina in R/R ALL: Modified Design



Jabbour E, et al. *Cancer*. 2018;124(20):4044-4055.

# Mini-HCVD + INO in R/R ALL: Outcomes (N = 108)

| Response               | N (%)      |  |  |  |  |
|------------------------|------------|--|--|--|--|
| Salvage 1              | 71/77 (93) |  |  |  |  |
| S1, primary refractory | 14 (100)   |  |  |  |  |
| S1, CRD1 <12 mos       | 21 (84)    |  |  |  |  |
| S1, CRD1 ≥12 mos       | 36 (95)    |  |  |  |  |
| S2                     | 10 (59)    |  |  |  |  |
| ≥S3                    | 8 (57)     |  |  |  |  |
| ORR                    | 89 (83)    |  |  |  |  |
| MRD negativity         | 71/87 (82) |  |  |  |  |
| S1                     | 59/69 (86) |  |  |  |  |
| ≥S2                    | 12/18 (67) |  |  |  |  |
| Early death            | 7 (6)*     |  |  |  |  |







Jabbour E, et al. Cancer. 2018;124(20):4044-4055.

## Mini-HCVD + INO ± Blina in R/R ALL: Historical Comparison



Jabbour E, et al. JAM A Oncol. 2018;4(2):230-234; Jabbour E, et al. Cancer. 2021;127(12):2025-2038.

# **Dose-Dense Mini-HCVD + INO ± Blina in ALL: Modified Design**

Intensive phase: C1–C6



# Phase III Study of Blinatumomab vs ChemoRx in Children-AYA in Salvage 1

Chemo

41

59

49

21

 208 pts HR/IR randomized 1:1 to blina (n = 105) vs chemo Rx (n = 103) post Block 1 reinduction





Brown et al. JAMA. 2021:325(9):833-842.

## **Blinatumomab vs Chemo Rx as Pre-SCT Consolidation**

 111 children in ALL S1 randomized post induction and 2 consolidations to blinatumomab (n = 54) or chemo Rx (n = 57)

| Parameter  | Blina | Chemo Rx | <i>P</i> Value/<br>HR |
|------------|-------|----------|-----------------------|
| % 2-yr EFS | 63    | 37       | <.001/.33             |
| % 2-yr OS  | 83    | 60       | .003/.33              |
| % MRD-     | 91    | 48       | -                     |
| AlloSCT    | 51/54 | 39/57    | -                     |



# Subcutaneous Blinatumomab in R/R B-ALL: Phase Ib Dose-Finding Study

- 9 R/R pts, median age 64 yrs (38–83)
- Rx in with SC blinatumomab in 2 cohorts; median BM blast 79% (range, 28%–95%)
- Median prior therapies = 2 (range, 2–4)
- 5/9 achieved MRD-negative CR, 3 in Cohort 1 (3/6, 50%) and 2 in Cohort 2 (2/3, 66%)
- All patients who achieved CR did so within the first treatment cycle



#### **ELIANA Trial Update**

- 113 screened, 97 enrolled, 79 infused
- 3-mo CR 65/79 = 82%, or 65/97 = 67%
- 24-mos OS 66%; RFS 62% Gr 3-4 CRS 49% ICU 48%



# KTE-X19 Anti-CD19 CAR T Cells RX (Kite) in R/R ALL: Phase II (ZUMA-3)

- 71 enrolled, 55 infused; median age 40 yrs (28–52)
- CR/CRi 39/55 (71%, CR 56%); ITT (39/71; 55% CR 44%); MRD– response 76% (97% among responders); 10 pts (18% Rx ASCT)
- mDOR 12.8 mos; mRFS 11.6 mos; mOS 18.2 mos
- Grade ≥3: CRS 24%; NE 25%



Shah et al. Lancet. 2021;S0140-6736.

#### **Real-Word CAR Consortium and Disease Burden**



High Burden Disease (n = 94; 47%)

- 1-yr OS 58%
- 1-yr EFS 34%

Schultz et al. Blood. 2020;136.abstract 468.

Low Burden Disease (n = 60; 30%)

- 1-yr OS 85%
- 1-yr EFS 69%

Undetectable Disease (n = 46; 23%)

- 1-yr OS 95%
- 1-yr EFS 72%

# **CAR T in ALL – The Beginning of a Great Journey**

- CART Rx today is what allogeneic SCT was in 1980 a great beginning
- Improved CAR T designs
- Dual CAR Ts targeting CD19, CD22, CD20
- Allogeneic off-the-shelf CAR Ts
- Smaller repeated allogeneic CAR Ts infusions (fractionated CAR Ts)
- CAR Ts in first CR in MRD to replace alloSCT

#### **Dose-Dense Mini-HCVD + INO + Blina + CAR T Cells in ALL: The CURE**

Induction phase: C1–C6



## ALL 2022: Conclusions

- Significant progress and improved outcomes across all ALL categories: Ph+, Burkitt, younger and older pre-B ALL, T-ALL, ALL salvage. Rapidly evolving therapies
- Incorporation of Blina/Ino in FL therapy highly effective
  - HCVAD-Blina: MRD– CR 97%; 3-yr OS 84%
  - Mini-HCVD-INO-Blina: MRD- CR 96%; 3-yr OS 55%
  - Blina-ponatinib: CMR rate 85%; 2-yr OS 93%
- Early eradication of MRD predicts best overall survival
  - NGS-negative MRD at CR 5-yr OS 100%
  - Tailoring therapy: "Treatment a la carte"
- Antibody-based Rxs and CAR Ts both outstanding; not mutually exclusive/competitive (vs); rather complementary (together)
- Future of ALL Rx: 1) less chemotherapy(?) and shorter durations; 2) combinations with ADCs and BiTEs/TriTEs targeting CD19, CD20, CD22; 3) SQ blinatumomab; 4) CAR Ts in sequence in CR1 for MRD and replacing allo-SCT



#### AML in 2017–2020, 10 Agents FDA Approved

- Midostaurin (RYDAPT) for de novo younger AML (≤60 yr), *FLT3* mutation April 2017
- Gilteritinib (FLT3 inhibitor) for FLT3+ R/R AML
- Enasidenib (AG-221; IDHIFA) for R/R AML and *IDH2* mutation August 2017
- Ivosidenib (AG-221) for R/R AML August 2018
- CPX-351 (Vyxeos) for newly Dx Rx-related AML and post-MDS AML August 2017
- Gemtuzumab ozogamicin revival for frontline AML Rx August 2017
- Venetoclax for newly Dx older/unfit for intensive chemo, with AZA/DAC, ara-C
- Glasdegib for newly Dx older/unfit, with ara-C
- Oral decitabine HMA Rx for MDS and CMML August 2020
- **Oral azacitidine in AML maintenance Sept 2020**

#### **Clinical Applications of Molecular Studies in AML**

- FLT3-ITD mutations add FLT3 inhibitor (midostaurin, sorafenib, gilteritinib), consider allo-SCT and post SCT FLT3i
- IDH1–2 mutations add IDH inhibitor: enasidenib (AG-221/IDH2 inhibitor), ivosidenib (AG-120/IDH1 inhibitor)
- *NPM1* mutation in diploid CG ara-C sensitivity
- TP53 mutation consider decitabine 10 days ± others (GO, venetoclax); refer to allo-SCT; role of CD47 Ab (magrolimab)
- MLL-AML; t(11q23;---) Menin inhibitors

# **Evolving Diagnostic and Treatment Paradigm for Newly Dx AML**



#### Daver N, et al. Blood Cancer J. 2020;10(10):107.



# Actual Results of "3+7"



5-yr survival 20%–35% in young, 10% in old

Fernandez HF, et al. N Engl J M ed. 2009;361:1249-1259; Löwenberg B, et al. N Engl J M ed. 2009;3611235-1248.

# **AML: What Definitely Works**

- FLT3 inhibitors
- IDH1–2 inhibitors
- CD33 and CD123 antibodies
- Venetoclax
- Maintenance with oral azacitidine
- ? Oral decitabine-cedazuridine + venetoclax in older/unfit AML

## Therapy of Younger AML at MD Anderson in 2022+



## Therapy of Younger AML at MD Anderson in 2021+



**High-Dose Ara-C Induction Improves Outcomes in AML** 

- Meta-analysis of 3 randomized trials
- EORTC-GIMEMA: survival benefit in age ≤45 yr
- Chinese study
- MRC AML 15
- Italian study

Kern W, Estey EH. Cancer. 2006;107(1):116-124; Willemze R, et al. J Clin Oncol. 2014;32(3):219-228; Wei H, et al. Blood. 2017;130:abstract 146; Burnett AK, et al. J Clin Oncol. 2013;31:3360-3368; Bassan R, et al. Blood Adv. 2019;3(7):1103-1117.

#### MRC AML 15: ADE/DA vs FLAG-IDA – 4 Courses



Burnett AK, et al. J Clin Oncol. 2013;31:3360-3368.

## **FLAG-IDA and CLIA**

- Fludarabine 30 mg/m²/D×5 AraC 2 g/m²/D×5 IDA 8–10 mg/m²/D×3 2 inductions
- FLAG-IDA × 2  $\rightarrow$  HD araC 1.5–3 g/m<sup>2</sup> Q12h D1, 3, 5 ×2
- CLIA F replaced with CDA 5 mg/m<sup>2</sup> daily × 5 in induction

# **FLAG-IDA-VEN Treatment Plan**



Abou Dalle, et al. Blood. 2019;134:abstract 176.

\*Concomitant azole permitted with adequate dose reduction.

# FLAG-IDA + Venetoclax in Newly Dx AML

- 41 pts (29 de novo, 7 sAML, 5 Rxrelated)
- Median age 44 yrs (20–65)
- Rx with FLAG-IDA + VEN
- ORR 98%; CR 73%
- CR + Cri + CRh 88%
- 27/41 later SCT
- 2-yr OS 77%



Consolidation: Idarubicin permitted on days 3 and 4 in 2 post-remission cycles (ie. C2 or C3 and C5 or C6) at physician discretion



# **CLIA-Venetoclax: Study Design**

| Venetoclax Dosing (PO daily on days 2–8 ± 1 day ) |                             |                                              |                                                |                                                     |  |  |  |  |  |
|---------------------------------------------------|-----------------------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| Dose<br>Level                                     | Patients on<br>posaconazole | Patients on <u>strong</u><br>CYP3A inhibitor | Patients on <u>moderate</u><br>CYP3A inhibitor | Patients <u>not</u> on CYP3A<br>inhibitor<br>200 mg |  |  |  |  |  |
| -1                                                | 50 mg                       | 50 mg                                        | 100 mg                                         |                                                     |  |  |  |  |  |
| 1                                                 | 70 mg                       | 100 mg                                       | 200 mg                                         | 400 mg                                              |  |  |  |  |  |

#### Induction

#### Consolidation

| Treatment                            | Day<br>1 | Day<br>2 | Day<br>3 | Day<br>4 | Day<br>5 | Day<br>6 | Day<br>7 | Day<br>8 | Treatment                         | Day<br>1 | Day<br>2 | Day<br>3 | Day<br>4 | Day<br>5 | Day<br>6 | Day<br>7 | Day<br>8 |
|--------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Cladribine<br>5 mg/m <sup>2</sup>    | х        | х        | Х        | X        | X        |          |          |          | Cladribine<br>5 mg/m <sup>2</sup> | x        | X        | X        |          |          |          |          |          |
| Cytarabine<br>1500 mg/m <sup>2</sup> | х        | х        | х        | х        | х        |          |          |          | Cytarabine<br>1000                | х        | x        | x        |          |          |          |          |          |
| ldarubicin<br>10 mg/m <sup>2</sup>   | х        | х        | х        |          |          |          |          |          | mg/m <sup>2</sup><br>Idarubicin   | x        | x        |          |          |          |          |          |          |
| Venetoclax                           |          | Х        | Х        | Х        | Х        | Х        | Х        | Х        | 8 mg/m <sup>2</sup>               | Λ        | Λ        |          |          |          |          |          |          |
|                                      |          |          |          |          |          |          |          |          | Venetoclax                        |          | Х        | Х        | Х        | Х        | Х        | Х        | Х        |

# CLIA + Venetoclax in Newly Dx AML

Overall Survival Probability

- 50 pts Rx with CLIA-VEN; median age 48 yr (18–64)
- CR + CRi 90%; early 4/8-wk mortality 3/3; 12-mo OS 81%





+ CLIA + venetoclax + CLIA + venetoclax + FLT3i

#### VEN + IC in AML – Study Design

Patients with ND-AML (de novo, sAML, tAML, st-AML) treated with intensive chemotherapy (IC) treated at MDACC on prospective clinical trial protocols



# **AML** – Outcome With Intensive ChemoRx +/- Venetoclax


# Phase III Study of Oral Azacitidine vs Placebo as Maintenance in AML (QUAZAR AML-001)

 472 pts 55+ yr (median age 68 yr) with AML in CR-CRi <4 mo randomized to CC-486 300 mg/daily × 14 Q mo (n = 238) or PBO (n = 234)



Wei H, et al. Blood. 2019;134:LBA 3.

#### Gemtuzumab Ozogamicin Meta-Analysis of 5 AML Randomized Trials

5 randomized trials of 3,325 pts: SWOG, ALFA, UK-MRC AML15 and 16, GOELAMS



Favorable-Risk AML

#### Hills RK. Lancet Oncol. 2014;15:986.

#### Chemo Rx ± Midostaurin in AML (RATIFY)

Median Overall Survival



Stone et al. N Engl J Med. 2017;377: 454-464.

#### Intensive ChemoRx +/- Quizartinib in Newly Dx *FLT3*-ITD AML (QUANTUM)

- 539 pts with FLT3-ITD AML randomized (1:1) to 3+7 chemoRx +/- QUIZ or placebo
- Post-chemoRx, continue QUIZ or placebo for up to 3 yr
- Primary endpoint overall survival met

#### IDH Inhibitors With 3+7 in IDH-Mutated AML

 151 pts; median age 62 yr (24–73) Rx with 3+7 and ivosidenib (n = 60) or enasidenib (n = 93)

| % Parameter    | IVO | ENA |
|----------------|-----|-----|
| CR             | 70  | 57  |
| CR + Cri + CRp | 78  | 74  |
| % 3-yr OS      | 67  | 61  |



Stein E, et al. Blood. 2021;137(13):1792-1803; Stein E, et al. Blood. 2021;138:abstract 1276.

#### IDH Inhibitors With 3+7 in IDH-Mutated AML



#### AZA ± VEN in AML – Overall Survival



Median follow-up time: 20.5 months (range: <0.1 – 30.7)

DiNardo C, et al. N Engl J M ed. 2020;383:617-629.

#### AZA ± VEN in AML – Composite Response Rate (CR + CRi)



|                        | No. of treatment<br>cycles, median<br>(range) | Median time to<br>CR/CRi, months<br>(range) | *CR + CRi by<br>initiation of<br>cycle 2, n (%) |
|------------------------|-----------------------------------------------|---------------------------------------------|-------------------------------------------------|
| Aza + Ven (n =<br>286) | 7.0 (1.0–30.0)                                | 1.3 (0.6–9.9)                               | 124 (43.4)                                      |
| Aza + Pbo (n =<br>145) | 4.5 (1.0–6.0)                                 | 2.8 (0.8–13.2)                              | 11 (7.6)                                        |

\*CR + CRi rate, CR rate, and CR + CRi by initiation of cycle 2 are statistically significant with P <.001 by CMH test.

DiNardo C, et al. N Engl J M ed. 2020;383:617-629.

#### **Azacitidine ± Venetoclax in Newly Dx IDH2-Mutated AML**

- AZA ± ven given to 107 pts with older/unfit
- AML: 79 AZA + VEN; 28 AZA

| No (%) Parameter | AZA-VEN<br>(n = 79) | AZA<br>(n = 28) |
|------------------|---------------------|-----------------|
| CR + CRi         | 62 (79)             | 3 (11)          |
| CR + CRh         | 57 (72)             | 2 (7)           |
| CR               | 35 (44)             | 1 (4)           |
| Median DOR (mos) | 29.5                | 17.5            |
| Median OS (mos)  | 24.5                | 12.3            |



#### Azacitidine ± Ivosidenib in IDH1-Mutated AML (AGILE)

146 pts randomized to AZA + IVO (n = 72) or AZA (n = 74)

| Parameter       | AZA + IVO | AZA  | <i>P</i> Value/HR |
|-----------------|-----------|------|-------------------|
| Median OS (mos) | 24        | 7.9  | .0005/.44         |
| % CR            | 47        | 14.9 | <.0001            |
| % CR + CRh      | 52.8      | 17.6 | <.0001            |
| % ORR           | 62.5      | 18.9 | <.0001            |

#### AZA ± VEN in Older FLT3-Mutated AML: Survival Benefit With VEN Only in *FLT3-TKD*, Not *FLT3-ITD*



Konopleva M, et al. Blood. 2020;136(suppl 1): abstract 1904.

#### **DAC + Venetoclax in TP53 AML**

 121 pts with newly Dx AML Rx with DAC10 + VEN. Median age 72 yrs (49–89); 37 (31%) with TP53-AML

| Parameter           | TP53<br>(n = 37) | Other<br>(n = 84) | Р     |
|---------------------|------------------|-------------------|-------|
| % ORR               | 65               | 88                | .003  |
| % CR                | 35               | 57                | .02   |
| % CR-CRi            | 54               | 76                | .015  |
| % MRD-negative      | 19               | 52                | .001  |
| % 30/60 D mortality | 5/27             | 0/2               | <.001 |
| Median OS (mos)     | 5.2              | 19.4              | <.001 |



#### **Molecular Determinants of Outcome With Venetoclax Combos**



Patients treated at MDACC and The Alfred (n = 81)DiNardo CD, et al. Blood. 2020;135(11):791-803. Resistance commonly associated with expansion or acquisition of *TP53* or signaling mutations including *K/NRAS* and *FLT3*-ITD

#### Venetoclax Added to Cladribine/LDAC Alternating With 5-AZA



| Venetoclax Dosing (PO Daily on Days 1–21)                                                                            |        |        |        |
|----------------------------------------------------------------------------------------------------------------------|--------|--------|--------|
| Dose LevelPatients on strong<br>CYP3A inhibitorPatients on moderate<br>CYP3A inhibitorPatients on<br>CYP3A inhibitor |        |        |        |
| -1                                                                                                                   | 50 mg  | 100 mg | 200 mg |
| 1                                                                                                                    | 100 mg | 200 mg | 400 mg |

Kadia T, et al. Blood. 2020;136: abstract 25.

#### Triple-Nucleoside + Venetoclax in Older/Unfit AML

- 60 pts with newly Dx AML. Median age 68 yr (57–84)
- Rx with CDA-LD araC-Ven alternating with AZA-VEN
- CR 80%; CR+CRi 93%; early death 2%; MRD negative 84%
- 2-yr OS 64%. 19/60 (32%) had allo-SCT in CR



Reville et al. Blood. 2021;138:abstract 367.

#### AZA ± VEN in Older FLT3-Mutated AML: Survival Benefit With VEN Only in *FLT3-TKD*, Not *FLT3-ITD*



Konopleva M, et al. Blood. 2020;136(suppl 1): abstract 1904.

#### **Gilteritinib vs Chemo Rx in R/R FLT3+ AML**

 371 pts randomized 2:1 to gilteritinib 120/D vs chemo Rx (n = 127)

| Parameter       | Gilt | Chemo Rx |
|-----------------|------|----------|
| % CR            | 21   | 10       |
| % CR + CRi      | 34   | 15       |
| Median OS (mos) | 9.3  | 5.6      |



#### **DAC + Venetoclax in TP53 AML**

 121 pts with newly Dx AML Rx with DAC10 + VEN. Median age 72 yrs (49–89); 37 (31%) with TP53-AML

| Parameter           | TP53<br>(n = 37) | Other<br>(n = 84) | Р     |
|---------------------|------------------|-------------------|-------|
| % ORR               | 65               | 88                | .003  |
| % CR                | 35               | 57                | .02   |
| % CR-CRi            | 54               | 76                | .015  |
| % MRD-negative      | 19               | 52                | .001  |
| % 30/60 D mortality | 5/27             | 0/2               | <.001 |
| Median OS (mos)     | 5.2              | 19.4              | <.001 |



#### Magrolimab + Aza in Newly Diagnosed AML<sup>1,2</sup>



- Magrolimab + AZA with 63% ORR and <u>42% CR rate</u> in AML (similar responses in TP53-mutant disease)
- Median time to response is 1.95 months (range, 0.95–5.6 mo); more rapid than AZA monotherapy
- Magrolimab + AZA efficacy compares favorably with AZA monotherapy (CR rate: 18%–20%)
- No significant cytopenias, infections, or immune-related AEs were observed; on-target anemia
- Median TP53 VAF burden at baseline: <u>73.3% (range 23.1%–98.1%)</u>

1. Daver N, et al. EHA 2020; 2. Sallman DA, et al. ASH 2020. Abstract 330.

#### Preliminary Median Overall Survival Is Encouraging in Both TP53–Wild-Type and -Mutant Patients



- Median OS is 18.9 months in *TP53*–wild-type patients and 12.9 months in *TP53*-mutant patients
- Median OS with venetoclax + hypomethylating agent combinations (14.7–18.0 mo in all-comers,<sup>1,3</sup> 5.2–7.2 mo in TP53 mutant<sup>2,3</sup>)
- Additional patients and longer follow-up are needed

NE, not evaluable.

1. DiNardo CD, et al. N Engl J M ed. 2020;383(7):617-629; 2. Kim K, et al. ASH 2020. Poster; 3. DiNardo CD, et al. Blood. 2019;133(1):7-17.

#### SNDX-5613 in R-R AML (Mostly MLL)

- 54 pts Rx: 44 AML, 9 ALL, 1 MPAL. 35 (65%) MLL; 10 (19%) NPM1
- SNDX-5613 113–339 mg orally BID; phase II 163–276 mg BID
- ORR 28/51 = 55% CR/CRh 12 (24%), CRp 7
- MRD-negative 14/51= 31%; 16/19 responders = 84%
- MLL ORR 23/38 = 61%; CR/CRh 9/38 = 24%
- NPM1 ORR 5/13 (38%); CR/CRh 3/13 = 23%
- Adverse events: QTc prolongation in 7 = 13%; TLS in 1

Stein. Blood. 2021;138:abstract 699.

#### Leukemia Research – Promising Combination Strategies in 2022

- FLT3 inhibitors
- IDH 1/2 inhibitors
- Gemtuzumab; other CD33 and CD123 MoAbs, Ab constructs; CAR T targeting CD33/123
- Venetoclax
- Oral azacitidine; oral decitabine
- CD47 Ab (macrophage stimulation)
- Menin inhibitors

### Leukemia Questions?

- Email: ejabbour@mdanderson.org
- Cell: 713-498-2929
- Office: 713-792-4764



### Review of prognostic value of MRD in acute leukemias

José Maria Ribera





Global Leukemia Academy Latin American & Canada Virtual Plenary Session March 25, 2022

### Review of the Prognostic Value of MRD in Acute Leukemias

JM Ribera

**Clinical Hematology Department** 

ICO-Hospital Germans Trias i Pujol

Josep Carreras Research Institute

Badalona, Spain

### Disclosures

- Pfizer: speaker and advisory boards honoraria, clinical trials
- AMGEN: speaker and advisory boards honoraria, research support, clinical trials
- Shire: speaker and advisory boards honoraria
- Ariad: speaker and advisory boards honoraria, clinical trials
- Takeda: speaker and advisory boards honoraria, clinical trials
- Novartis: speaker and advisory boards honoraria

## MRD in Acute Lymphoblastic Leukemia

### Negative MRD Is Associated With Longer EFS and OS in Pediatric and Adult ALL



Meta-analysis of 20 pediatric ALL trials >11,000 patients

Meta-analysis of 16 adult ALL trials >2,000 patients

#### **Prognostic Value of MRD in All Situations**



Bassan R, et al. Haematologica. 2019;104:2028-2039.

#### Impact of End-Induction MRD Level on Prognosis in Ph– ALL Survey From 7 EU Cooperative Groups

- N = 270 patients with measurable MRD during first remission
  - 80% molecular failure
  - 19% molecular relapse
- Median DOR, 18.5 months (95% CI: 11.9, 27.2)
- Median RFS, 12.4 months (95% CI: 10.0, 19.0)
- Median OS, 32.5 months (95% CI: 23.6, 48.0)



#### MRD Is Not a Perfect Predictive Factor in Adult Ph– ALL



|                      | Without AlloHSCT Censoring | With AlloHSCT Censoring |
|----------------------|----------------------------|-------------------------|
| 5-yr CCR in MRD+ pts | 51.2%                      | 39.6%                   |
| 5-yr CIR in MRD– pts | 21.2%                      | 24.7%                   |
| Harrel's C-index     | 0.63                       | 0.64                    |

Courtesy of H. Dombret.

Beldjord K, et al. *Blood*. 2014;123:3739-3749; GRAALL data on file.

#### **Cumulative Incidence of Relapse by Treatment Allocation (ITT analysis)**



Bassan R, et al. Blood Cancer J. 2020;10(11):119.

Ribera JM, et al. *Blood*. 2021;137:1879-1894.

#### MRD <u>Is Not the Only</u> Prognostic Factor: <u>Genetic Background</u> Counts – GRAALL Data



mutation

#### Value of MRD According to Genetic Subgroups

- The value of MRD may depend on
  - Response kinetics
  - Existence of resistant subclones
- Pediatric UKALL2003 study
  - The risk of relapse was proportional to the MRD level within each genetic risk group
  - However, absolute relapse rate that was associated with a specific MRD value varied significantly by genetic subtype

Integration of genetic subtype/subclone-specific MRD could allow a more refined risk stratification



#### Impact of MRD in Some ALL Subtypes



% event free

*KMT2A*+<sup>3</sup>

82

46

42

1. Stock W, et al. *Blood.* 2019;133:1548-1559; 2. Giebel S, et al. *Bone Marrow Transplant.* 2021;56(5):1047-1055; 3. Esteve J, et al. *Leukemia.* 2021;35(8):2232-2242.

#### **Importance of <u>Time Points</u> in MRD Assessment**



- Negative MRD at TP1: useful for recognizing patients with low risk of relapse
- **Positive** MRD at **TP2**: useful for recognizing patients with high risk of relapse
### **Best Time Point** for MRD Assessment: End-Induction for Ph– ALL, 3 Months for Ph+ ALL



### Impact of <u>Sensitivity</u> of the Method for MRD Assessment on Prognosis

Standard FCM (sensitivity  $1 \times 10^{-4}$ ) vs ultrasensitive NGS (sensitivity  $1 \times 10^{-6}$ )

End-induction MRD negative by MFC: 66%, by NGS: 23% of patients



Early achievement of MRD negativity with NGS assay identifies patients with very low risk of relapse

Predictive value of MRD increases with increasing sensitivity!

Short N, et al. ASH 2020. Abstract 583.

#### Outcomes by MRD Assessed by <u>Next-Generation FCM</u> (sensitivity 2 × 10<sup>-6</sup>)







## <u>Prospective</u> Studies With <u>Indication for HSCT on the Basis</u> <u>of MRD Data</u> (adult Ph– ALL)

| Trial            | Risk<br>Groups | MRD<br>Assessment | Randomization<br>Assignment                                                                 | References                                             |
|------------------|----------------|-------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|
| NILG             | SR & HR        | PCR               | <ul><li>No</li><li>Allo(auto)HSCT in MRD+ pts</li></ul>                                     | Bassan R. <i>Blood.</i><br>2009;113:4153-4162          |
| PETHEMA<br>HR03  | HR             | 4-color flow      | <ul> <li>No</li> <li>AlloHSCT in poor early cytologic responders<br/>or MRD+ pts</li> </ul> | Ribera JM. <i>J Clin Oncol.</i><br>2014;32:1595-1604   |
| NILG<br>10/07    | SR & HR        | PCR               | <ul><li>No</li><li>Allo(auto)HSCT in MRD+ pts</li></ul>                                     | Bassan R. <i>Blood Cancer J.</i> 2020;10:119           |
| PETHEMA<br>HR11  | HR             | 8-color flow      | <ul><li>No</li><li>AlloHSCT in MRD+ pts</li></ul>                                           | Ribera JM, et al. <i>Blood</i> .<br>2021;137:1879-1894 |
| GMALL<br>08/2013 | SR &<br>HR     | PCR               | <ul> <li>Yes. AlloHSCT vs chemo in MRD– HR pts</li> <li>AlloHSCT in MRD+ pts</li> </ul>     | Ongoing; NCT02881086                                   |

#### **PETHEMA ALL HR11**





#### Current GMALL Strategy De Novo <55 Years: GMALL Trial 08/2013 — Ph– ALL



\*Dose-reduced conditioning >45 yr. Courtesy of N. Gokbuget. NILG 10/07 Ph- ALL: Clinical Trials.gov NCT-00795756.

## Immunotherapy at Early Phases of ALL for Improving the MRD Negativity

Blinatumomab in MRD+ patients in CR: BLAST trial

Blinatumomab or inotuzumab with chemotherapy in newly diagnosed Ph-ALL

Blinatumomab or inotuzumab with TKI in newly diagnosed Ph+ ALL

#### **Overall Survival by Complete MRD Response** *All Patients Analyzed*





MRD, minimal residual disease.

 $Landmark a nalysis from day 45; complete MRD response was defined as not arget amplification, with a minimum sensitivity of 10^4.$ 

Gökbuget N, et al. ASH 2018. Presentation 554.

#### Immunotherapy in <u>Early Phases</u> of <u>Ph– ALL</u>: Results From Phase II Trials

| Group              | Chemotherapy                       | MoAb                         | N pts | Median age<br>(range) | CR after<br>induction | MRD–<br>after<br>induction | OS (y)     |
|--------------------|------------------------------------|------------------------------|-------|-----------------------|-----------------------|----------------------------|------------|
| MDACC <sup>1</sup> | Mini HyperCVD                      | Ino ± Blin                   | 78    | 68 (60–87)            | 86%                   | 80%                        | 46% (5y)   |
| EWALL <sup>2</sup> | EWALL backbone                     | Ino                          | 90    | 69 (55–84)            | 88.8%                 | 73%                        | 78.5% (1y) |
| GMALL <sup>3</sup> | EWALL backbone (in consolidation)  | Ino (single-drug induction)  | 43    | 64 (56–80)            | 100%                  | 74%                        | 77% (2y)   |
| SWOG⁴              | POMP (maintenance only)            | Blin (single-drug induction) | 29    | 75 (66–84)            | 65.5%                 | NA                         | 37% (3y)   |
| GRAALL⁵            | Standard induction + consolidation | Blin                         | 94    | 35 (18–60)            | NR                    | 74%                        | 92% (1y)   |
| GMALL <sup>6</sup> | EWALL backbone                     | Blin                         | 33    | 65 (56–76)            | 83%                   | 69%                        | 84% (1y)   |
| MDACC <sup>7</sup> | HyperCVAD                          | Blin                         | 38    | 37 (17–59)            | 81%                   | 85%                        | 83% (3y)   |

1. Short N, et al. ASH 2021. Abstract 3400; 2. Chevalier P, et al. ASH 2021. Abstract 511; 3. Stelljes M, et al. ASH 2021. Ab stract 2300; 4. Advani A, et al. *J Clin Oncol.* 2022 DOI: 10.1200/JCO.21.01766; 5. Boissel N, et al. ASH 2021. Abstract 1232; 6. Gokbuget N, et al. ASH 2021. Abstract 3399; 7. Short N, et al. ASH 2021. Abstract 1233.

#### Immunotherapy in First-Line ALL: Phase II Trials



#### Ino + low induction CHT (older)<sup>2</sup>

#### Ino induction + CHT consol (older)<sup>3</sup>



#### Low induction + Blin consol





#### HCVAD + Blin (young)<sup>5</sup>



#### Std CHT + Blin (young, HR)<sup>6</sup>



1. Short N, et al. ASH 2021. Abstract 3400; 2. Chevalier P, et al. ASH 2021. Abstract 511; 3. Stelljes M, et al. ASH 2021. Abstract 2300; 4. Gokbuget N, et al. ASH 2021. Abstract 1239; 5. Short N, et al. ASH 2021. Abstract 1233; 6. Boissel N, et al. ASH 2021. Abstract 1232; .

#### Immunotherapy in <u>Early Phases</u> of <u>Ph+ ALL</u>: Results From Phase II Trials

| Reference                 | ТКІ       | Immunotherap<br>Y | N  | Median age<br>(range) | CR, % | CMR,%                               | OS, % (95% CI)<br>years |
|---------------------------|-----------|-------------------|----|-----------------------|-------|-------------------------------------|-------------------------|
| Foa et al <sup>1</sup>    | Dasatinib | Blinatumomab      | 63 | 54<br>(24–82)         | 98    | 29 (ponatinib)<br>60 (blinatumomab) | 80 (68–93)<br>2-yr      |
| Short et al <sup>2</sup>  | Ponatinib | Blinatumomab      | 30 | 62<br>(34–83)         | 94    | 81 (CMR + MMR)                      | 93<br>2-yr              |
| Advani et al <sup>3</sup> | Dasatinib | Blinatumomab      | 24 | 73<br>(62–87)         | 92    | 31                                  | 85 (58–95)<br>3-yr      |

1. Foa R, et al. N Engl J Med. 2020;383:1613-1623; 2. Short N, et al. Blood. 2021;138(suppl 1): a bstract 2299; 3. Advani A, et al. Blood. 2021; 138(suppl 1): a bstract 3397.

## **Conclusions (ALL)**

- MRD is the best prognostic factor in children and adults with ALL
- Prognostic significance at any time point (after induction, consolidation, before and after HSCT)
- Limited predictive value. Possible additional influence of oncogenetic factors
- MRD must de assessed within specific trials
- Possible early interventions to decrease the MRD level
  - Immunotherapy with MoAb (blinatumomab, inotuzumab)(Ph-ALL)
  - Combination of MoAb with targeted therapy (Ph+ ALL)

## **Acute Myeloid Leukemia**

#### **Outcomes Stratified by MRD Status in AML**

#### Systematic review and meta-analysis of 81 publications including 11151 patients



### **MRD in AML: Techniques**

| Technique                        | Advantages                                                                                                                                                                                                                                                                         | Disadvantages                                                                                                                                                                                                                                     |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiparameter<br>flow cytometry | <ul> <li>Most commonly used method</li> <li>Applicable to &gt;90% of patients</li> <li>Sensitivity 1 × 10<sup>-4</sup> to 1 × 10<sup>-5</sup></li> <li>Identification of leukemia-<br/>associated immunophenotypes<br/>(LAIP) and/or different from<br/>normal approach</li> </ul> | <ul> <li>High level of expertise needed         <ul> <li>Selection of right antibody<br/>panel</li> <li>Standardization of analyses</li> <li>Extensive knowledge about<br/>normal and regenerative BM<br/>expression of CD</li> </ul> </li> </ul> |
| Molecular<br>measurable MRD      | <ul> <li>Higher sensitivity of RT-qPCR</li> <li>Novel developments of higher-<br/>sensitivity techniques         <ul> <li>Droplet digital PCR</li> <li>NGS (under investigation)</li> </ul> </li> </ul>                                                                            | <ul> <li>Limited to specific stable genes<br/>during disease progression         <ul> <li>NPM1</li> <li>RUNX1-RUNX1</li> <li>CBF-MY11</li> </ul> </li> </ul>                                                                                      |

#### **MFC vs PCR for MRD Assessment in AML**

GIMEMA AML 1310



#### Where to Measure MRD in AML?

- Standard approach: bone marrow
- Peripheral blood
  - MFC: probably 1 log less sensitive
  - RT-qPCR: similar sensitivity?

#### **Prognostic and Predictive Value of MRD in AML**

• Growing evidence on the prognostic value of MRD in

- Post-remission
- After consolidation
- Before HSCT
- **Poor predictive value** (as in ALL)
  - -30% of MRD- patients relapse

## (Potential) Use of MRD in the Clinic

#### **Potential Use**

- Refine the CR status
- Choose targeted therapy at induction
- Intensifying induction therapy in MRD+ pts
- Choice of consolidation therapy
- Defining the need and type of HSCT
- Pre-emptive therapy before HSCT
- Post-transplant interventions

#### Comment

- MRD not officially recognized as surrogate endpoint
- Under research
- Several trials with new drugs and targeted therapies
- Incorporation of new drugs in this phase
- Potentially useful for selecting allo/auto in intermediate-risk group
- Intensification of consolidation vs new drugs before HSCT
- Hypomethylating agents, DLI, immunotherapy, targeted therapy

## Allogeneic HSCT Abrogates the Poor Prognosis of MRD+ in Intermediate-Risk AML



Venditti A, et al. *Blood*. 2019;134:935-945.

#### **Possible MRD Tailored Therapy in Different AML Phases**



## **Conclusions (AML)**

- MRD has prognostic value in AML
- Techniques for MRD assessment less standardized than in ALL
- MRD increasingly recognized as surrogate endpoint
- MRD is a decision tool for incorporation of new therapies and for selection of HSCT
- As in ALL, MRD has poor predictive value



The best moment of MRD assessment for prognosis in Ph+ ALL is:

- 1. At diagnosis
- 2. After induction (1 month from diagnosis)
- 3. After consolidation (3 months from diagnosis)
- 4. After autologous HSCT
- 5. After allogeneic HSCT



In AML, one of the following techniques is not used for MRD assessment:

- 1. Flow cytometry
- 2. Fluorescence in situ hybridization
- 3. Quantitative PCR
- 4. Droplet-digital PCR
- 5. NGS



## Current and future role of transplantation in acute leukemias

#### Sergio Giralt







Memorial Sloan Kettering Cancer Center

## Allogeneic HCT for AML and ALL: Current State of the Science Global Leukemia Academy

Sergio Giralt, MD Melvin Berlin Chair in Myeloma Research Professor of Medicine Weill Cornell Medical College Deputy Head, Division of Hematologic Malignancies Attending Physician, Adult BMT Service Memorial Sloan Kettering Cancer Center New York, New York



- Research support
  - Celgene, Sanofi, Johnson & Johnson, Actinuum, Millennium, Amgen, Takeda, Omeros
- Consulting fees
  - Celgene, Sanofi, Johnson & Johnson, Actinuum, Millennium, Amgen, Kite (Gilead), Novartis, BMS, Jazz, Pfizer, CSL Behring, Omeros
- I am a transplanter



- Current State of Allo-HCT in AML and ALL
- Indication for HCT in AML
- Planning HCT for AML Patients
- Future Directions in HCT for AML
- Indication for HCT in ALL
- Planning HCT for ALL Patients
- Future Directions in HCT for ALL



# **Current State of Allogeneic HCT for AML/ALL**



#### Indications for Hematopoietic Cell Transplant in the US, 2019





₽

#### Selected Disease Trends for Allogeneic HCT in the US







Common Conditioning Regimens in Acute Myelogenous Leukemia (AML) or Myelodysplastic Syndrome (MDS) Allogeneic HCT in the US, 2009-2019







# Common Conditioning Regimens in Acute Lymphoblastic Leukemia (ALL) Allogeneic HCT in the US, 2009-2019





# Trends in Survival after Allogeneic HCT for Acute Myelogenous Leukemia (AML), Age ≥18 Years, in the US, 2001-2018





₽

Memorial Sloan Kettering Cancer Center...

# Trends in Survival after Allogeneic HCT for Acute Lymphoblastic Leukemia (ALL), Age ≥18 Years, in the US, 2001-2018





₽

Memorial Sloan Kettering Cancer Center...



## Who Should Be Referred for Allo-HCT in AML?


## NCCN Guidelines Version 3.2020 for AML (Age <a>> 18 years)</a>

Risk Stratification by Genetics in non-APL AML<sup>1</sup>

| Category             | Genetic Abnormality                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Favorable<br>Risk    | t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i><br>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i><br>Biallelic mutated <i>CEBPA</i><br>Mutated <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -ITD <sup>Iow</sup>                                                                                                                                                                                                     |  |  |
| Intermediate Risk    | Mutated NPM1 and FLT3-ITD <sup>high</sup><br>Wild type NPM1 without FLT3-ITD or with FLT3-ITD <sup>jow</sup> (without adverse risk genetics)<br>t(9;11)(p21.3;q23.3); MLLT3-KMT2A<br>Cytogenetic abnormalities not classified as favorable or adverse                                                                                                                                                                                 |  |  |
| Poor/Adverse<br>Risk | t(6;9)(p23;q34.1); <i>DEK-NUP214</i><br>t(v;11q23.3); <i>KMT2A</i> rearranged<br>t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i><br>inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2MECOM(EVI1)</i><br>-5 or del(5q):-7; -17/abn(17p)<br>Complex karyotype, monosomal karyotype<br>Wild type <i>NPM1</i> and <i>FLT3</i> -ITD <sup>high</sup><br>Mutated <i>RUNX1</i><br>Mutated <i>RUNX1</i><br>Mutated <i>ASXL1</i><br>Mutated <i>TP53</i> |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

**Figure 8:** NCCN Guidelines Version 3.2020 for AML (Age ≥18 years); Risk Stratification by Genetics in non-APL AML [52], figure adapted from NCCN Guidelines [51].



# Who Should Be Referred for Allo-HCT With ALL?



- CR1
  - High-risk karyotype: complex, hypodiploid, 11q23, iAMP21 (pedi)
  - High-risk immune phenotype: ETP, Ph-like
  - Poor Rx response: MRD
  - Ph?
    - HCT if persistent MRD after 3 months of therapy
- CR2 and greater remission
  - All patients

Disease status remains a powerful prognosticator.



## **Poor Outcome for ETP ALL**

- T-ALL originating from early T-cell precursors
- Distinct gene expression profile
- Distinct immunophenotype: CD1a<sup>neg</sup>, CD8<sup>neg</sup>, CD5<sup>weak</sup>, ± myeloid markers



#### Coustan-Smith E, et al. Lancet. 2009;10:147-156.

#### Jain N, et al. *Blood*. 2016;127:1863-1869.

Poor Outcome for ETP ALL Abrogated by HCT



Bond J, et al. J Clin Oncol. 2017;35(23):2683-2691.

₽

Memorial Sloan Kettering Cancer Center...

#### Brammer JE, et al. Bone Marrow Transplant. 2017;52(1):20-27.





### Peaks in AYAs





## Poor outcome

Courtesy Dr Roberts NEJM 2014 and unpublished.

**MRD Allows Precise Risk Stratification** 



- Next-generation sequencing (NGS) MRD testing more accurately predicts outcomes
  - NGS MRD identified a subgroup with NGS+/flow MRD- with an intermediate prognosis
  - Low-risk characteristics + NGS MRD negativity (20% of pts) identified very good survival (EFS 98.1%, OS 100%)

Memorial Sloan Kettering Cancer Center...



- 130 adults with ALL received therapy in salvage 1 (SI) or 2 (S2) at MDACC between 2010–2015
- ORR 60%, MRD<sup>neg</sup> 32% by MFC; best response in chemo-immunotherapy group •
- Med 27 mo FU, stratified by MRD and salvage ٠
  - 2-yr EFS and OS rates were 31% vs 12%, p = .09, and 40% vs 26%, p = .18, respectively
  - MRD significantly impacts EFS in salvage 1 only





₽

Cancer Center...



- Progressive improvement in patient outcomes compared with historical data
  - CR rates up to 80% (c/w ~30%); notably majority MRD<sup>neg</sup>
  - Survival ~50% (c/w ~20%)
- Blinatumomab, inotuzumab
  - Median OS <12 months</li>
  - Improved CR rates and durability noted when used earlier in disease course, combined with chemotherapy
  - Studies ongoing





Memorial Sloan Kettering Cancer Center...

## Improving HCT Outcomes



₽

## Are We Making Progress? Five-Year Outcomes After HCT for AML in CR1





Performing HLA typing and cytogenetic testing at the time of diagnosis increases the chance of receiving HCT in early-stage disease, which leads to improved patient outcomes.



Cancer Center...

Memorial Sloan Kettering Cancer Center,..



FIG 3. Survival outcomes for patients transplanted in CR1. (A) Landmark analysis for OS and (B) RFS among patients alive after 6 months after randomization. (C) RFS and (D) OS among CR1 high-risk patients who were treated using a matched related donor v a matched unrelated donor. CR1, first complete remission; OS, overall survival; RFS, relapse-free survival.

# AML Induction Therapy: A More Complicated Landscape



\*Off label. CCT, current clinical trial.



## **TOWER: Impact of HCT in Blin and SOC Groups**

- HCT significantly improved survival in both Blin and SOC groups
- No difference in HCT benefit by treatment group



Jabbour E, et al. Cancer. 2019;125:4181-4192.



## **Optimize IO With HCT**

- Analyzed R/R ALL pts who were treated with IO and went to HCT as part of 2 clinical trials: NCT01363297, phase I/II trial, and NCT01564784, phase III trial
- N = 236 patients Rx on 2 studies; 101 went to HCT
- Median age 37 yr, 62% received IO as first salvage and 85% had no prior SCT
- 70% matched grafts; 60% MAC regimens
- MVA
  - Factors predicting better survival: MRD<sup>neg</sup> during IO, no prior HCT associated with lower risk of mortality post-HCT
  - Factors predicting worse OS: older age, higher baseline LDH, higher bili prior to HCT, thiotepa



₽

## Survival for Patients Who Received IO and Proceeded to HCT





Memorial Sloan Kettering Cancer Center... Improving HCT Outcomes

New graft sources Cord Blood Haplo

Precision drug dosing Novel regimens



## BMT CTN 0901: Randomized Phase III Design







## Relapse-Free Survival by Treatment Arm



€

# Our Ex Vivo CD34-Selected Platform Uses Weight-Based ATG to Reduce the Risk of <u>Graft Rejection</u>



**ATG [Thymoglobulin]** = 2.5 mg/kg IV on days -3, -2(-1)

## **Post-HCT ATG Exposure and Outcomes**



rATG, rabbit antithymocyte globulin; OS, overall survival; NRM, nonrelapse mortality; CD4+ IR, CD4+ immune reconstitution defined as CD4+ levels twice above 50/µL at 2 consecutive measures within 100 days.

Memorial Sloan Kettering Cancer Center...



Radioimmunotherapy: Delivering High Doses of Radiation Therapy Safely to the Tumor

#### Total body irradiation



#### Radioimmunotherapy





毟

## **SIERRA Phase III Trial Design**



#### Key Eligibility Criteria

#### Active, relapsed, or refractory AML defined as

- Primary induction failure (PIF) after ≥2 cycles of chemotherapy
- First early relapse after remission <6 months
- Refractory to salvage combination chemotherapy with high-dose cytarabine
- Second or subsequent relapse

- Bone marrow blast count ≥5% or the presence of peripheral blasts
- ≥55 years of age
- Karnofsky score ≥70
- An 8/8 allele-level, related or unrelated, medically cleared HSC donor matching at HLA-A, HLA-B, HLA-C, and DRB-1

## Gut Bacteria Associated With Allo-HSCT Outcomes



Memorial Sloan Kettering

Cancer Center...



€

The Association of OS With Intestinal Microbial Diversity: Perineutrophil Engraftment Is Reproducible



Stratified by above- and below-median Simpson reciprocal index in each cohort. Single sample per patient, collected day 14  $\pm$  7. Confirms prior single-center analysis of n = 80.

Taur Y, et al. Blood. 2014;124(7):1174-1182.







GVHD and immune-reconstitution Graft composition



Toxicity, supportive care, and survivorship



# Donor selection and alternative-donor SCT



Relapse prevention Strategies cellular and non-cellular

## What Other Strategies to Prevent GVHD Are Being Explored?





## No Difference in Primary Endpoint: CRFS



|                    | Events for<br>the Pair | HR   | 95% CI       | <i>P</i><br>Value |
|--------------------|------------------------|------|--------------|-------------------|
| CD34 Vs<br>Tac/MTX | 122 (232)              | 0.81 | (0.56, 1.15) | .27               |
| PTCY vs<br>Tac/MTX | 127 (232)              | 0.86 | (0.61, 1.23) | .41               |
| CD34 vs<br>PTCY    | 111 (228)              | 0.93 | (0.64, 1.36) | .72               |

\*Log-rank test.



## Overall Survival Decreased in CD34+



|                         | Events for<br>the Pair | HR   | 95% Cl       | <i>P</i> Value |
|-------------------------|------------------------|------|--------------|----------------|
| CD34 Vs<br>Tac/MTX      | 71 (232)               | 1.74 | (1.09, 2.80) | .02            |
| PTCY vs<br>Tac/MTX      | 56 (232)               | 1.02 | (0.60, 1.72) | .95            |
| CD34 <i>v</i> s<br>PTCY | 69 (228)               | 1.78 | (1.09, 2.89) | .02            |

rogress

and Enhancing Survival after Stem cell tra

BLOOD AND MARROW TRANSPLANT CLINICAL TRIALS NETWORK

# RFS and TRM, but Not Relapse, Showed Significant Differences Between the 3 Arms



Relapse-free survival





Relapse

Transplant-related mortality





## Chronic GVHD Was Reduced in CD34+













GVHD and immune-reconstitution Graft composition



Toxicity, supportive care, and survivorship



# Donor selection and alternative-donor SCT



Relapse prevention Strategies cellular and non-cellular

## Targeted approaches

Memorial Sloan Kettering Cancer Center...

- Exploit a specific mutation or surface antigen expression as the therapeutic target
  - BCR/ABL
  - FLT3
  - CD19, CD20, CD30, CD33, CD22
- Pros
  - Less toxicity
  - Known efficacy
  - Both drugs/cells can be used
- Cons
  - Emergence of resistance

## Non-targeted approaches

- Exploits the GVT effect and differential sensitivity of tumor cells over normal cells to therapeutic agents
- Immune-therapeutics
  - DLI
  - Hypomethylating agents
  - IMiDs
- Cytotoxic agents
  - Conventional chemo
- Pros
  - More broad-based
- Cons
  - Potentially more toxic
  - May trigger GVHD



₽

## **SORMAIN: Results**

#### Progression-Free Survival

#### **Overall Survival**



EOT, end of treatment; EOS, end of study.

Burchert A, et al. Blood. 2018;132: abstract 661.


## SORMAIN: Results – Relapse Mortality at 2 Years



\*Gray's test.

Burchert A, et al. Blood. 2018;132: abstract 661.



### **Overall Survival**



### Cox regression for RFS by stratification

|                          |                  | Median,<br>Years | <i>P</i> Value | HR* (95%CI)      | PValue* |  |
|--------------------------|------------------|------------------|----------------|------------------|---------|--|
| RFS, stratified analysis |                  |                  |                |                  |         |  |
| Group 1                  | Obs              | 1.28             |                | Ref              |         |  |
|                          | AZA, 1–4 cycles  | 0.54             | .04            | 1.5 (0.94–4.42)  | .09     |  |
| Group 2                  | Obs              | 3.40             |                | Ref              |         |  |
|                          | AZA, 5–8 cycles  | 1.06             | .21            | 0.81 (1.23–0.35) | .64     |  |
| Group 3                  | Obs              | NA               |                | Ref              |         |  |
|                          | AZA, 9–12 cycles | 7.64             | .16            | 0.47 (0.19–1.17) | .11     |  |

\*Adjusted for disease type, cytogenetic risk groups, disease status at HSCT, conditioning, intensity, stem cell source, donor type, HCT-CI and second SCT.

Cox regression analyses showed improvement in RFS in AZA group if they received  $\geq 9$  cycles of AZA, but the effect was not significant (P = .11)



₽

## HMA and FLT<sub>3</sub> Inhibitors as Maintenance

### Α

| of maintena<br>therapy       | ince <u>Study</u> <u>H</u> | lazard ratio | 9 <u>5</u> | <u>% CI</u> |                     |             |
|------------------------------|----------------------------|--------------|------------|-------------|---------------------|-------------|
|                              | r Brunner, 2016            | 0.26         | 0.09       | 0.78        | +                   |             |
| FLT3                         | Burchert, 2020             | 0.24         | 0.08       | 0.73        |                     |             |
| inhibitor                    | Maziarz, 2020              | 0.58         | 0.19       | 1.78        |                     |             |
|                              | L Xuan, 2020               | 0.48         | 0.27       | 0.86        |                     |             |
| I = 0   Q = 2.19   p = 0.53  |                            | 0.41         | 0.26       | 0.62        | -                   |             |
| НМА                          | r Americo, 2018            | 0.41         | 0.17       | 1.00        |                     |             |
|                              | Gao, 2020                  | 0.45         | 0.24       | 0.84        |                     |             |
|                              | L Ali, 2020                | 0.47         | 0.26       | 0.84        |                     |             |
| I = 0   Q = 0.06   p = 0.069 |                            | 0.45         | 0.31       | 0.66        |                     |             |
|                              |                            |              |            |             | 0.1 1               |             |
|                              |                            |              |            |             | maintenance therapy | observation |
| в                            |                            |              |            |             | Netter              | setter      |



Bewersdorf, et al. Transplant Cell Ther. 2021;27:997.



- 18/45 patients received HCT consolidation at median 70 days post-CAR
- Median 28 mo post-HCT, 2-yr EFS 61%, OS 72%, CIR 17% (all CD19+), NRM 23%
- 17% grade 3-4 aGVHD; 44% cGVHD
  - No correlation b/w CRS and GVHD
- HCT independent predictor of better EFS on MVA, HR 0.39, P = .088



Memorial Sloan Kettering Cancer Center...

# Blinatumomab Maintenance Post-HCT: Trial at MDACC

- Study group: ALL with MRD<sup>pos</sup>, and/or beyond CR1
- Treatment plan: 4 cycles of blinatumomab as a 4-week continuous infusion at 28  $\mu$ g/m<sup>2</sup>/24 hours at 2–3, 6, 9, and 12 months following HCT
- N = 12 patients, med age 30 years (range, 21–65); cumulative 26 cycles Blin administered
  - Toxicity: seven grade 3 or 4 AEs reported (leukopenia n = 4, transaminitis n = 2, rash n = 1). No CRS. One grade 2 neurotoxicity
  - Response, with med follow-up 8.5 months post-HCT (range 2–35): all 4 patients who were MRD+ prior to start of Blin have progressed and 2 have died. None of the 8 patients who were MRD negative post-transplant have relapsed

## Low-Dose Inotuzumab Maintenance Post-HCT: Trial at UH

- Study group: ALL with MRD<sup>pos</sup>, and/or beyond CR1, recipients of RIC
- Treatment plan: 4 cycles of inotuzumab, single-dose monthly, starting at 40–100 days post-transplant
- N = 12 patients, med age 48 years (range, 17–67); cumulative 34 cycles ino administered (0.3, 0.4, 0.5, 0.6 mg/m<sup>2</sup>)
  - Toxicity: mostly thrombocytopenia; no VOD
  - Day 100 and 1-year non-relapse mortality is zero
  - Median follow-up of 16 months post-HCT (range 3–40): 11/12 patients are alive
  - One patient relapsed during first year and 1 patient relapsed 2 yr after HCT
  - One-year PFS is 91%





- Allo-HCT remains the most effective therapy for patients with RELAPSED AML or ALL and all efforts should be taken to get these patients to allo-HCT
- For patients in CR1, risk-stratification is essential to guide the decision of proceeding to allo-HCT or not
- Early referral is essential to optimize transplantation rates
- In 2022, everybody has a donor and donor selection may be a strategy to improve outcomes. However, we are uncertain if a younger unrelated donor is superior to an older related donor
- Improvements in supportive care have reduced NRM and allowed us to transplant older patients
- Relapse remains the most important cause of treatment failure, and prospective trials of maintenance therapies are currently ongoing

Memorial Sloan Kettering

Cancer Center...

### ACKNOWLEDGMENTS

#### Adult BMT Service

Juliet Barker, MBBS Hugo Castro-Malaspina, MD Christina Cho, MD David Chung, MD Parastoo Dahi, MD Sergio Giralt, MD Jenna D. Goldberg, MD Boglarka Gyurkocza, MD Katharine Hsu, MD, PhD Ann A. Jakubowski, MD, PhD Robert J. Jeng, MD Guenther Koehne, MD Molly Maloy Jimmy Nieves, RN Esperanza Papadopoulos, MD Tsoni Peled, MD Brian Shaffer, MD Gunjan Shah, MD Roni Tamari, MD Marcel van den Brink, MD, PhD James W. Young, MD

### Pediatric BMT Service

Farid Boulad, MD Nancy A Kernan, MD Richard J. O'Reilly, MD Susan Prockop, MD Trudy N. Small, MD

**Biostatistics** Junting Zheng, PhD Glenn Heller, PhD Sean Devlin, PhD

### Marcel van den Brink, MD, PhD

Onder Alpdogan, MD Arnab Ghosh, MD, PhD Lauren Young Johannes Zakrzewski, MD

Eric Pamer, MD Jeroen Van Heijst, PhD Ying Taur, MD

#### Immune Monitoring

Jianda Yuan, MD Jedd D. Wolchok, MD, PhD Hulimidad Gallardo Ryan Kendle Cailian Liu, MD Theresa Rásalan Yingyan Xu Bushra Zaid

#### Cytheris

Therese Croughs, MD Michel Morre, MD

### Support

Cytheris, Inc NIH, NY Community Trust, **Experimental Therapeutics Center** (MSKCC), Cycle for Survival (MSKCC), Translational and Integrative Medicine Research Fund (MSKCC)







Memorial Sloan Kettering Cancer Center

# Questions? giralts@mskcc.org



## Leukemia Board Discussion

**Elias Jabbour** 







## Leukemia Board Discussion: Case 1 – AYA ALL

Erica Almeida Viana







Emerging and Practical Concepts and Controversies in Leukemias

Latin America and Canada

*IKZF1* Deletion in ALL: What Is the Best Strategy?

Clinical Case

**Speaker Brief:** Érica Almeida Viana Fellow GRAACC, Sao Paulo, Brazil



## Medical History

male, 16 years old

No prior comorbidities

Abdominal pain, weakness/asthenia, sore throat, and sweating

Adenomegaly, gingival bleeding, petechiae, and fever

### Bone Marrow Aspirate: 96% blasts

Flow cytometry  $\rightarrow$  pre-B acute lymphoblastic leukemia

- Karyotype: 46,XY [20]
- Molecular Biology (PCR)
  - Negative for t(1:19)(q23;p13.3) E2A/PBX1
  - Negative for t(4;11)(q21;q23)AF4/MLL
  - Negative for t(9;22)(q34;q11.2) BCR/ABL1
  - Negative for t(12;21)(q12;22) ETV6-TEL/RUNX-AML1
  - Positive for *IKZF1* deletion (7p12.2)
- CNS 1

## ALL With IKZF1 Deletion

- Frequency of  $\sim 15\%$  in pediatric and 40% in adult ALL cases
- Older pediatric age at diagnosis
- Higher white blood cell count
- Higher MRD after induction and consolidation
- HR Treatment Protocols (BFM: *IKZF1*plus)

-2/3 of pediatric ALL with *IKZF1* deletion also have *BCR-ABL1* mutations



- 1. BFM 2009 Protocol
- 2. GRALL
- 3. COG AALL
- 4. CALGB
- 5. HyperCVAD
- 6. ESPHALL

### **RELLA Brazilian HR Protocol**

### Alto Risco (duração 120 semanas)

| Indução                                      | Consolidação                   | Manut Primária       | Reindução I                         | Manut A               | Reindução II         |  |
|----------------------------------------------|--------------------------------|----------------------|-------------------------------------|-----------------------|----------------------|--|
| PVDA<br>Ciclo+<br>AraC+MP                    | HDMTX<br>MP                    | MP+MTX<br>DEXA+VCR   | Linhagem B<br>DVA+Dauno<br>MP+HDMTX | MP+MTX<br>DVA         | DVA+MP<br>HDMTX      |  |
| +Asparagin<br>ase                            | 8 Semanas<br>8 - 16            | 6 semanas<br>1 - 6   | 6 semanas                           | 12 semanas<br>13 - 24 | 4 semanas<br>25 - 28 |  |
| 7 Semanas                                    |                                |                      | / 12                                |                       |                      |  |
| 1-7                                          |                                |                      |                                     |                       |                      |  |
| Manut A                                      | Manut B                        |                      |                                     |                       |                      |  |
| MP+MTX<br>Dexa+VCR                           | MP+MTX<br>DEXA+VCR<br>(55-100) |                      |                                     |                       |                      |  |
| 24  semanas                                  | 52 semanas                     |                      |                                     |                       |                      |  |
| 29 - 52                                      | 55-104                         |                      |                                     |                       |                      |  |
| PVDA=prednig                                 | sona. vincristina.             | daunoblastina e aspa | raginase                            |                       |                      |  |
| DVA=dexametasona, vincristina e asparaginase |                                |                      |                                     |                       |                      |  |

HDMTX=Alta dose de metrotrexate

| Grupo     | Indução | Intensif | Consolidação | Consolid | Re-   | Re-    | Manutenção |
|-----------|---------|----------|--------------|----------|-------|--------|------------|
|           | -       |          | MTX (2.5 G)  | MTX (5   | Ind I | Ind II | A e B      |
|           |         |          |              | G)       |       |        |            |
| Baixo     | 28 dias | não      | Sim          | Não      | Sim   | Não    | Sim        |
| Intermedi | 20 dias | 29 dias  | Sim          | Não      | Sim   | Não    | Sim        |
| ário      |         |          |              |          |       |        |            |
| Alto      | 20 dias | 29 dias  | Não          | Sim      | Sim   | Sim    | Sim        |

### **RELLA Brazilian HR Protocol**

- D19: hypocellular bone marrow aspirate
  - MRD 8.6% blasts
- $\bullet$  D49: MRD 4.3% blasts
- Consolidation MRD: 0.9% blasts
  - # Discussion with St Jude Team and initiated imatinib due to the *IKZF1* deletion
- Week 17 Maint A MRD: 0.08%
- Week 30 Maint A MRD: negative



# Do I Need a Bridge to Transplant?

- 1. Blinatumomab
- 2. Dasatinib
- 3. TACL-Bortezomib
- 4. REZ BFM
- 5. R17

?

### Blinatumomab

- First cycle: MRD negative
- Second cycle: MRD negative

## Haplo SCT

- Fludarabine 90 mg/m<sup>2</sup> + TBI 1200cGy
- Pt-Cy 50 mg/kg (D +3 to +4)
- Mycophenolate 45 mg/kg/d + tacrolimus 0,05 mg/kg/d
- Father, minor ABO mismatch
- Engraftment: D +14
- D +60: Imatinib 100 mg/d progressively increased to 400 mg/d

### Bone Marrow Evaluation

- D +30: negative MRD/full donor chimerism
- D +75: negative MRD/full donor chimerism
- D +100: negative MRD/full donor chimerism
- + 4 mo: negative MRD/full donor chimerism
- 5 mo: full donor chimerism
- 7 mo: full donor chimerism
- 10 mo: full donor chimerism
- 12 mo: full donor chimerism

### • Is imatinib really needed in this case?

• For how long should imatinib be continued in post-SCT for ALL with del *IKZF1*?

# For how long should the imatinib prophylaxis continuate post-SCT?

1. 6 months

?

- 2. 12 months
- 3. 24 months
- 4. **36** months

## 1 yr, 5 mo post-SCT

- $\bullet$  Imatinib discontinued on D +120
- $\bullet$  Tacrolimus discontinued on D +126

• No GVHD







O tratamento contra o **câncer não** pode esperar a **pandemia** passar

# Thank you!



Leukemia Board Discussion: Case 2 – AML

Paola Omaña







# Clinical case: Acute myeloid leukemia

Olga Paola Omaña Orduz

March 2022

## General data



- Female
- 62 years old
- MC: Abnormalities in laboratories
- AI: Sent by another hematologist before abnormalities were found in her hemogram. She doesn't have symptoms

# **Clinical history**



- Time of diagnosis: 07/29/2021
- Bone marrow studies
  - Morphology: Diluted sample without spicule that gives off good cellularity. Sample infiltrated by 47% intermediate to large sized blasts, loose chromatin, very evident nucleolus, some granular. Acute myeloid leukemia M2 vs M5 a
  - Flow cytometry: myeloblast CD34+, CD117+, HLADR+, CD45+, CD56-, CD64±, CD38+, CD13+, MPO± (30%), CD19-

# **Clinical history**



Bone marrow studies

Biopsy: Adequate cylinder with 10 intertrabecular spaces for evaluation. Bone marrow with an average cellularity of 80% is observed, diffusely infiltrated by a monotonous population of medium-sized cells with loose chromatin and evident nucleoli, some molded with clefts; the residual population is minimal, represented by few megakaryocytes, lymphocytes, and erythroids in small groups. Histochemistry for reticulum shows a diffuse increase in the MF(1 and 2/3) plot. PATHOLOGICAL DIAGNOSIS BONE MARROW BIOPSY: INFILTRATED BY A HEMATOPOIETIC NEOPLASM, MORPHOLOGICALLY CONSISTENT WITH AML

# Clinical history

Molecular studies

### 04/08/2021

- NPM1 negative
- FLT3 negative
- CEBPA negative
- t(8:21) negative
- inv16 negative



## Induction

### Protocol: 7+3

- 07/30/2021
- Complications
  - Febrile neutropenia MASCC 23 points low risk
    - First episode: No clinic focus. Received Pip Taz
  - Febrile neutropenia
    - Second episode: E. cloacae bacteremia
- Reevaluation day 15: Bone marrow with 9% promonocytes al 10% blast







With the 15th day bone marrow result, what do you think will be your next step?

- 1. Reinduction with protocol of your choice
- 2. Continue with consolidations with high-dose AraC
- 3. Move to best supportive care
- 4. Rescue with FLAG IDA

## **Re-induction**

### **GOELAMS**

- 09/02/2021
- Complications
  - Febrile neutropenia MASCC 21 pts low risk
- Response: Morphologic response with EMR(-) status



## Consolidation

### High-dose cytarabine

- Cycle 1: 10/02/2021
  - Complications: Febrile neutropenia low risk
  - Response: Complete remission with EMR(-)
- Cycle 2: 11/03/2021
  - Complications: E. coli bacteremia cefepime 14 days
- Cycle 3: 11/30/2021
  - Complications: Febrile neutropenia
  - Response
    - FC: Promonocytes 9.8% with abnormal expression of CD56 myeloblasts 0.26%
    - Myelogram: 6.3% promonocytes and 14% monocytes






If this was your patient, what would have been your next step?

- 1. Reinduction with another 7+3
- 2. Rescue with FLAG IDA
- 3. Best supportive care

## Consolidation

#### FLAG IDA

- Date: 12/24/2021
- Complications at day +10
  - Febrile neutropenia
  - KPC K. pneumoniae bacteremia
- Needs monitoring in intensive care unit
- Multiorgan failure
- Death







#### PLEASE JOIN US FOR OUR OTHER ACADEMY!

#### **Global Multiple Myeloma Academy** - focusing on LATAM region

#### 23 – 24 June 2022

- 2.00 PM 5.00 PM EDT (Central Daylight Time)
- 3.00 PM 6.00 PM EDT (Easter Daylight Time)
- 4.00 PM 7.00 PM GMT-3 (San Paulo time)

For more information, please visit the website: <u>https://globalmmacademy.com</u>

APTITUDE HEALTH



Optimal management and treatment coordination of long-term toxicities in pediatric leukemias

Stephanie Dixon







# Optimal Management and Treatment Coordination of Long-Term Toxicities in Pediatric Leukemia

Stephanie Dixon, MD, MPH Cancer Survivorship Division, St. Jude Children's Research Hospital



 Describe prevalent late health outcomes among survivors of childhood leukemia

- Identify resources to help guide survivorship care
- Introduce survivorship care plans and models of survivorship care



- 1. Survivors of ALL treated with conventional chemotherapy including moderate-doses of anthracyclines
- 2. Survivors of ALL requiring hematopoietic cell transplant
- 3. Survivors of AML treated with conventional chemotherapy including high doses of anthracyclines (>250 mg/m<sup>2</sup>)
- 4. Survivors of AML treated with hematopoietic cell transplant

?



- 1. Survivorship care plans can be useful tools to summarize treatment and follow-up recommendations
- 2. The risk-stratified care model is optimal for survivorship care
- 3. Many barriers to optimal survivorship care exist and may be unique to specific regions or healthcare systems
- 4. Survivorship care includes transition planning for return to community practice and/or adult providers

2

#### St. Jude Children's Research Hospital

#### Improved Overall Survival for Childhood ALL



- ALL cure rates have dramatically improved since the 1970s
- 5-year survival now exceeds 90%
- Risk-stratification to adjust treatment intensity to clinical and biologic risk factors is continually improving

#### Therapy Exposures Among ALL Survivors by Era



- Reduction in use and dose of prophylactic cranial radiation
- Reduction in cumulative dose of anthracycline chemotherapy
- Concurrent increase in use of asparaginase, dexamethasone, and high-dose methotrexate

St. Jude Children's Research Hospital



#### Improved Overall Survival for Childhood AML



- AML cure rates have dramatically improved since the 1970s
- Overall outcomes remain suboptimal
- Effective regimens have been largely dependent upon higher doses of anthracyclines

#### High Burden of Health Conditions in Leukemia Survivors

- Most leukemia survivors develop chronic health conditions related to treatment
- At least 20% self-report a severe condition by 20 years from diagnosis





#### **Outcomes by Risk-Stratified Groups in ALL**







#### **Outcomes by Risk-Stratified Groups in ALL**





#### **Cumulative Burden of Conditions in ALL by Era**



Finding cures. Saving children.



#### **Chronic Conditions in Survivors of AML**





#### **Chronic Conditions in Survivors of HSCT**

Survivors of transplant have an increased risk for chronic conditions compared to those treated with chemotherapy alone.

Relative risk of second cancers and endocrine or metabolic conditions is highest.

|                            | Relative risk grade 3-5 conditions |                                            |                 |  |  |
|----------------------------|------------------------------------|--------------------------------------------|-----------------|--|--|
|                            | BMTSS<br>(N = 145), %              | Conventionally treated, CCSS (N = 7207), % | RR<br>(95% CI)* |  |  |
| Second malignant neoplasm‡ | 6.9                                | 3.1                                        | 8.6 (2.9-25.3)  |  |  |
| Endocrine                  | 29.7                               | 4.9                                        | 7.7 (4.2-14.3)  |  |  |
| Musculoskeletal            | 2.1                                | 0.5                                        | 7.4 (2.4-23.1)  |  |  |
| Gastrointestinal           | 2.8                                | 2.0                                        | 4.8 (1.0-21.7)  |  |  |
| Neurosensory impairment    | 9.0                                | 3.9                                        | 3.8 (1.4-10.3)  |  |  |
| Genitourinary              | 1.4                                | 0.3                                        | 2.9 (1.1-7.8)   |  |  |
| Cardiovascular             | 4.8                                | 3.2                                        | 0.5 (0.1-2.5)   |  |  |

#### Anthracycline Exposure and Cardiomyopathy



St. Jude Children's Research Hospital



#### **Goals for Optimal Survivorship Care Delivery**

- Survivors are a medically complex and diverse population
- Medical and psychosocial late effects of treatment continue to evolve

#### Goals of survivorship care

- Prevention of recurrent/new cancer and late effects
- Cancer surveillance
- Assessment of medical and psychosocial late effects
- Intervention for consequences of cancer and its treatment
- Coordination between specialists and primary care providers



#### Survivorship Care Continuum





#### Survivorship Care Continuum







- survivorshipguidelines.org
- Comprehensive literature search and grading of evidence
- Recommendations are consensus based
- Late effects linked with therapy exposure and screening recommendations



| ec # | Therapeutic<br>Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Potential<br>Late Effects                                          | Periodic Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Health Counseling/<br>Further Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 33   | Anthracycline Antibiotics<br>Daunorubicin<br>Doxorubicin<br>Epirubicin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cardiac toxicity<br>Cardiomyopathy<br>Subglinical left ventricular | HISTORY<br>Shortness of b<br>Dyspnea on ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HISTORY<br>Shortness of breath<br>Dyspnea on exertion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HEALTH LINKS<br>Heart Health<br>Cardiovascular Risk Factors<br>Diet and Physical Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|      | darubicin<br>Mitxantrone<br><b>Jose conversion</b><br>To gauge the frequency<br>of screening, use the<br>following formulas to<br>convert to doxorubicin<br>isotoxic equivalents<br>prior to calculating total<br>cumulative anthracycline<br>dose. Clinical judgment<br>should utimately be used<br>to determine indicated<br>screening for individual<br>patients.<br>Doxorubicin: Multiply total<br>dose x 1<br>Daunorubicin: Multiply total<br>dose x 0.5<br>Epirubicin: Multiply total<br>dose x 0.67<br>Idarubicin: Multiply total<br>dose x 5<br>Mitoxantrone: Multiply<br>total dose x 4 | Congestive heart failure<br>Arrhythmia                             | Chest pain<br>Palpitations<br>If under 25 yrs<br>(nausea, voi<br>Yearly<br>PHYSICAL<br>Blood pressur<br>Cardiac exam<br>Yearly<br>SCREENING<br>ECHO (or comp<br>cardiac fund<br>Recommend<br>Anthracycline<br>Dose*<br>None<br>< 250 mg/m²<br>* 250 mg/m²<br>* 250 mg/m²<br>* 250 mg/m²<br>* 250 mg/m²<br>* Based in adation of<br>the adation and adation<br>* Based in a datation<br>te base in a datation<br>te base in a datation<br>* Based in a datation<br>* Bas | s: abdominal s<br>miting)<br>e<br>e<br>e<br>d Frequency of E<br>association<br>a 15 - c 35 cy<br>a 35 cy<br>c 15 cyr mos<br>a | tymptoms to evaluate to evaluate to evaluate therefore the to evaluate the to | Characteristics     Provide the set of |  |  |

Although Mitoxantrone technically belongs to the anthracenedione class of anti-tumor antibiotics, it is related to the anthracycline family and is included in this section because of its cardiotoxic potential.

- Organized by risk-based exposure and follow-up care
- Exposure-specific sections list relevant agents



| :# | Therapeutic<br>Exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potential<br>Late Effects                                                                                                   | Periodic Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Health Counseling/<br>Further Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 3  | Anthracycline Antibiotics<br>Daunorubicin<br>Doxorubicin<br>Epirubicin<br>Idarubicin<br>Mitoxantrone<br>Dose Conversion<br>To gauge the frequency<br>of screening, use the<br>following formulas to<br>convert to doxorubicin<br>isotoxic equivalents<br>prior to calculating total<br>cumulative anthracycline<br>dose. Clinical judgment<br>should ultimately be used<br>to determine indicated<br>screening for individual<br>patients.<br>Doxorubicin: Multiply total<br>dose x 1.5<br>Epirubicin: Multiply total<br>dose x 0.67<br>Idarubicin: Multiply total<br>dose x 4. | Cardiac toxicity<br>Cardionyopathy<br>Subclinical left ventricular<br>dysfunction<br>Congestive heart failure<br>Arthythmia | HISTORY<br>Shortness of E<br>Dyspnea on ei<br>Prhopnea<br>Hunder 25 yrt<br>(nausea, vo<br>Yearly<br>PHYSICAL<br>Blood pressur<br>PHYSICAL<br>Blood pressur<br>Yearly<br>SCREENING<br>ECHO (or com<br>cardiac fum<br>Recommed<br>Anthracycline<br>Dose'<br>None<br>< 250 mg/m <sup>2</sup><br>- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | reath<br>reation<br>interference<br>miting)<br>e<br>e<br>e<br>read<br>to set<br>to se | very System<br>Every System<br>Eve | Part The LINKS           HEALTH LINKS           Heart Health           Cardiovascular Risk Factors           Diet and Physical Activity           COUNSELING           Maintain appropriate weight, blood pressure and heart-healthy diet.           Regarding exercise:           - Regular exercise is generally safe and should be encouraged for patients who have norm:           - Buyuit exercise is generally safe and should be encouraged for patients who have norm:           - Survivoits wave methoding ic cardiomyopathy should consult cardiology to define limits and precautions for physical activity for high risk survivors (i.e., those requiring at comments and precautions for physical activity for high risk survivors (i.e., those requiring at comments and precautions for physical activity for high risk survivors (i.e., those requiring at comments and precautions for physical activity for high risk survivors (i.e., those requiring at comments and precautions for physical activity for high risk survivors (i.e., those requiring at comments are suboptime the OTC interval (e.g., tricyclic anti-depressants, antifungals, macrolide antibiotics, metroridazole).           POTENTIAL CONSIDERTATIONS FOR FURTHER TESTING AND INTERVENTION Cardios MRI as an adjunct limaging modality when echocardiograms metroridazole).           Cardiogy consultation in patients with subclinical adhormalities on screening evaluations, I wethricular dyfunction, cyshrythmia, or proinoged OTC interval.           - abients only: For patients with acterial anormalities on screening valuations, I wethricular dyfunction, or subiline echocardiogram may be obtained ath the provider's discretion Those w |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             | Baseline at ent<br>repeat as clin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ry into long-ter<br>cally indicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m follow-up,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STOTEM = Cardiovascular<br>SCORE = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

Although Mitoxantrone technically belongs to the anthracenedione class of anti-tumor antibiotics, it is related to the anthracycline family and is included in this section because of its cardiotoxic potential.

- Organized by risk-based exposure and follow-up care
- Exposure-specific sections list relevant agents
- Late effects are listed



| # Thei<br>E # Ex<br>3 Anthracyc                                   | Recommend                                                                                                | ng/<br>tions                                                                                    |                                                              |                                                                                                                                      |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Doxorubici<br>Epirubicin<br>Idarubicin<br>Mitoxantro<br>Dose Conv | Anthracycline<br>Dose*                                                                                   | Radiation<br>Dose**                                                                             | Recommended<br>Frequency                                     | thy diet.                                                                                                                            |
| To gauge t<br>of screen<br>following                              | None                                                                                                     | < 15 Gy or none                                                                                 | No screening                                                 | ged for patients who have no                                                                                                         |
| convert to<br>isotoxic e<br>prior to ca                           |                                                                                                          | ≥ 15 - < 35 Gy                                                                                  | Every 5 years                                                | ts and precautions for physic<br>40 every 2 years) who plan t                                                                        |
| dose. Clin<br>should ul                                           |                                                                                                          | ≥ 35 Gy                                                                                         | Every 2 years                                                | ations that may further prolo<br>s, macrolide antibiotics,                                                                           |
| screening<br>patients.                                            | < 250 mg/m <sup>2</sup>                                                                                  | < 15 Gy or none                                                                                 | Every 5 years                                                | STING AND INTERVENT                                                                                                                  |
| dose x 1<br>Daunorubic<br>total dose                              |                                                                                                          | ≥ 15 Gy                                                                                         | Every 2 years                                                | ning to become pregnant,<br>o received:                                                                                              |
| Epirubicin:<br>dose x 0.<br>Idarubicin:                           | $\geq$ 250 mg/m <sup>2</sup>                                                                             | Any or none                                                                                     | Every 2 years                                                | ≥15 Gy)<br>- or early-pregnancy). For<br>early-pregnancy baseline                                                                    |
| dose x 5<br>Mitoxantro<br>total dose                              | *Based on doxorubicin i<br>instructions in section 3<br>**Based on radiation do<br>chest, abdomen, spine | sotoxic equivalent dose. S<br>3.<br>se with potential impact to<br>[thoracic, whole], TBI). See | ee dose conversion<br>b heart (radiation to<br>b section 76. | ained at the provider's discre<br>early-pregnancy systolic<br>ardiomyopathy. Such individu<br>ring labor and delivery due to<br>tlar |

Although Mitoxantrone technically belongs to the anthracenedione class of anti-tumor antibiotics, it is related to the anthracycline family and is included in this section

- Organized by risk-based exposure and follow-up care
- Exposure-specific sections list relevant agents
- Late effects are listed
- Screening evaluations are outlined with consideration of exposure and level of risk



| HEMOTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ERAPY                                                                                                                                                                                                                         | ANTHRACYCLINE ANTIBIOTICS (CONT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c # Therapeu<br>Exposur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tic Potential<br>e Late Effects                                                                                                                                                                                               | Periodic Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Health Counseling/<br>Further Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Anthracycline Ant<br>Daunorubicin<br>Doxorubicin<br>Epirubicin<br>Idarubicin<br>Mitoxantrone<br>Dose Conversion<br>To gauge the frequ<br>of screening, use<br>following formula<br>convert to doxoru<br>isotoxic equivalen<br>prior to calculatin<br>cumulative anthra<br>dose. Clinical judy<br>should ultimately<br>to determine indi<br>screening for indi<br>patients.<br>Doxorubicin: Multipudose x 0.<br>Epirubicin: Multipudose x 0.67<br>Idarubicin: Multipudose x 0.67<br>Idarubicin: Multipudose x 0.67<br>Idarubicin: Multipudose x 4 | ibiotics Cardiac toxicity<br>Cardiomyopathy<br>Subclinical left ventricular<br>dysfunction<br>Congestive heart failure<br>Arrhythmia<br>ency<br>the<br>s to<br>bicin<br>ts<br>g total<br>ly total<br>ly total<br>total<br>ply | HISTORY           Shortness of           Dyspnea on e           Orthopnea           Chest pain           Palpitations           If under 25 yr           (nausea, vo           Yearly           PHYSICAL           Blood pressu           Cardiac exam           Yearly           SCREENING           ECHO (or com           cardiac fun           Recommen           Anthracycline           None           < 250 mplm <sup>2</sup> × 250 mplm <sup>2</sup> EKG (include           Baseline at en           repeat as clir | breath<br>ixertion<br>s: abdominal s<br>parable imagin<br>inting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>transiting)<br>re<br>re<br>re<br>re<br>re<br>re<br>re<br>r | ymptoms  tg to evaluate  to evaluate  to evaluate  to evaluate  Recommended  Recommended  Recommended  Every 2 years  Every 2 | HEALTH LINKS         Heart Health<br>Cardiovascular Risk Factors<br>Diet and Physical Activity <b>COUNSELING</b> Maintain appropriate weight, blood pressure and heart-healthy diet.         Regarding exercise:         - Regular exercise:         - Artifyoin fish survivors (i.e., those requiring an ECH0 every 2 years) who plan to precultions for physical activity.         - Cardiology consultation may be reasonable to define limits and precautions for physical activity for high risk survivors (i.e., those requiring an ECH0 every 2 years) who plan to participate in intensive exercise.         If Die Interval is proimged: Caution regarding use of medications that may further proiong the OTc interval (e.g., through and t-depresents, antifungais, macrolide antibiotics, metronidazole).         POTENTAL CONSIDERATIONS FOR FURTHER TESTING AND INTERVENTON         Cardia Mil as an adjunct imaging modality when echocardiographic images are suboptimal.         Cardiology consultation in patients with subclinical abnormalities to as regenant, additional cardiology evaluations, left venticular dysfunction, dyschythmän, or prolonged OT cinterval.         - Female patients only: For patients who are pregnant or planning to become pregnanty. For these without for adminal the or early-pregnancy. For these without for adminal methor or early-pregnancy. For these withou for on adminal methor or early-pregnancy. For these wit |

- Organized by risk-based exposure and follow-up care
- Exposure-specific sections list relevant agents
- Late effects are listed
- Screening evaluations are outlined with consideration of exposure and level of risk
- Other considerations of level of evidence



#### **Guidelines Harmonization Across Groups**



**CHILDREN'S ONCOLOGY GROUP** Foundation



#### International Guideline Harmonization Group

for Late Effects of Childhood Cancer

Children's Cancer and Leukaemia Group

Working together to beat childhood cancer





Scottish Intercollegiate Guidelines Network



#### International Guideline Harmonization Group (IGHG)

• The IGHG established consensus guidelines for cardiomyopathy surveillance in 2015

| Risk Surveillance |       | Suggested interval |  |  |
|-------------------|-------|--------------------|--|--|
| Liah              | Voc   | 5-year             |  |  |
| пign              | Tes   | ≤5-year            |  |  |
| Moderate          | Maybe | 5-year             |  |  |
| Low Maybe         |       | 5-year             |  |  |



Strong recommendation, high quality evidence

Moderate recommendation, moderate quality evidence Moderate recommendation, weak quality evidence



#### IGHG Publications and Considerations for Leukemia Survivors

- Methodology (*Pediatr Blood Cancer* 2013)
- Breast cancer (Lancet Oncol 2013, J Clin Oncol 2020)
- Cardiomyopathy (Lancet Oncol 2015)
- Premature ovarian insufficiency (*J Clin Oncol* 2016)
- Fertility preservation (Cancer 2016)
- Male gonadotoxicity (Lancet Oncol 2017)
- Thyroid cancer (Cancer Treat Rev 2018)
- Ototoxicity (Lancet Oncol 2019)
- Meningioma surveillance (J Neuro-Oncol 2020)
- Cancer-related fatigue (J Cancer Surviv 2020)
- Obstetrical care (Am J Obstet Gynecol 2020)
- COVID-19 survivorship statement (*Pediatr Blood Cancer* 2020)

- Fertility preservation series (female, male, ethics) (*Lancet Oncol* 2021)
- Meningioma (Lancet Oncol 2021)
- Coronary artery disease (Eur J Cancer 2021)
- Bone mineral density (*Lancet Diabetes Endocrinol* 2021)
- Hepatotoxicity (Cancer Treat Rev 2021)
- Education/employment (In press, Cancer)
- Pituitary deficiencies (In press)
- Impact of COVID-19 on survivorship providers (In press)
- Mental health (*In press*)



#### Survivorship Care Continuum





#### Survivorship Care Plans (SCPs)

- Cancer diagnostic information
- Cumulative treatment exposures
- Cancer-related health risks
- Risk-based screening recommendations ۲
- Major clinical events
- Transfusion history
- Health behaviors modifying risk
- Family history

| Suggested Evaluat                                                                                                                                                         | St. Jude Childr<br>Research Hosp                                                                                                | Surv<br>ens<br>ital                                                                                                                                                                                                | vivorship Care Plan<br>August 2, 2                                                                                                                                                                                                                         | - Research Report<br>016                                                                                                                                                                | St. Jude                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Laboratory Tests                                                                                                                                                          | Date of Birth:                                                                                                                  |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                            |                                                                                                                                                                                         | MRN:<br>Gender:                                           |
| Screening Recomment<br>ALT, AST, bilirubin, fe<br>BUN, creatinine, Na, I<br>Fasting blood glucose<br>Free T4, TSH<br>FSH, LH, Estradiol<br>Serum cortisol (8 am)          | General Info<br>Race:<br>Gender:<br>Current Age:<br>Phone#:                                                                     | rmation                                                                                                                                                                                                            |                                                                                                                                                                                                                                                            | MILLI Patient Status:<br>Initial Medical Service:<br>Initial Primary St. Jude MD:<br>Last Medical Service Visit Date:<br>Date of Transfer:<br>Last ACT Clinic Visit Date:<br>Affiliate: | Active ACT<br>Neuro-Oncology<br>Other (Memphis)           |
| Urinalysis                                                                                                                                                                | Diagnosis                                                                                                                       |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                            |                                                                                                                                                                                         |                                                           |
| Diagnostic Studies                                                                                                                                                        | DX# Date                                                                                                                        | Acefilistopy                                                                                                                                                                                                       | Diagnosis                                                                                                                                                                                                                                                  |                                                                                                                                                                                         | State                                                     |
| Screening Recomment<br>Abdominal x-ray<br>Audiogram or brainste<br>BAER)<br>Bone density evaluati<br>ECHO (2D and m-mot<br>EKG for evaluation of<br>Neuropsychological te | 1 Protocol Enr Mnemonic T 978ANK P SJMB03 T SJLTFU P GENS P C SJLIFE E                                                          | 3.7 yrs<br>ollments<br>tile<br>reatment of Patients<br>upratentorial Primiti<br>reatoid Rhabdoid Tur<br>rotocol for Collecting<br>harmacogenetic Detu-<br>harmacogenetic Detu-<br>stablishment of a Lifi<br>Jenoro | Medulloblastoma, Posterior<br>, Archiving, and Distributing Hum.<br>with Newly Diagnosed Medullobla<br>we Neuroectodermal Tumor, or Aty<br>mor<br>Jotas on Childhod Cancer Surviv<br>erminants of Treatment Response<br>etime cohort of Adukts Surviving C | On Study Date Off<br>an Tissue<br>atoma,<br>pical<br>ors<br>in<br>hildhood                                                                                                              | Chang (MO)<br>IP<br>Study Date Off Therapy Date<br>:ifici |
| Consultations                                                                                                                                                             | Oncology Hi                                                                                                                     | story                                                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                                                                                         |                                                           |
| Screening Recomment<br>Neurosurgery<br>Ophthalmology                                                                                                                      | Diagnosis of fi<br>(Valley Bapt)     Trastmeter<br>Trastmeter<br>Trastmeter<br>Trastmeter<br>Trastmeter<br>Therapy<br>Surgeries | Medulloblastoma, po<br>st Medical Center,<br>H combined mod, Alt<br>th combined model<br>(2340 cGy), Left ce<br>rapy (SS80 cGy tota                                                                                | sterior fossa, following gross total<br>arlingen, TX)<br>y SJNB03 protocol therapy includ<br>y sutologous hematopoietic cell y<br>vatologous hematopoietic cell r<br>vebellum (3060 cGy), Posterior fos<br>I cumulative dose)                              | tumor resection by craniotomy<br>ng consolidation with<br>scue<br>sa tumor bed boost (180 cGy)                                                                                          | Start Date Resolve Date                                   |



#### Survivorship Care Continuum





#### **Shared-Care Model of Survivorship Care**

- Communication begins at dx and continues through transition
- Survivorship-focused extension of cancer care continuum
- Nurse practitioners and physician assistant visits



Jacobs et al. Lancet Oncol. 2017; Oeffinger. J Clin Oncol. 2006.

Primary responsibility

Secondary responsibility

### **Risk-Stratified Model of Survivorship Care**



- Risk-stratified and shared care
  - Care based upon low, moderate, and high risk for late effects
  - Coordination between oncology and primary care with differential transition to primary care



Moderate Risk

St. Jude Children's Research Hospital



#### **Barriers to Survivorship Care Delivery**




- Survivors of childhood leukemia are a medically complex and diverse population
- As medical and psychosocial late effects of treatment continue to evolve, so will care needs and recommended screening
- Survivorship guidelines and survivorship care plans can support delivery of survivorship care
- Optimal survivor care must be tailored to the risk of the patient and the availability of resources in the region and health system



- 1. Survivors of ALL treated with conventional chemotherapy including moderate-doses of anthracyclines
- 2. Survivors of ALL requiring hematopoietic cell transplant
- 3. Survivors of AML treated with conventional chemotherapy including high doses of anthracyclines (>250 mg/m<sup>2</sup>)
- 4. Survivors of AML treated with hematopoietic cell transplant

?



- 1. Survivorship care plans can be useful tools to summarize treatment and follow-up recommendations
- 2. The risk-stratified care model is optimal for survivorship care
- 3. Many barriers to optimal survivorship care exist and may be unique to specific regions or healthcare systems
- 4. Survivorship care includes transition planning for return to community practice and/or adult providers

2



## **Questions?**





AYA ALL patients – what is the current treatment approach for this diverse patient population? Special considerations for adolescents and young adults

#### **Rob Pieters**







## Adolescents/young adults (AYA) with ALL

Rob Pieters Chief Medical Officer





#### Which assertion is NOT correct for adolescent and young adult ALL patients?

- 1. Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- 2. Osteonecrosis and anaphylactic reactions to asparaginase are more often seen in adults than in children and teenagers
- 3. AYA patients experience more liver toxicity and thrombosis than children <10 years old
- 4. BCR-ABL1-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

#### Inferior outcome for AYA patients: Why?



- Role of "pediatric-" vs "adult-inspired" treatment protocols
- Site of treatment
- Trial enrollment
- Toxicity profile
- Biology/genetics of the leukemia
- Adherence

#### Pediatric vs adult treatment protocols



- More intensive use of
  - Glucocorticoids
  - Vincristine
  - Asparaginase
  - Methotrexate
  - 6-mercaptopurine
- Less intensive use of
  - Anthracyclines
  - Cyclophosphamide
- Less frequent use of alloSCT
- Prolonged maintenance, delayed intensification, CNS-directed therapy

## Comparison of 5-year EFS in adolescent and young adult (AYA) patients treated on pediatric and adult protocols









Adolescent ALL on pediatric DCOG vs adult HOVON protocol in the Netherlands

#### 5 yrs actuarial probabilities

|                              | CR   | OS (sd)         | EFS (sd)        | DFS (sd)         | pREL (sd)        | TRM (sd)        |
|------------------------------|------|-----------------|-----------------|------------------|------------------|-----------------|
| DCOG<br>15-18 yrs<br>(n=47)  | 98%  | <b>79%</b> (±6) | <b>69%</b> (±7) | <b>71%</b> (±7)  | <b>27%</b> (±7)  | <b>4%</b> (±3)  |
| HOVON<br>15-18 yrs<br>(n=44) | 91%  | <b>38%</b> (±7) | <b>34%</b> (±7) | <b>37%</b> (±8)  | <b>55%</b> (±8)  | <b>25%</b> (±7) |
| HOVON<br>19-20 yrs<br>(n=29) | 90%  | <b>44%</b> (±9) | <b>34%</b> (±9) | <b>38%</b> (±10) | <b>50%</b> (±10) | <b>21%</b> (±8) |
| p-value                      | 0.24 | 0.0001          | <0.0001         | 0.0002           |                  |                 |

pediatric oncology

#### 5-year overall survival by age group over time in the Netherlands





## Proportion of patients with ALL treated at a pediatric oncology center in the Netherlands





#### Multivariate analysis of risk of death: Patients 15–17 years old with ALL in the Netherlands between 1990 and 2015



|                   |                                   | Hazard risk | 95% Cl | 95% CI | P value |
|-------------------|-----------------------------------|-------------|--------|--------|---------|
|                   | 1990–94                           | Reference   |        |        |         |
|                   | 1995–99                           | 0.97        | 0.50   | 1.91   | .94     |
| Period            | 2000-04                           | 0.67        | 0.32   | 1.42   | .30     |
|                   | 2005–09                           | 0.64        | 0.30   | 1.37   | .25     |
|                   | 2010-15                           | 0.80        | 0.38   | 1.68   | .56     |
| Sov               | Male                              | Reference   |        |        |         |
| Sex               | Female                            | 1.45        | 0.89   | 2.37   | .14     |
| Immunanhanatuna   | Precursor B cell                  | Reference   |        |        |         |
| minunophenotype   | Precursor T cell                  | 1.59        | 0.97   | 2.62   | .07     |
| Site of treatment | Outside pediatric oncology center | Reference   |        |        |         |
| Site of treatment | Pediatric oncology center         | 0.32        | 0.20   | 0.53   | <.01    |

#### **Outcomes of older adolescents treated on recent pediatric trials**



| - · ·               | No. of   | Age range, | Early       | Death in |         | E | FS | C | os |
|---------------------|----------|------------|-------------|----------|---------|---|----|---|----|
| Irial               | patients | yr         | death,<br>% | CR, %    | HSCI, % | Y | %  | Y | %  |
| CCG 1961            | 262      | 16-21      | 2           | 3        | 4       | 5 | 72 | 5 | 78 |
| DFCI 9101/9501      | 51       | 15-18      | 4           | 2        | NR      | 5 | 78 | 5 | 81 |
| Total Therapy<br>XV | 45       | 15-18      | 0           | 7        | 11      | 5 | 86 | 5 | 88 |
| UKALL 2003          | 229      | 16-24      | NR          | 6        | 6.1     | 5 | 72 | 5 | 76 |
| FRALLE 2000         | 186      | 15-19      | 2           | 2        | 12      | 5 | 74 | 5 | 80 |
| DCOG ALL-10         | 57       | 15-18      | 3.5         | 3.5      | 12      | 5 | 79 | 5 | 82 |

#### **Outcomes of young adults on recent pediatric-inspired protocol (HOVON)**



| Triel            | No. of | Age       | Early    | Death in | HSCT, | E | =S | 0 | S  |
|------------------|--------|-----------|----------|----------|-------|---|----|---|----|
| ГПАТ             | pts    | range, yr | death, % | CR, %    | %     | Y | %  | Y | %  |
| CCG 1961         | 262    | 16-21     | 2        | 3        | 4     | 5 | 72 | 5 | 78 |
| DFCI 9101/9501   | 51     | 15-18     | 4        | 2        | NR    | 5 | 78 | 5 | 81 |
| Total Therapy XV | 45     | 15-18     | 0        | 7        | 11    | 5 | 86 | 5 | 88 |
| UKALL 2003       | 229    | 16-24     | NR       | 6        | 6.1   | 5 | 72 | 5 | 76 |
| FRALLE 2000      | 186    | 15-19     | 2        | 2        | 12    | 5 | 74 | 5 | 80 |
| DCOG ALL-10      | 57     | 15-18     | 2.5      | 2.5      | 12    | 5 | 79 | 5 | 82 |
| HOVON 100        | 77     | 18-25     |          |          | 44%   | 5 | 59 | 5 | 77 |
| HOVON 100        | 82     | 26-40     |          |          | 41%   | 5 | 61 | 5 | 72 |

Courtesy of Anita Rijneveld and Lotte van der Wagen (HOVON study group)

#### EFS, relapse, and death in first remission by age





### Toxicity by age



|         | Y/N (%)             | OR (95% CI)                    | P       |
|---------|---------------------|--------------------------------|---------|
| Intensi | ve care w/wo assi   | sted ventilation               |         |
| 1-9     | 145 / 864 (14.4%    | ) 1.0 (1.0- 1.0)               |         |
| 10-17   | 54 / 208 (20.6%)    | 1.3 (0.9-1.9)                  | 0.14    |
| 18-45   | 40 / 172 (18.9%)    | 1.1 (0.7-1.6)                  | 0.68    |
| Anaphy  | latic reaction to a | sparaginase                    |         |
| 1-9     | 146 / 863 (14.5%    | ) 1.0 (1.0- 1.0)               |         |
| 10-17   | 25 / 237 ( 9.5%)    | 0.6 (0.4-0.9)                  | 0.016   |
| 18-45   | 11/201 (5.2%)       | 0.3 (0.1-0.5)                  | < 0.001 |
| Invasiv | e Fungal infection  | 1                              |         |
| 1-9     | 98/911 (9.7%)       | 1.0 (1.0-1.0)                  |         |
| 10-17   | 32 / 230 (12.2%)    | 0.9 (0.6-1.4)                  | 0.68    |
| 18-45   | 28 / 184 (13.2%)    | 0.9 (0.5-1.4)                  | 0.54    |
| Periphe | eral paralysis      | 501100 <b>1</b> - 01101 - 0110 |         |
| 1-9     | 100 / 909 ( 9.9%)   | ) 1.0 (1.0- 1.0)               |         |
| 10-17   | 30 / 232 (11.5%)    | 1.3 (0.8-2.1)                  | 0.21    |
| 18-45   | 20 / 192 ( 9.4%)    | 1.1 (0.7-1.9)                  | 0.61    |
| Pancre  | atitis              |                                |         |
| 1-9     | 60 / 949 ( 5.9%)    | 1.0 (1.0-1.0)                  |         |
| 10-17   | 29 / 233 (11.1%)    | 2.2 (1.3-3.5)                  | 0.001   |
| 18-45   | 24 / 188 (11.3%)    | 2.4 (1.4-4.0)                  | 0.001   |
| Hyperli | pidemia             | and the second second          |         |
| 1-9     | 72/937 (7.1%)       | 1.0 (1.0-1.0)                  |         |
| 10-17   | 26 / 236 ( 9.9%)    | 1.7 (1.0-2.8)                  | 0.027   |
| 18-45   | 15 / 197 (7.1%)     | 1.3 (0.7-2.3)                  | 0.37    |
|         |                     |                                |         |

| Thromb  | oosis            | S                    |         |
|---------|------------------|----------------------|---------|
| 1-9     | 36 / 973 ( 3.6%) | 1.0 (1.0- 1.0)       |         |
| 10-17   | 40 / 222 (15.3%) | 5.0 (3.1-8.2)        | < 0.001 |
| 18-45   | 37 / 175 (17.5%) | 6.0 (3.6-10.1)       | < 0.001 |
| Osteon  | ecrosis          |                      |         |
| 1-9     | 23 / 986 ( 2.3%) | 1.0 (1.0- 1.0)       |         |
| 10-17   | 35 / 227 (13.4%) | 8.0 (4.6-14.1)       | < 0.001 |
| 18-45   | 18 / 194 ( 8.5%) | 5.3 (2.7-10.3)       | < 0.001 |
| Seizure | 15               |                      |         |
| 1-9     | 38/971(3.8%)     | 1.0 (1.0-1.0)        |         |
| 10-17   | 16/246(6.1%)     | 1.7 (0.9-3.1)        | 0.086   |
| 18-45   | 5/207 (2.4%)     | 0.7 (0.2-1.6)        | 0.39    |
| PCP     |                  |                      |         |
| 1-9     | 29 / 980 ( 2.9%) | 1.0 (1.0- 1.0)       | 100000  |
| 10-17   | 11/251 (4.2%)    | 1.3 (0.6-2.6)        | 0.48    |
| 18-45   | 13 / 199 ( 6.1%) | 1.8 (0.9-3.7)        | 0.089   |
| PRES    |                  | autor and an article |         |
| 1-9     | 37 / 972 ( 3.7%) | 1.0 (1.0- 1.0)       | 10023   |
| 10-17   | 9/253(3.4%)      | 0.8 (0.4-1.7)        | 0.60    |
| 18-45   | 5/207 (2.4%)     | 0.5 (0.2-1.3)        | 0.18    |
|         |                  |                      |         |



Princess

#### Survival in AYA with ALL by treatment site in North America





#### Survival in 15- to 24-year-old ALL patients (n = 503) by trial status





#### Risk group distribution (MRD based) by age





#### Distribution of cytogenetic subtypes of ALL by age





#### Discovery of BCR-ABL1–like ALL in 2009



B-lineage - other

BCR-ABL positive

B-lineage - other

BCR-ABL-like

12

BCR-ABL positive

12

BCR-ABL-like

10



**COALL-treated patients** 

time from initial diagnosis (years)

14

## Frequency of identified tyrosine kinase fusion genes in *BCR-ABL1*–like ALL and remaining B-other ALL

| Marker                        | <i>BCR-ABL1-</i><br>like (n=77) | Remaining<br>B-other (n=76) |
|-------------------------------|---------------------------------|-----------------------------|
| ABL1/ABL2 fusion              | 3.9%                            | 0%                          |
| ZMIZ1-ABL1                    | 1                               |                             |
| FOXP1-ABL1                    | 1                               |                             |
| RCSD1-ABL2                    | 1                               |                             |
| PDGFRB fusion                 | 5.2%                            | 0%                          |
| EBF1-PDGFRB                   | 4                               |                             |
| CSF1R fusion                  | 2.6%                            | 0%                          |
| SSBP2-CSF1R                   | 2                               |                             |
| JAK2 fusion                   | 6.5%                            | 0%                          |
| PAX5-JAK2                     | 3                               |                             |
| BCR-JAK2                      | 1                               |                             |
| TERF2-JAK2                    | 1                               |                             |
| <i>CRLF2</i> high expression* | 15.6%                           | 15.8%                       |
| PAR1 deletion**               | 10.5%                           | 10.7%                       |



#### **Cumulative incidence of relapse in ABL-class patients**





#### **Risk-stratification algorithm**





#### **Ph-like ALL: Prevalence and outcomes**







Roberts KG, et al. N Engl J Med. 2014;371:1005-1015; Graubert TA. N Engl J Med. 2014;371:1064-1066 (courtesy of Mignon Loh) Page 289

#### Low adherence to oral 6-MP significantly increases relapse risk and depends on age





#### **AYA conclusions**



- Outcomes improved but still inferior to those in younger children
- Pediatric-inspired protocols better than adult-inspired protocols
- Treatment within trials better outcomes
- Higher toxicity in AYA than in younger children, but manageable
- Higher incidence of unfavorable biology/genetics
- Lower adherence to medication



- 1. Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- 2. Osteonecrosis and anaphylactic reactions to asparaginase are more often seen in adults than in children and teenagers
- 3. AYA patients experience more liver toxicity and thrombosis than children <10 years old
- 4. BCR-ABL1-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

### Thank you







## Debate on sequencing CD19-targeted approaches in ALL

Franco Locatelli







What is your preferred ALL treatment choice in salvage if all these therapies were available in your country?

- 1. CAR T therapies
- 2. Monoclonal antibodies or bispecifics





# Monoclonal antibodies and bispecifics first

**Elias Jabbour** 




Management of R/R B-Cell Acute Lymphocytic Leukemia: Bispecifics and ADC

Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center, Houston, TX

GLA, 2022

### **Conflict of Interest Disclosure**

- Research Grants
  - Pfizer, Takeda, Amgen, AbbVie, Novartis
- Consultancy and advisory roles
  - Pfizer, Takeda, Amgen, AbbVie, BMS

# ALL: Survival by Decade (MDACC 1985–2020)



Years

### **Reasons for Recent Success in Adult ALL**

- Addition of TKIs (ponatinib) +/- blinatumomab to chemoRx in Ph+ ALL
- Addition of rituximab to chemoRx in Burkitt and pre–B-ALL
- Potential benefit of addition of CD19 antibody construct blinatumomab, and of CD22 monoclonal antibody inotuzumab to chemoRx in salvage and frontline ALL Rx
- CAR T therapy
- Importance of MRD in CR (at CR vs 3 mos; NGS)

## Historical Results in R/R ALL

Poor prognosis in R/R ALL Rx with standard of care (SOC) chemotherapy

| Rate (95% CI)     | No prior<br>salvage (S1) | One prior<br>salvage<br>(S2) | ≥2 prior<br>salvages<br>(S3) |  |
|-------------------|--------------------------|------------------------------|------------------------------|--|
| Rate of CR, %     | 40                       | 21                           | 11                           |  |
| Median OS, months | 5.8                      | 3.4                          | 2.9                          |  |

### **ALL – Historical Survival Rates After First Relapse**



Fielding et al. *Blood*. 2007;109:944-950; Tavernier E, et al. *Leukemia*. 2007;21:1907-1914.

### **ALL Salvage Standards of Care in 2022**

- Refer for investigational therapies mini-CVD-ino-blina; CAR T
- Ph+ ALL TKIs (ponatinib preferred) + chemoRx/blinatumomab
- Pre-B ALL
  - Blinatumomab (FDA approval 12.2014)
  - Inotuzumab (FDA approval 8.2017)
  - CAR Ts (FDA approvals 8.2017 and 10.2021)
- T ALL: nelarabine
- ChemoRx: FLAG IDA, Hyper CVAD, augmented HCVAD, MOAD
- BUT very promising new therapies with chemoRx + TKIs/BCL2i (venetoclax; navitoclax)/ADCs/BiTEs/CAR Ts

### Blinatumomab/Inotuzumab vs ChemoRx in R/R ALL

 Marrow CR Blina vs SOC: 44% vs 25%

#### Ino vs SOC: 74% vs 31%



Kantarjian H, et al. N Engl J Med. 2017;376:836-847.

Kantarjian H, et al. N Engl J Med. 2016;375:740; Kantarjian H, et al. Cancer. 2019;125(14):2474-2487.

### Phase III Study of Blinatumomab vs ChemoRx in Children-AYA in Salvage 1

Chemo

41

59

49

21

 208 pts HR/IR randomized 1:1 to blina (n = 105) vs chemo Rx (n = 103) post Block 1 reinduction





Brown et al. JAMA. 2021:325(9):833-842.

#### Phase II Study of Inotuzumab in R/R Pediatric ALL

- 32 pts enrolled, 28 Rx, 27 evaluable
- Median age 7.5 yrs (1.7–17). S2+ 57% Prior blina 25%; prior ASCT 50%; prior CAR T Rx 11%
- Inotuzumab weekly ×3 up to 6 courses
- ORR = 81.5% (CR 50%); MRD- 95% (82% after C1)
- 64% proceeded to ASCT and 14% to CAR T Rx
- 12-mos EFS 23%; 12-mos OS 46.5%
- 6 VOD (22%): 1 during InO; 5/14 post ASCT (36%)

# Subcutaneous Blinatumomab in R/R B-ALL: Phase Ib Dose-Finding Study

- 9 R/R pts, median age 64 yrs (38–83)
- Rx in with SC blinatumomab in 2 cohorts; median BM blast 79% (range, 28%–95%)
- Median prior therapies = 2 (range, 2–4)
- 5/9 achieved MRD-negative CR, 3 in Cohort 1 (3/6, 50%) and 2 in Cohort 2 (2/3, 66%)
- All patients who achieved CR did so within the first treatment cycle



### Mini-HCVD-INO ± Blina in ALL: Design

- Dose reduced Hyper-CVD for 4–8 courses
  - Cyclophosphamide (150 mg/m<sup>2</sup>  $\times$  6) 50% dose reduction
  - Dexamethasone (20 mg) 50% dose reduction
  - No anthracycline
  - Methotrexate (250 mg/m<sup>2</sup>) 75% dose reduction
  - Cytarabine (0.5 g/m<sup>2</sup>  $\times$  4) 83% dose reduction
- Inotuzumab on D3 (first 4 courses)
  - Modified to 0.9 mg/m<sup>2</sup> C1 (0.6 and 0.3 on D1, 8) and 0.6 mg/m<sup>2</sup> C2-4 (0.3 and 0.3 on D1, 8)
- Rituximab D2 and D8 (first 4 courses) for CD20+
- IT chemotherapy days 2 and 8 (first 4 courses)
- Blinatumomab 4 courses and 4 courses during maintenance
- POMP maintenance for 3 years, reduced to 1 year

## Mini-HCVD + INO ± Blina in R/R ALL: Long-Term Follow-Up



Sasaki et al. *Blood*. 2020;136:abstract 1895.

### Mini-HCVD + INO in R/R ALL: Outcomes (N = 108)

| Response               | N (%)      |
|------------------------|------------|
| Salvage 1              | 71/77 (93) |
| S1, primary refractory | 14 (100)   |
| S1, CRD1 <12 mos       | 21 (84)    |
| S1, CRD1 ≥12 mos       | 36 (95)    |
| S2                     | 10 (59)    |
| ≥S3                    | 8 (57)     |
| ORR                    | 89 (83)    |
| MRD negativity         | 71/87 (82) |
| S1                     | 59/69 (86) |
| ≥S2                    | 12/18 (67) |
| Early death            | 7 (6)*     |







Jabbour E, et al. Cancer. 2018;124(20):4044-4055.

### Mini-HCVD + INO ± Blina in R/R ALL: Historical Comparison



Jabbour E, et al. JAM A Oncol. 2018;4(2):230-234; Jabbour E, et al. Cancer. 2021;127(12):2025-2038.

# **Dose-Dense Mini-HCVD + INO ± Blina in ALL: Modified Design**

Intensive phase: C1–C6



### KTE-X19 Anti-CD19 CAR T Cells RX (Kite) in R/R ALL: Phase II (ZUMA-3)

- 71 enrolled, 55 infused; median age 40 yrs (28–52)
- CR/CRi 39/55 (71%, CR 56%); ITT (39/71; 55% CR 44%); MRD– response 76% (97% among responders); 10 pts (18% Rx ASCT)
- mDOR 12.8 mos; mRFS 11.6 mos; mOS 18.2 mos
- Grade ≥3: CRS 24%; NE 25%



Shah et al. Lancet. 2021;S0140-6736.

### **CD19 (%) Expression Before and After Blinatumomab Therapy**

CD19 (%) Expression Before and After Blinatumomab Therapy



• 61 patients evaluated for immunophenotype, 56 (92%) had CD19-positive disease

- 5 (8%) had ALL recurrence with CD19-negative disease
- 2 patients progressed with lower CD19-positive disease

Jabbour et al. Am J Hematol. 2018;376:836-847.

#### **Real-Word CAR Consortium and Disease Burden**



High Burden Disease (n = 94; 47%)

- 1-yr OS 58%
- 1-yr EFS 34%

Schultz et al. Blood. 2020;136.abstract 468.

Low Burden Disease (n = 60; 30%)

- 1-yr OS 85%
- 1-yr EFS 69%

Undetectable Disease (n = 46; 23%)

- 1-yr OS 95%
- 1-yr EFS 72%

### **CAR T in ALL – The Beginning of a Great Journey**

- CART Rx today is what allogeneic SCT was in 1980 a great beginning
- Improved CAR T designs
- Dual CAR Ts targeting CD19, CD22, CD20
- Allogeneic off-the-shelf CAR Ts
- Smaller repeated allogeneic CAR Ts infusions (fractionated CAR Ts)
- CAR Ts in first CR in MRD to replace alloSCT

### **Dose-Dense Mini-HCVD + INO + Blina + CAR T Cells in ALL: The CURE**

Induction phase: C1–C6



### **Salvage Therapies in ALL: Conclusions**

- Very effective salvage therapy in R/R ALL
  - High MRD negativity rate
  - Best outcome in Salvage 1
- Combination with low-dose chemotherapy
  - Safe and effective
  - Median survival 14 months
  - Salvage-1: 24 months (2-year OS rate >50%)
- AE better controlled
  - CRS: debulk with sequential chemotherapy
  - VOD lower doses explored
- CAR T cells RX offered post blinatumomab and inotuzumab failure Complementary
  - Salvage-2 and high-risk Salvage-1 (eg, MLL)
  - Consolidation in high-risk patients (replacing allo-SCT)
- Better "blinatumomab" and "inotuzumab" needed
  - Better "Blina": Long half-life; SQ; no neurotoxicities
  - Better "InO": no VOD

## **ALL Summary**

- Significant progress and improved outcomes across all ALL categories: Ph+, Burkitt, younger and older pre-B ALL, T-ALL, ALL salvage. Rapidly evolving therapies
- Antibody-based Rxs and CAR Ts both outstanding; not mutually exclusive/competitive (vs); rather complementary (together)
- Future of ALL Rx: 1) less chemotherapy(?) and shorter durations; 2) combinations with ADCs and BiTEs/TriTEs targeting CD19, CD20, CD22; 3) CAR Ts in sequence in CR1 for MRD and replacing allo-SCT
- Importance of MRD testing and changing Rx accordingly

# **Thank You**

Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX Email: ejabbour@mdanderson.org Cell: 001.713.498.2929



# **CAR T first**

José Maria Ribera





# **Recent Improvements in ALL Therapy**

| ALL Subtype  | Improvements                                                                                                                                                                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ph+          | More potent TKI upfront: ponatinib<br>Attenuation of chemotherapy<br>Immunotherapy in first line combined with TKI<br>CAR T for R/R                                                            |
| Ph–          | HSCT vs CHT according to MRD<br>Rituximab in first line<br>Blinatumomab in first line (MRD+, elderly, young adults)<br>TKI, JAK-2 inhibitors in Ph-like ALL (clinical trials)<br>CAR T for R/R |
| T-ALL        | Nelarabine upfront (children, adults?)<br>BCL2/BCLX inhibitors (venetoclax, navitoclax) in R/R<br>MoAb (daratumumab, isatuximab) in R/R<br>CAR T (early phases of development) in R/R          |
| All subtypes | Drug profiling for R/R pts                                                                                                                                                                     |

# **Approved Immunological Therapies for B-Cell Precursor ALL**

|                     | Blinatumomab                                          |                             | Inotuzumab                | Brexucabtagene<br>autoleucel | Tisa-cel                       |
|---------------------|-------------------------------------------------------|-----------------------------|---------------------------|------------------------------|--------------------------------|
| FDA approval        | 2014                                                  |                             | 2017                      | 2021                         | 2017                           |
| Approved indication | CD19+ BCP R/R adults & children<br>MRD+ BCP CD19+ ALL |                             | R/R CD22+ ALL in adults   | Adults R/R BCP ALL           | BCP children & AYA (≤25<br>yr) |
| Clinical trial      | BLAST                                                 | TOWER                       | INO-VATE                  | ZUMA-3                       | ELIANA                         |
| N Pts (ITT)         | 118                                                   | 405                         | 326                       | 71                           | 97                             |
| N (evaluable)       | 113/110                                               | 376                         | 326 (OS/PFS)<br>218 (CR)  | 55                           | 79                             |
| CR/CRi (%)          | -                                                     | 43.9 vs 24.6 (ITT)          | 80.7 vs. 29.4 (evaluable) | 71 (evaluable)               | 82.3 (evaluable)               |
| RFS/PFS/EFS         | mRFS 18.9 m<br>(evaluable)                            | 6m EFS: 31% v.<br>12% (ITT) | mPFS: 5.0 vs 1.8 m (ITT)  | mRFS 11.6 m (evaluable)      | 18m RFS: 66%<br>(evaluable)    |
| OS                  | mOS 36.5<br>(evaluable)                               | mOS 7.7 vs 4.0<br>(ITT)     | mOS 7.7 vs 6.7 (ITT)      | mOS 18.2 m (evaluable)       | 18m OS: 70% (evaluable)        |
| G ≥3 AE (%)         | 60                                                    | 86.5 vs 91.7                | 46 vs 43                  | 95                           | -                              |
| G ≥3 CRS (%)        | 1.7                                                   | 4.9 vs 0.0                  | -                         | 24                           | 48                             |
| G ≥3 neurol ev.     | 13 9.4 vs 8.3                                         |                             | -                         | 25                           | 13                             |

# **MoAb vs CAR T Cells in ALL**

# There is no (or little) debate

### **The Present**



\*In previously transplanted patients.

# **The Future**

### MoAb

### • Ph+ ALL

- TKI+ MoAb in newly diagnosed patients
- Reduced use of HSCT

### • Ph– ALL

- Attenuated chemotherapy + MoAb as first-line therapy
- HSCT for MRD+ patients

# **CAR T cells**

### B-cell precursor ALL

- Use in first line in very-high risk patients (poor genetics and MRD+)
- T-ALL
  - CAR T in R/R status

### Immunotherapy in <u>Early Phases</u> of <u>Ph– ALL</u>: Results From Phase II Trials

| Group              | Chemotherapy                       | MoAb                         | N pts | Median age<br>(range) | CR after<br>induction | MRD–<br>after<br>induction | OS (y)     |
|--------------------|------------------------------------|------------------------------|-------|-----------------------|-----------------------|----------------------------|------------|
| MDACC <sup>1</sup> | Mini HyperCVD                      | Ino ± Blin                   | 78    | 68 (60–87)            | 86%                   | 80%                        | 46% (5y)   |
| EWALL <sup>2</sup> | EWALL backbone                     | Ino                          | 90    | 69 (55–84)            | 88.8%                 | 73%                        | 78.5% (1y) |
| GMALL <sup>3</sup> | EWALL backbone (in consolidation)  | Ino (single-drug induction)  | 43    | 64 (56–80)            | 100%                  | 74%                        | 77% (2y)   |
| SWOG⁴              | POMP (maintenance only)            | Blin (single-drug induction) | 29    | 75 (66–84)            | 65.5%                 | NA                         | 37% (3y)   |
| GRAALL⁵            | Standard induction + consolidation | Blin                         | 94    | 35 (18–60)            | NR                    | 74%                        | 92% (1y)   |
| GMALL <sup>6</sup> | EWALL backbone                     | Blin                         | 33    | 65 (56–76)            | 83%                   | 69%                        | 84% (1y)   |
| MDACC <sup>7</sup> | HyperCVAD                          | Blin                         | 38    | 37 (17–59)            | 81%                   | 85%                        | 83% (3y)   |

1. Short N, et al. ASH 2021. Abstract 3400; 2. Chevalier P, et al. ASH 2021. Abstract 511; 3. Stelljes M, et al. ASH 2021. Ab stract 2300; 4. Advani A, et al. *J Clin Oncol.* 2022 DOI: 10.1200/JCO.21.01766; 5. Boissel N, et al. ASH 2021. Abstract 1232; 6. Gokbuget N, et al. ASH 2021. Abstract 3399; 7. Short N, et al. ASH 2021. Abstract 1233.

### Immunotherapy in <u>Early Phases</u> of <u>Ph+ ALL</u>: Results From Phase II Trials

| Reference                 | ТКІ       | Immunotherap<br>Y | N  | Median age<br>(range) | CR, % | CMR,%                               | OS, % (95% CI)<br>years |
|---------------------------|-----------|-------------------|----|-----------------------|-------|-------------------------------------|-------------------------|
| Foa et al <sup>1</sup>    | Dasatinib | Blinatumomab      | 63 | 54<br>(24–82)         | 98    | 29 (ponatinib)<br>60 (blinatumomab) | 80 (68–93)<br>2-yr      |
| Short et al <sup>2</sup>  | Ponatinib | Blinatumomab      | 30 | 62<br>(34–83)         | 94    | 81 (CMR + MMR)                      | 93<br>2-yr              |
| Advani et al <sup>3</sup> | Dasatinib | Blinatumomab      | 24 | 73<br>(62–87)         | 92    | 31                                  | 85 (58–95)<br>3-yr      |

1. Foa R, et al. N Engl J Med. 2020;383:1613-1623; 2. Short N, et al. Blood. 2021;138(suppl 1): a bstract 2299; 3. Advani A, et al. Blood. 2021; 138(suppl 1): a bstract 3397.

# Differences in CAR T Cell Therapies



Tokarew N, et al. Br J Cancer. 2019;120:26-37.

# Second-Generation CD19 CAR T in R/R Adult ALL

| Study              | N* | Age,<br>Median (range)                                                                      | CR,<br>%       | MRD–<br>in CR, % | Relapse<br>(%) | PFS                      | OS                        |
|--------------------|----|---------------------------------------------------------------------------------------------|----------------|------------------|----------------|--------------------------|---------------------------|
| UPenn              | 35 | 33 (20–70)<br>Single dose, low: 9<br>Single dose, high: 6<br>Fractionated dose, high:<br>20 | 33<br>50<br>90 |                  |                | 0%<br>17%<br>49% (24 mo) | 22%<br>17%<br>73% (24 mo) |
| MSKCC              | 53 | 44 (23–74)                                                                                  | 83             | 67               | 57             | Median: 6.1 mo           | Median: 12.1 mo           |
| FHCRC              | 53 | 39 (20–76)                                                                                  | 85             | 85               | 49             | Median: 7.6 mo           | Median: 20 mo             |
| City of Hope       | 13 | 33 (24–72)                                                                                  | 100            | 91               | NR             | NR                       | NR                        |
| UCL                | 19 | 43 (18–72)                                                                                  | 84             | 84               | 26             | 62% (6 mo)               | NR                        |
| HCB-HSJD           | 27 | 35 (18–69)                                                                                  | 85             | 85               | 15             | Median: 9.4 mo           | Median: 20.2 mo           |
| KTE-X19 phase I    | 45 | 46 (18–77)                                                                                  | 83             | 100              |                | Median: 17.6 mo          | Median: 16.1 mo           |
| KTE-X19 phase II** | 55 | 40 (19–84)                                                                                  | 71             | 97               |                | Median 11.6 mo           | Median 18.2 mo            |

\*Infused; \*\*Approved by FDA in October 2021.

# Second-Generation CD19 CAR T in R/R Adult ALL: Facts

- Still limited experience, short-term results
- High CR rate (80%–90%), MRD– in >80%, mortality <5%
- Short duration of response (median 8–18 mo)
- Better results in pts with low tumor mass, promising in MRD+ pts
- Need for subsequent alloHSCT unclear, good results in some series
- Early MRD assessment by NGS sequencing predicts outcome

# **Challenges and Possible Solutions**

| Challenge                        | Possible Solution                                   |
|----------------------------------|-----------------------------------------------------|
| Broad and immediate availability | Off the shelf CAR T                                 |
| Manufacturing failure            | Not a problem currently                             |
| Persistence                      | Humanized CAR T, improvements in construct          |
| Toxicity                         | Early use of anti–IL-6, construct with low affinity |
| CD19-neg relapses                | CD22, CD19+22 (bispecific, bicistronic)             |
| Need for subsequent alloHSCT     | Better definition of patient candidates             |
| Indication outside BCP-ALL       | CAR T for T-ALL (phase I–II clinical trials)        |
| Economic issues                  | Wide use, academic CAR T                            |
# **My Current View**

- The best place for MoAb will be in first-line therapy, in combination with chemotherapy (Ph– ALL) or TKI (Ph+ ALL)
- MoAb also useful for cytoreductive therapy before CAR T or even in relapse after CAR T (cytoreduction before HSCT)
- The best current place for CAR T is primary refractory ALL and R/R after HSCT
- A future area for CAR T will be first-line therapy for very high-risk subsets of ALL and R/R T-ALL



What is your preferred ALL treatment choice in salvage if all these therapies were available in your country?

- 1. CAR T therapies
- 2. Monoclonal antibodies or bispecifics





# Genetic characterization and risk stratification of AML

Eunice Wang





# Genetic characterization and risk stratification of AML





Eunice S. Wang, MD Chief, Leukemia Service

### Disclosures

- Consulting/Advisory board: AbbVie, Amgen, Astellas, BMS, Genentech, Gilead, GSK, Jazz, Kite, Novartis, Pfizer, PharmaEssentia, Takeda
- Speaker role: AbbVie, Stemline, Pfizer, Dava Oncology
- Data monitoring committee: AbbVie, Rafael Pharmaceuticals, Gilead

### Genetic characterizations and risk stratification

- 1. Overview of AML
- 2. ELN classification (2017)
- 3. Actionable mutations
  - 1. FLT3-ITD and -TKD
  - 2. Biallelic CEBPalpha
  - 3. IDH1/IDH2
  - 4. TP53
  - 5. NPM1

### Acute myeloid leukemia (AML)

Disease of older adults (median 67–70 years) Biologically diverse (karyotype, mutations, antigens) Clinically aggressive disease with survival in weeks-months



Lee LY, et al. Blood. 2017;129(2):257-260.

### AML is a biologically diverse malignancy



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Döhner H, et al. *Blood*. 2017;129(4):424-447.

# "Ideal" diagnostic workup for AML

Morphology (BM, PB), Flow cytometry (CD33)





Conventional cytogenetics, FISH (per request), marrow IHC

Mutation results (FLT3-ITD, FLT3-D835 TKD, IDH1, IDH2)



Next gen sequencing (400 mutations)

Typically, we wait for the top 3 test results to report to initiate treatment

### **Mutational complexity of AML**



#### Papaemmanuil E, et al. N Engl J Med. 2016;374(23):2209-2221.

# European LeukemiaNet (ELN 2017): AML classification

| t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i><br>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i>                                                                                                                             | Mutated NPM1 without FLT3-ITD or with FLT3-<br>ITD <sup>Iow</sup> or<br>Biallelic mutated CEBPA                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i>                                                                                                                                                                                            | Mutated NPM1 and FLT3-ITD <sup>high</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cytogenetic abnormalities not classified as favorable or adverse                                                                                                                                                                    | Wild-type NPM1 without FLT3-ITD or with FLT3-<br>ITD <sup>low</sup> (without adverse-risk genetic lesions)                                                                                                                                                                                                                                                                                                                                                                                                  |
| t(6;9)(p23;q34.1); <i>DEK-NUP214</i><br>t(v;11q23.3); <i>KMT2A</i> rearranged<br>t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i><br>inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);<br><i>GATA2,MECOM(EV11)</i><br>-5 or del(5q); -7; -17/abn(17p) | Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD <sup>high</sup><br>Mutated <i>RUNX1</i><br>Mutated <i>ASXL1</i><br>Mutated <i>TP53</i>                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                     | t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i><br>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i><br>t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i><br>Cytogenetic abnormalities not classified as<br>favorable or adverse<br>t(6;9)(p23;q34.1); <i>DEK-NUP214</i><br>t(v;11q23.3); <i>KMT2A</i> rearranged<br>t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i><br>inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);<br><i>GATA2,MECOM(EVI1)</i><br>-5 or del(5q); -7; -17/abn(17p)<br>Complex karyotype, monosomal karyotype |

Döhner H, et al. *Blood*. 2017;129(4):424-447. Papaemmanuil E, et al. *N Engl J Med*. 2016;374(23):2209-2221.

### Survival of patients <60 years of age by risk group

§ Retrospective analysis of data from CALGB/Alliance clinical trials (N = 863; median age: 45 years)



ROSWELL PARK COMPREHENSIVE CANCER CENTER

Bill M, et al. EHA 2019. Abstract PF232.

### Survival of patients ≥60 years of age by risk group



ROSWELL PARK COMPREHENSIVE CANCER CENTER

Eisfeld AK, et al. *Leukemia*. 2018;32(6):1338-1348.

### Impact of mutational profiling on prognosis



ROSWELL PARK COMPREHENSIVE CANCER CENTER

Ohgami RS, et al. *Mod Pathol*. 2014;28(5):706-714; Patel JP, et al. *N Engl J Med*. 2012;366(12):1079-1089.

### **Classes of mutations in AML**

- 1. FLT3
- 2. Nucleophosmin (NPM1)
- 3. Spliceosome complex
- 4. Myeloid transcription factor fusions
- 5. Chromatin modification
- 6. DNA methylation
- 7. Cohesin complex
- 8. Tumor supressor genes



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

#### Döhner H, et al. N Engl J Med. 2015;373(12):1136-1152.

TUMOR-SUPPRESSOR

### What are the actionable mutations in AML?



CGARN. *N Engl J Med*. 2013;368:2059; Papaemmanuil E, et al. *N Engl J Med*. 2016;374:2209.

## FLT3 mutations are the most common mutations in AML<sup>1</sup>



There are 2 classes of FLT3 mutations<sup>1</sup>

*FLT3*-ITD mutations are found in 30% of patients with AML

#### FLT3-TKD

mutations are found in 7% of patients with AML

#### Patients with *FLT3*<sup>mut+</sup> AML tend to

- Have highly proliferative disease<sup>3</sup>
- Be younger<sup>5</sup>
  - In a study evaluating 250 adult patients with *FLT3*-ITD<sup>mut+</sup> AML, the median age was 59 years (range 18–80 years)

#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

#### Figure adapted from Litzow MR. Blood. 2005;106(10):3331-3332.

## FLT3-ITD mutations negatively impact OS at diagnosis and relapse



Figure adapted from Fröhling S, et al. Blood. 2002;100(13):4372-4380.



Figure adapted from Ravandi F, et al. Leuk Res. 2010;34(6):752-756.

### FLT3 mutation testing at Dx and each disease progression

#### AML mutations can emerge after diagnosis<sup>1</sup>

**65% of patients** (n = 35/54)

treated with a FLT3 inhibitor had a mutation emerge at relapse, including *FLT3* (retrospective analysis)

#### FLT3 mutation status can change over the course of AML treatment<sup>2,3</sup>

**22% of patients** (n = 11/50)

had their mutation status change between diagnosis and disease progression in an analysis of several trials

Among patients with *FLT3*-ITD mutations at diagnosis, *FLT3*-TKD mutations may be present after treatment<sup>\*4</sup>

**25% of patients** (n = 15/60)

had both *FLT3*-ITD and *FLT3*-TKD mutations at the end of therapy (retrospective analysis)

\*Quizartinib,<sup>+</sup>sorafenib,<sup>+</sup>and lestaurtinib.<sup>+</sup>

NCCN and ESMO guidelines recommend retesting all AML patients for FLT3 mutations at relapse<sup>5,6</sup>

### FLT3 allelic ratio and impact of co-mutations

#### Poor prognosis associated with high FLT3-ITD AR



#### *FLT3* mutations + other mutations



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Patel J, et al. *N Engl J Med.* 2012;366(12):1079-1089; Schlenk R, et al. *Blood.* 2014;124(23):3441-3449.

# The type of mutation testing can make a difference

### *FLT3*-ITD is an actionable mutation, but can be challenging for some tests to detect<sup>1,2\*</sup>

• FLT3-ITD mutations may present at relapse and are associated with more negative patient outcomes<sup>3,4</sup>

# PCR detects FLT3-ITD mutations with greater reliability compared with multiple NGS tools<sup>2</sup>



### In an evaluation, only 2 out of 9 NGS tools

detected FLT3-ITD mutations with

- 100% sensitivity (95% CI: 83–100)
- 100% specificity (95% CI: 88–100)

among 20 subjects with *FLT3*-ITD mutations and 29 subjects without *FLT3*-ITD mutations, as confirmed by PCR<sup>2</sup>

Confirming an actionable mutation at each disease progression is critical for choosing the right targeted therapy<sup>1,5</sup>

# Differences in FLT3 mutation testing by PCR and NGS

|                                                 | PCR                                                                                                                                                                                                                                                 | Targeted NGS/gene panel                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How many genes<br>assessed?                     | <ul> <li>Targeted assessment</li> <li>Detects mutations on single gene of interest<sup>1</sup></li> </ul>                                                                                                                                           | <ul> <li>Broader assessment</li> <li>Allows the full genome to be sequenced</li> <li>Simultaneously assesses multiple genes<sup>2-4</sup></li> </ul>                                                                                                                                                                               |
| Which <i>FLT3</i><br>mutations are<br>detected? | <ul> <li>Good sensitivity</li> <li>Standard testing method for <i>FLT3</i> assessment<sup>2</sup></li> <li><i>FLT3</i>-ITD can be reliably determined with standardized protocols<sup>4,5</sup></li> <li><i>FLT3</i>-TKD can be detected</li> </ul> | <ul> <li>Sensitivity may vary</li> <li>Detects both <i>FLT3</i>-ITD and -TKD mutations</li> <li>May give false-negative results for <i>FLT3</i>-ITD due to variable size, insertion point, and allelic burden<sup>2,4,6</sup></li> <li>May required "add-on" technology to gene panel to ensure detection<sup>3,7</sup></li> </ul> |
| How quickly are results available?              | Relatively faster<br>• Turnaround time = 2–3 days <sup>1</sup>                                                                                                                                                                                      | <ul> <li>Relatively slower</li> <li>Turnaround time = 3–20 days<sup>1</sup></li> </ul>                                                                                                                                                                                                                                             |

*FLT3*, FMS-like tyrosine kinase 3; ITD, internaltandem duplication; NGS, next-generation sequencing; PCR, polymerase chain reaction; R/R, relapsed/refractory; TKD, tyrosine kinase domain. 1. Patnaik MM. *Leuk Lymphoma*. 2018;59:2273-2286; 2. He R, et al. *Mod Pathol*. 2020;33:334-343; 3. Au CH, et al. *Diagn Pathol*. 2016;11:11; 4. Levine RL, et al. *Haematologica*. 2019;104:868-871; 5. Murphy KM, et al. *J Mol Diagn*. 2003;5:96-102; 6. Mack EKM, et al. *Haematologica* 2019;104:277-287; 7. Spencer DH, et al. *J Mol Diagn*. 2013;15:81-93.

## FLT3 inhibitors in clinical development for AML



|                          | Other kinases<br>(inhibited) | IC₅₀<br>(plasma) |
|--------------------------|------------------------------|------------------|
| Lestaurtinib*2           | JAK2, TrkA                   | 700 nM           |
| Midostaurin <sup>2</sup> | cKIT, PKC, PDGFR,<br>VEGFR   | 1000 nM          |
| Sorafenib <sup>+2</sup>  | cKIT, PDGFR, RAF,<br>VEGFR   | 265 nM           |
| Quizartinib*2            | cKIT, PDGFR, RET             | 18 nM            |
| Crenolanib* <sup>3</sup> | PDGFR                        | 48 nM            |
| Gilteritinib⁴            | AXL                          | 43 nM            |

## FLT3 TKIs differ in binding mutant FLT3



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Daver N, et al. Leukemia. 2019;33(2):299-312.

### Response to FLT3 TKI therapy on the basis of FLT3 mutation

### Midostaurin plus 7+3



Benefit in *FLT3*-ITD *regardless of AR* and in *FLT3*-TKD mutation



### Gilteritinib in R/R AML

Lower ORR in *FLT3*-TKD only

Stone RM, et al. N Engl J Med. 2017;377(5):454-464; 2017; Perl A, et al. Lancet Oncol. 2017;18(8):1061-1075.

#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Daver N, et al. Leukemia. 2019;33(2):299-312.

### Biallelic CEBPalpha mutations confer favorable risk





7%–11% of AML cases 13%–15% of normal karyotype Double (not single) mutation is considered favorable risk

#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Green CL, et al. J Clin Oncol. 2010;28(16):2739-2747.

### **IDH** mutations in AML

- Isocitrate dehydrogenase (IDH) is a critical enzyme of the citric acid cycle
- IDH mutations are mutually exclusive in AML
  - IDH1 mut: 6–9% of AML (8–16% NK AML)
  - IDH2 mut: 8–12% of AML (19% of NK AML)
- *IDH1/2* mutations confer a gain of function<sup>2</sup>
  - Increased histone and DNA methylation
  - Impaired cellular differentiation



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Dang L, et al. Nature. 2009;462:739-744.

## **IDH** mutations in AML

### IDH mutations occur in ~ 20% of AML

- Most (~85%) occur in *de novo* diploid or +8 AML
- IDH1 in ~8% AML, IDH2 in ~ 12% AML
- $\uparrow$  prevalence with  $\uparrow$  patient age

### Hot-Spot mutations in enzymatic active site

- IDH1-R132, IDH2-R140 or IDH2-R172
- Often early mutational events
  - Ancestral in 20% IDH1 and 35% IDH2 cases
- Can be acquired at progression
  - ~10-15% of AML from MDS
  - ~20-25% of AML from MPN



Dang L, et al. *Trends Mol Med*. 2010;16(9):387-397; Chou WC, et al. *Leukemia*. 2011;25(2):246-253; Molenaar RJ, et al. *Leukemia*. 2015;29(11):2134-2142.

### **IDH** mutations in AML



### Venetoclax-Aza vs Aza



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Patel J, et al. *N Engl J Med*. 2012;366(12):1079-1089; Pollyea DA, et al. *Clin Cancer Res*. 2022. Epub ahead of print.

### Nucleophosmin-1 (NPM1) mutations in AML



Nuclear export protein 28%–35% of AML cases 48%–53% of normal karyotype AML

Common co-mutations Confers better prognosis to 7+3

- FLT3-ITD-mutant AML
- IDH1/2-mutant AML

#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Linenberger M, Ostronoff F. Hematologist. 2011;8(6).

### **NPM1**-mutant AML: Favorable prognosis without FLT3 mutation



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Schlenk RF, et al. N Engl J Med. 2008;358(18):1909-1920.

### **TP53** mutations in AML





~12%–13% AML, primarily unfavorable karyotype Higher incidence in

- Older (9%) vs younger (2%) patients
- Therapy-related AML (23%)
- Monosomal karyotype, chr 5 and 7 abnormalities



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Döhner H, et al. *N Engl J Med*. 2015;373(12):1136-1152; Welch J, et al. *N Engl J Med*. 2016;375(21):2023-2036.

### **TP53-mutant AML: Treatment outcomes**

7+3 chemotherapy

#### Decitabine (10-day)

Allo transplantation



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Papaemmanuil E, et al. N Engl J Med. 2016;374(23):2209-2221; Welch J, et al. N Engl J Med. 2016;375(21):2023-2036.

# European LeukemiaNet (ELN 2017): AML classification

| t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i><br>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i>                                                                                                                             | Mutated NPM1 without FLT3-ITD or with FLT3-<br>ITD <sup>Iow</sup> or<br>Biallelic mutated CEBPA                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i>                                                                                                                                                                                            | Mutated NPM1 and FLT3-ITD <sup>high</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Cytogenetic abnormalities not classified as favorable or adverse                                                                                                                                                                    | Wild-type NPM1 without FLT3-ITD or with FLT3-<br>ITD <sup>low</sup> (without adverse-risk genetic lesions)                                                                                                                                                                                                                                                                                                                                                                                                  |
| t(6;9)(p23;q34.1); <i>DEK-NUP214</i><br>t(v;11q23.3); <i>KMT2A</i> rearranged<br>t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i><br>inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);<br><i>GATA2,MECOM(EV11)</i><br>-5 or del(5q); -7; -17/abn(17p) | Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD <sup>high</sup><br>Mutated <i>RUNX1</i><br>Mutated <i>ASXL1</i><br>Mutated <i>TP53</i>                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                     | t(8;21)(q22;q22.1); <i>RUNX1-RUNX1T1</i><br>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); <i>CBFB-MYH11</i><br>t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i><br>Cytogenetic abnormalities not classified as<br>favorable or adverse<br>t(6;9)(p23;q34.1); <i>DEK-NUP214</i><br>t(v;11q23.3); <i>KMT2A</i> rearranged<br>t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i><br>inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);<br><i>GATA2,MECOM(EVI1)</i><br>-5 or del(5q); -7; -17/abn(17p)<br>Complex karyotype, monosomal karyotype |

Döhner H, et al. *Blood*. 2017;129(4):424-447. Papaemmanuil E, et al. *N Engl J Med*. 2016;374(23):2209-2221.

### **Response to Ven + Aza varies on the basis of AML biology**



ROSWELL PARK COMPREHENSIVE CANCER CENTER

#### DiNardo CD, et al. *Blood*. 2020;135(11):791-803.

### **Relapsed/refractory AML: Clonal evolution**

Diagnosis



Leukemia is not a static condition!

# Repeat genomic analysis at relapse is necessary



#### ROSWELL PARK COMPREHENSIVE CANCER CENTER

Kleppe M, Levine RL. *Nat Med*. 2014;20(4):342-344; Grimwade D, et al. *Blood*. 2016;127(1):29-41.
### Genetic characterizations and risk stratification

- 1. Overview of AML
- 2. ELN classification (2017)
- 3. Actionable mutations
  - 1. FLT3-ITD and -TKD
  - 2. Biallelic CEBPalpha
  - 3. IDH1/IDH2
  - 4. TP53
  - 5. NPM1

## **Questions?**



### Email: Eunice.wang@roswellpark.org



### ROSWELL PARK COMPREHENSIVE CANCER CENTER



## Therapeutic approaches in highrisk and older AML patients

**Naval Daver** 







## Therapeutic Approaches in High-Risk and Older AML Patients

## **Global Leukemia Academy**

Naval Daver, MD Director, Leukemia Research Alliance Program, Associate Professor Department of Leukemia MD Anderson Cancer Center

## Treatment of AML (accelerated progress 2017–2020): History

## Since its introduction in the early 1970s, 7+3 therapy (cytarabine for 7 days + anthracycline for 3 days) has been the standard of care for AML

#### **US FDA approvals**



| Year            | 1975 | 1980 | 1990  | 1995  | 2000  | 2005  | 2009  | 2013 | 2022 |
|-----------------|------|------|-------|-------|-------|-------|-------|------|------|
| 5-year survival | 6.3% | 6.8% | 11.4% | 17.3% | 16.8% | 25.7% | 28.1% | 27%  | ??   |

## **Evolving Diagnostic and Treatment Paradigm for Newly Dx AML**



Daver N, et al. Blood Cancer J. 2020;10(10):107.

## HMA-Based Therapies for Older AML: Hypomethylating Agents Are Well Tolerated and Safe in Older Patients, but Modest Single-Agent CR/CRi



#### Dom bret H, et al. Blood. 2015;36126(3):291-299.

## Azacitidine +/- Venetoclax (VIALE-A) Study Design



## Aza +/- Ven in AML: Composite Response Rate (CR + CRi)



|                        | No of treatment<br>cycles,<br>median (range) | Median time to<br>CR/CRi,<br>Months (range) | *CR + CRi by<br>initiation of<br>Cycle 2, n (%) |
|------------------------|----------------------------------------------|---------------------------------------------|-------------------------------------------------|
| Aza + Ven<br>(n = 286) | 7.0 (1.0–30.0)                               | 1.3 (.6–9.9)                                | 124 (43.4)                                      |
| Aza + Pbo<br>(n = 145) | 4.5 (1.0–26.0)                               | 2.8 (.8–13.2)                               | 11 (7.6)                                        |

\*CR + CRi rate, CR rate, and CR + CRi by initiation of cycle 2 are statistically significant with P < .001 by CMH test.

DiNardo CD, et al. EHA 2020. Abstract LB2601.

## AZA +/- VEN in AML: Overall Survival



Median follow-up time: 20.5 months (range: <.1–30.7)

### Pratz <u>1944</u>: Cytopenia Management in Patients With Newly Diagnosed Acute Myeloid Leukemia Treated With Venetoclax Plus Azacitidine in the VIALE-A Study

#### Protocol (VIALE-A – NCT02993523)

- Phase III, double-blind, placebo controlled, 2:1 randomization of Ven + Aza vs Pbo + Aza
- Analysis of frequency and management of cytopenia in patients with CR or CRh

#### Population

 Patients with newly diagnosed AML ineligible for intensive chemotherapy due to age ≥75 years or comorbidities

#### **Authors' conclusions**

- Majority of Ven + Aza responders required dosing modifications to manage cytopenia, particularly delays between cycles or within-cycle reductions of Ven dosing days
- Post-remission cytopenia and dosing modifications were more frequent with Ven + Aza vs Pbo + Aza

| CR/CRh rate: 66% (Ven + Aza) vs 23% (Pbo + Aza)                                                                                                    |                           |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|
| Cytopenia and dose adjustments in responders (CR/CRh)                                                                                              | Ven + Aza<br>(n = 186)    | Pbo + Aza<br>(n = 33)    |
| Post-remission grade 4 cytopenia lasting ≥1 week,<br>%<br>1 episode<br>≥2 episodes                                                                 | <b>87</b><br>19<br>68     | <b>45</b><br>24<br>21    |
| <b>In-cycle dose interruptions for any reason, %</b><br>Median duration per cycle (range), days                                                    | <b>26</b><br>2.0 (1–20)   | <b>24</b><br>1.0 (1–13)  |
| <b>Post-remission cycle delays due to cytopenia, %</b><br>Median duration per cycle delay (range), days                                            | <b>77</b><br>14.0 (1–129) | <b>30</b><br>11.0 (3–63) |
| Post-remission reduction of Ven/Pbo dosing days<br>and/or cycle delay totaling ≥7 days due to<br>neutropenia, %<br>Median number of cycles (range) | <b>75</b><br>2.0 (0–15)   | <b>27</b><br>0 (0–7)     |
| <b>Post-remission Ven/Pbo dosing ≤21-day cycles, %</b><br>Median time from remission to first ≤21-day cycle<br>(range), days                       | 69<br>92.0 (1–480)        | 30<br>74.0 (6–405)       |

### **MDACC-Recommended Dosing Schema**

- Ven D1–21 in cycle 1
- Bone marrow EOC1 (D21–D28) for all patients: if BM blasts <5% or <10% cellularity/acellular (majority of patients) – hold VEN 10–14 days for count recovery
- If needed, use G-CSF (usually if no spontaneous recovery after 14 days of Ven interruption)
- Cycle 2 onward: Ven D1–21 (or Ven D1–14) for most (subsequently may be further reduced to 7–10 days if cumulative myelosuppression observed)
- Cycles every 4–6 weeks on the basis of count recovery
- Continue second-generation azole prophylaxis, antibiotic, and antiviral until ANC >1.0 without fluctuations (usually after 4–5 cycles)

KEY: Reducing Ven duration does not seem to impact efficacy, but significantly improves neutropenia; more CR/CRh

## **Recommended Venetoclax Dose-Adjustments With Azoles**

| Antifungal                    | Package Insert<br>Recommendation<br>(Ven mg/d) | MDACC Dose<br>Adjustment<br>(Ven mg/d) |
|-------------------------------|------------------------------------------------|----------------------------------------|
| Posaconazole                  | 70                                             | 50–100                                 |
| Voriconazole                  | 100                                            | 100                                    |
| Isavuconazole                 | 200                                            | 200                                    |
| Caspofungin,<br>echinocandins | 400                                            | 400                                    |

## **Molecular Determinants of Outcome With Venetoclax Combos**



MRD clearance of *NPM1* common by RT-PCR

Patients treated at MDACC and The Alfred (n = 81)

Resistance commonly associated with expansion or acquisition of *TP53* or signaling mutations including *K/NRAS* and *FLT3*-ITD

DiNardo CD, et al. Blood. 2020;135(11):791-803.

## 1. Poor Outcomes in <u>TP53-Mutant AML</u>, Even With Venetoclax-Based Treatment



N = 121 patients with newly diagnosed AML receiving decitabine + venetoclax<sup>2</sup>

- Those with TP53<sup>mut</sup> had a lower rate of CR at 35% vs 57% in pts with TP53<sup>WT</sup> (P = .026)
- Lower rate of CR/CRi (54% vs 76%; P.015)



1. Chyla BJ, et al. ASH 2019. Abstract 546; 2. Kim K, et al. ASH 2020. Abstract 693.

## CD47 Is a Major Macrophage Immune Checkpoint and "Do Not Eat Me" Signal in Myeloid Malignancies, Including AML

- CD47 is a "do not eat me" signal in cancers that enables macrophage immune evasion
- Increased CD47 expression predicts worse prognosis in AML patients



Figure at left adapted from Veillette A, Tang Z. *J Clin Oncol*. 2019;37:1012-1014 and Chao MP, et al. *Curr Opin Immunol*. 2012;24:225-232. Figure at right adapted from Majeti R, et al. *Cell*. 2009;138:286-299.

## Magrolimab + AZA in Newly Diagnosed AML<sup>1,2</sup>



- Magrolimab + AZA with 63% ORR and <u>42% CR rate in AML (similar responses in TP53-mutant disease)</u>
- Median time to response is 1.95 months (range, 0.95–5.6 mo); more rapid than AZA monotherapy
- Magrolimab + AZA efficacy compares favorably with AZA monotherapy (CR rate: 18%–20%)
- No significant cytopenias, infections, or immune-related AEs were observed; on-target anemia
- Median TP53 VAF burden at baseline: <u>73.3% (range 23.1%–98.1%)</u>

#### 1. Daver N, et al. EHA 2020. Abstract S144; Sallman D, et al. ASH 2020. Abstract 330.

## AZA-VEN-Magro in Frontline and R/R AML Results: Response Rates per ITT (n = 48)

|                      | Frontline C                                                             | ohort (n = 25) | R/R Cohort (n = 23)  |                       |  |
|----------------------|-------------------------------------------------------------------------|----------------|----------------------|-----------------------|--|
| Outcomes             | TP53 mutated         TP53 wild type           (n = 14)         (n = 11) |                | VEN-naive<br>(n = 8) | Prior VEN<br>(n = 15) |  |
| ORR                  | 12 (86)                                                                 | 11 (100)       | 6 (75)               | 3 (20)                |  |
| CR/Cri               | 9 (64)                                                                  | 10 (91)        | 5 (63)               | 3 (20)                |  |
| CR                   | 9 (64)                                                                  | 7 (64)         | 3 (38)               | 0                     |  |
| CRi                  | 0                                                                       | 3 (27)         | 2 (25)               | 3 (20)                |  |
| MLFS/PR <sup>1</sup> | 3 (21)                                                                  | 1 (9)          | 1 (13)               | 0                     |  |
| MRD neg FCM          | 5/9* (55)                                                               | 4/9 (45)       | 2/6 (33)             | 0                     |  |
| CCyR                 | 4/9‡ (44)                                                               | 5/6 (83)       | 3/5 (60)             | 1/2 (50)              |  |
| No response          | 2 (14)                                                                  | 0              | 2 (25)               | 12 (80)               |  |
| TT First response    | .7 [.6–1.9]                                                             | .7 [.7–1.5]    | .7 [.6–4.1]          | 2.2 [1.8–2.6]         |  |
| TT Best response     | 1.5 [.7–3.2]                                                            | 1.1 [.7–2.9]   | 1.5 [1.0–4.1]        | 2.0 [1.2–3.9]         |  |
| Med TT ANC >500      | 28 (20–41) days                                                         |                |                      |                       |  |
| Med TT Plt >50K      | 24 (18–41) days                                                         |                |                      |                       |  |
| 8-wk mortality       | 0                                                                       | 0              | 1 (13)               | 3 (20)                |  |

Results expressed as n (%), n/N (%) or median [range]. FCM = multiparametric FCM, sensitivity .1–.01%, \*Only among pts w ith evaluable longitudinal samples; ‡Only among patients w ith baseline cytogenetic aberrations and longitudinal cytogenetic samples; 1Tw owith PR per ELN2017

## 2. FLT3: AZA + VEN Improved Responses vs AZA in *FLT3*-Mutated Newly Diagnosed AML, But Median OS Was <12 Months

| CR + CRi, n/N (%)                      | VEN + AZA    | PBO + AZA  |  |
|----------------------------------------|--------------|------------|--|
| FLT3 mutation                          | 28/40 (70)   | 8/22 (36)  |  |
| FLT3WT                                 | 150/227 (66) | 21/86 (24) |  |
| FLT3-ITD                               | 19/28 (68)   | 6/13 (46)  |  |
| <i>FLT3</i> -ITD AR <0.5               | 14/19 (74)   | 4/8 (50)   |  |
| <i>FLT3</i> -ITD AR ≥0.5               | 5/9 (56)     | 2/5 (40)   |  |
| FLT3-TKD                               | 10/13 (77)   | 3/10 (30)  |  |
| <i>FLT3</i> and <i>NPM1</i> comutation | 10/14 (71)   | 2/7 (29)   |  |

| Median                  | N       | /EN + AZA          | PBO + AZA |                    |  |
|-------------------------|---------|--------------------|-----------|--------------------|--|
| Duration of<br>CR + CRi | N       | Months<br>(95% Cl) | Ν         | Months<br>(95% Cl) |  |
| FLT3<br>mutation        | 28      | 17.3<br>(10.1–NR)  | 8         | 5.0<br>(1.0–15.9)  |  |
| FLT3WT                  | 15<br>0 | 18.2<br>(14.0–NR)  | 2<br>1    | 13.4<br>(5.8–15.6) |  |

#### Konopleva M, et al. Blood. 2020;136:abstract 1904.





FLT3-TKD



## **Venetoclax Combines Synergistically With Quizartinib**



Cell lines were treated with combination –  $\downarrow$  MCL-1,  $\downarrow$  BCL-X<sub>L</sub>

Venetoclax combined with quizartinib prolonged survival and reduced tumor burden in *FLT3*-ITD+ xenograft models

## **Summary of Best Responses**



<sup>a</sup>mCRc defined as CR+CRp+CRi\*+MLFS, per modified WG response criteria. <sup>b</sup>Hematology criteria for CRi\* is ANC  $\leq 1 \times 10^{9}$ /L and platelet >100×10<sup>9</sup>/L, which is mutually exclusive with IWG response CRp. CR, complete remission; CRi\*, complete remission; CRi\*, complete remission; CRi\*, complete remission with incomplete neutrophil count recovery; CRp, complete remission with incomplete platelet recovery; ITD, internal tandem duplication; IWG, International Working Group; mCRc, modified composite complete remission; MLFS, morphologic leukemia-free state; TKI, tyrosine kinase inhibitor. **Perl A, et al.** *N Engl J M ed.* 2019;381:1728-1740.

## Novel Triplets (Azacitidine, Venetoclax, and Gilteritinib) Show Promising Early Activity in Newly Diagnosed AML

ASH 2021: phase I/II study of AZA, venetoclax, and gilteritinib in patients with a FLT3 mutation (n = 26)

- R/R FLT3-mutated AML
- High-risk MDS/CMML
- Newly diagnosed FLT3-mutated AML unsuitable for intensive chemotherapy were eligible

Results: The triplet was effective in this *FLT3*-mutated AML population

- CRc of 100% in the frontline setting (n = 11)
- Gilteritinib dosing at 80 mg daily was associated with a better safety/efficacy profile (especially myelosuppression) and was selected for future study



Time, mo

## Retrospective Pooled Analysis Suggests That Frontline Triplets May Be Highly Active in *FLT3*-Mutant AML

- First- and second-generation FLT3i-based doublet and triplet regimens in older/unfit adults with newly diagnosed FLT3-mutated AML (N = 87)
  - Doublets (FLT3i + low-intensity chemotherapy): CRc: 70%; survival of 9–16 mo
  - HMAVEN/FLT3i combination significantly improved CR/CRi rates, CR rates, FLT3-PCR and MFC MRD rates, as well as OS, without increasing 60-day mortality (7% vs 10%)



Yilmaz M, et al. ASH 2021. Abstract 798.

## Leukemia Questions?

Email: ndaver@mdanderson.org
Cell: 832-573-7080
Office: 713-794-4392



## **Session close**

### **Elias Jabbour**







Which of the following is NOT true?

- 1. Inotuzumab and blinatumomab + chemotherapy is active in both frontline and salvage for ALL
- 2. ALK inhibitors can be combined with other therapy modalities in Ph+ ALL
- 3. MRD is highly prognostic for relapse and survival in Ph-negative ALL
- 4. CAR T approaches are active beyond 2L in Ph-negative ALL





In AML the MRD assessment by RT-qPCR is especially useful for

- 1. FLT3 ITD
- 2. NPM1 mutation
- 3. Biallelic CEBPA mutation
- 4. SF3B1 mutation
- 5. ASXL1 mutation



## Virtual Breakout – Adult Leukemia Patients (Day 2)

**Co-chairs: Elias Jabbour and Naval Daver** 

| TIME (UTC-3)  | TITLE                                                                                                                                                                                                                                                                     | SPEAKER           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 10.00 – 10.10 | ALL session open                                                                                                                                                                                                                                                          | Elias Jabbour     |
| 10.10 – 10.30 | $Optimizing \ first-line \ therapy \ in \ adult \ and \ older \ ALL \ -integration \ of \ immunotherapy \ into \ frontline \ regimens$                                                                                                                                    | Elias Jabbour     |
| 10.30 – 10.50 | Current treatment options for relapsed ALL in adult and elderly patients                                                                                                                                                                                                  | José Maria Ribera |
| 10.50 – 11.20 | <ul> <li>ALL case-based panel discussion</li> <li>Case 1 (10 min) – Paola Omaña (Col)</li> <li>Case 2 (10 min) – Roberta Demichelis (Mex)</li> <li>Discussion (10 min) – Panelists: Roberta Demichelis, Wellington Silva Fernandes, Paola Omaña</li> </ul>                | All               |
| 11.20 – 11.30 | Break                                                                                                                                                                                                                                                                     |                   |
| 11.30 – 11.35 | AML session open                                                                                                                                                                                                                                                          | Naval Daver       |
| 11.35–11.55   | Personalized induction and maintenance approaches for AML                                                                                                                                                                                                                 | Eunice Wang       |
| 11.55 – 12.15 | Optimizing management of relapsed/refractory AML                                                                                                                                                                                                                          | Naval Daver       |
| 12.15 – 12.45 | <ul> <li>AML case-based panel discussion</li> <li>Case 1 (10 min) – Wellington Silva Fernandes (Bra)</li> <li>Case 2 (10 min) – Roberta Demichelis (Mex)</li> <li>Discussion (10 min) – Panelists: Roberta Demichelis, Wellington Silva Fernandes, Paola Omaña</li> </ul> | All               |
| 12.45 – 13.00 | Session close                                                                                                                                                                                                                                                             | Naval Daver       |



## Virtual Breakout – Pediatric Leukemia Patients (Day 2)

Co-chair: Franco Locatelli

| TIME (UTC-3)  | TITLE                                                                                                                                                                                                                                                                            | SPEAKER          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 10.00 - 10.10 | Session open                                                                                                                                                                                                                                                                     | Franco Locatelli |
| 10.10 - 10.30 | The use of MRD and genetics for risk stratification and therapy guidance in pediatric ALL                                                                                                                                                                                        | Rob Pieters      |
| 10.30 – 10.50 | First-line treatment of pediatric ALL, including HSCT                                                                                                                                                                                                                            | Christina Peters |
| 10.50 - 11.10 | Current treatment options for relapsed ALL in children, including HSCT                                                                                                                                                                                                           | Franco Locatelli |
| 11.10 – 11.25 | Bispecifics for pediatric and AYA B-ALL                                                                                                                                                                                                                                          | Christina Peters |
| 11.25 – 11.55 | <ul> <li>ALL case-based panel discussion</li> <li>Case 1 (10 min) – Irene Medina (Mex)</li> <li>Case 2 (10 min) – Jorge Buitrago (Col)</li> <li>Discussion (10 min) – Panelists: Maria Sara Felice, Oscar Gonzáles Ramella, Adriana Seber, Carlos<br/>Andrés Portilla</li> </ul> | All              |
| 11.55 – 12.00 | Break                                                                                                                                                                                                                                                                            |                  |
| 12.00 - 12.20 | Current treatment options for pediatric AML                                                                                                                                                                                                                                      | Franco Locatelli |
| 12.20 – 12.50 | <ul> <li>AML case-based panel discussion</li> <li>Case 1 (10 min) – Luisina Peruzzo (Arg)</li> <li>Case 2 (10 min) – Erica Viana (Bra)</li> <li>Discussion (10 min) – Panelists: Maria Sara Felice, Oscar Gonzáles Ramella, Adriana Seber, Carlos<br/>Andrés Portilla</li> </ul> | All              |
| 12.50 - 13.00 | Session close                                                                                                                                                                                                                                                                    | Franco Locatelli |





## **Closing remarks**

**Elias Jabbour** 





## Thank you!

- > Thank you to our sponsors, expert presenters, and to you for your participation
- > Please complete the evaluation link that will be sent to you via chat
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website in our Ask the Experts section

### THANK YOU!





### Founding Sponsor *Platinum*



# Global Leukemia Academy

**Emerging and Practical Concepts and Controversies in Leukemias** 

## **SEE YOU TOMORROW!**





### PLEASE JOIN US FOR OUR OTHER ACADEMY!

## **Global Multiple Myeloma Academy** - focusing on LATAM region

## 23 – 24 June 2022

- 2.00 PM 5.00 PM EDT (Central Daylight Time)
- 3.00 PM 6.00 PM EDT (Easter Daylight Time)
- 4.00 PM 7.00 PM GMT-3 (San Paulo time)

For more information, please visit the website: <u>https://globalmmacademy.com</u>

APTITUDE HEALTH