

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 28 October 2021

Virtual Breakout – Pediatric Leukemia Patients

SAPTITUDE HEALTH

Welcome and meeting overview

Franco Locatelli

Pediatric ALL

Franco Locatelli, MD, PhD Professor of Pediatrics Sapienza, University of Rome and IRCCS Bambino Gesù Children's Hospital, Italy

Christina Peters, MD St. Anna Children's Hospital, Austria

Martin Schrappe, MD, PhD University Medical Center Schleswig-Holstein, Germany

FACULTY

CHAIR

Understand current treatment patterns for acute leukemias including incorporation of new technologies Uncover when genomic testing is being done for acute leukemias, and how these tests are interpreted and utilized Understand the role of stem cell transplantation in acute leukemias as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring acute leukemias Gain insights into antibodies and bispecifics in ALL: what are they? When and how should they be used? Where is the science going? Discuss the evolving role of ADC therapies in acute leukemias Review promising novel and emerging therapies in acute leukemias

Explore regional challenges in the treatment of acute leukemias across Europe

Global Leukemia Vifteren Breakout – Pediatric ALL Patients (Day 2) 17.00 – 19.45 Chair – Franco Locatelli

Time CET	Title	Speaker/Moderator
17.00 – 17.15	Session open	Franco Locatelli
17.15 – 17.40	How to use MRD and genetics for risk stratification and therapy guidance in pediatric ALL	Rob Pieters
17.40 – 18.05	First-line treatment of pediatric ALL	Martin Schrappe
18.05 – 18.30	Current treatment options for relapsed ALL in children, including HSCT considerations	Franco Locatelli
18.30 – 18.55	Bispecific T-cell engagers for pediatric ALL	Christina Peters
18.55 – 19.25	 Case-based panel discussion on management of long- and short-term toxicities in pediatric ALL patients Case presentation 1: Francesca Del Bufalo Case presentation 2: Natalia Zubarovskaya 	Moderator: Franco Locatelli <i>Faculty panel:</i> R. Pieters, F. Locatelli, P. Brown, C. Peters, M. Schrappe
19.25 – 19.45	Final discussion, Q&A, and session close	Franco Locatelli

Educational ARS questions

Franco Locatelli

Question 1: Which of the following subsets of first-relapse ALL patients can be considered at very high risk?

- a) All patients with B-ALL relapsing within 18 months from diagnosis
- b) All patients with hypodiploidy
- c) All patients with t(17;19) or t(1;19)
- d) Each of the 3 previous subsets

Question 2: Which assertion is correct for children with B-ALL?

- a) Inotuzumab is approved for induction treatment of relapsed B-ALL in childhood
- b) Inotuzumab dosage is 3 mg/m²
- c) Blinatumomab is approved for consolidation treatment before HSCT in children with B-ALL
- d) None of the patients relapsing later than 6 months after treatment discontinuation should be transplanted

Question 3: Which children with relapsed ALL should be transplanted after a TBI-containing regimen?

- a) All children
- b) Children above the age of 4 years
- c) Children above the age of 10 years
- d) Those with T-ALL

Question 4: Which of the following statements is incorrect?

- a) Leukemia recurrence in patients given CAR T cells is associated with early disappearance of CAR T cells in peripheral blood
- b) Leukemia recurrence in patients given CAR T cells is associated with B-cell aplasia
- c) Leukemia recurrence in patients given CAR T cells is associated with disease burden at time of infusion
- d) Leukemia recurrence in patients given CAR T cells is associated with reappearance of MRD

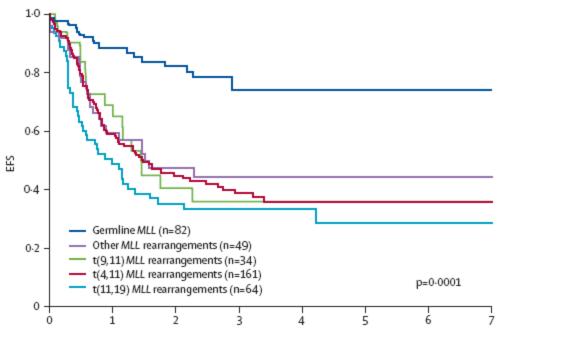
How to use MRD and genetics for risk stratification and therapy guidance in pediatric ALL

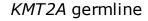
Rob Pieters

How to use MRD and genetics for risk-stratification and therapy guidance

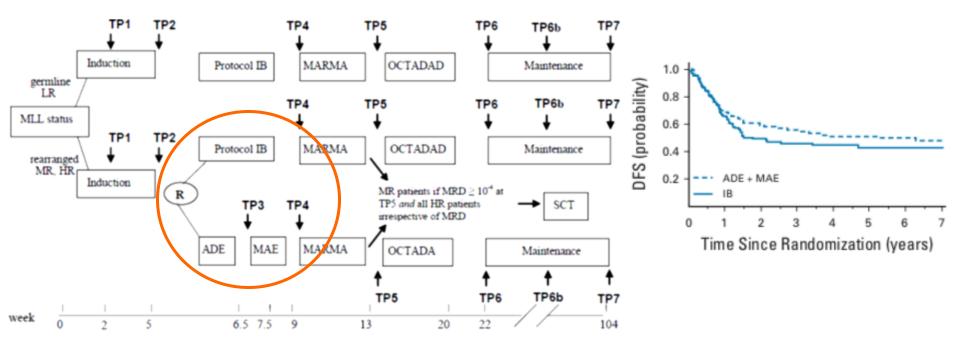
Rob Pieters Chief Medical Officer

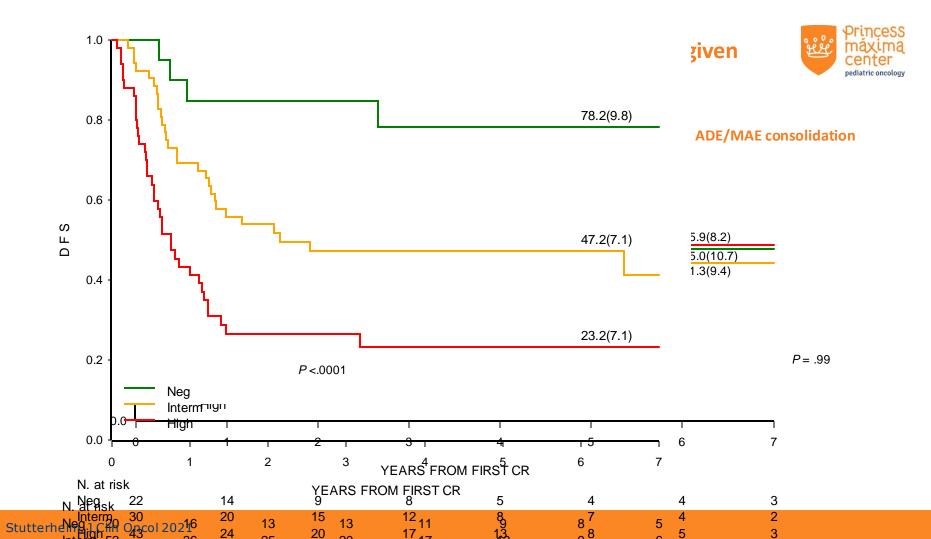
MRD and genetics to guide stratification and therapy

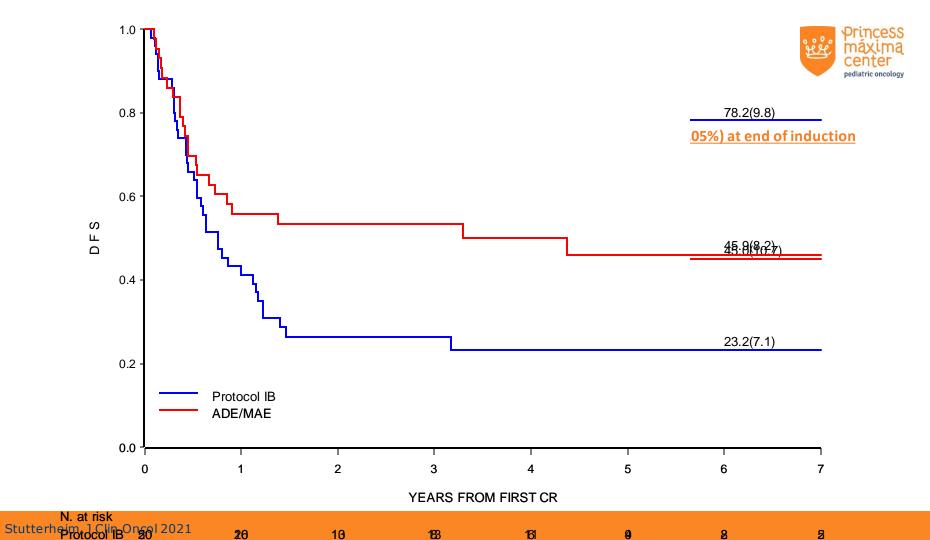

- Specific therapy protocols for high-risk genetic subgroups
- MRD-based choices of specific therapies
- Therapy reduction in MRD low-risk groups
- Therapy intensification in MRD high-risk groups
- Interdependency of MRD and genetics


Question 1: Which of the following statements is NOT correct?

- a) MRD at end of induction in infant *KMT2A*-rearranged ALL can be used to select the most effective subsequent myeloid-like or lymphoid-like type of consolidation therapy
- b) MRD at end of induction and consolidation in *BCR-ABL1*-positive ALL is used to select patients who do not need a SCT
- c) The prognostic relevance of MRD at end of induction depends on the genetic subtype of ALL
- d) All types of *BCR-ABL1*-like ALL are sensitive to ABL-class tyrosine kinase inhibitors



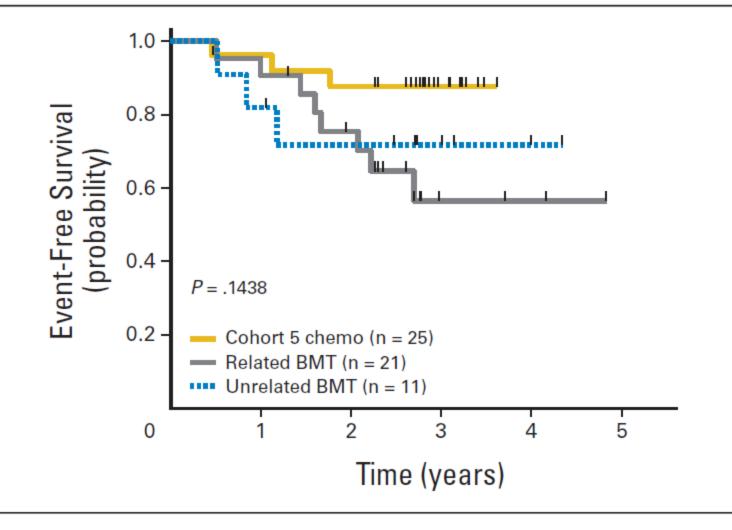

KMT2A rearranged


Pieters, Lancet 2007

Interfant-06 treatment schedule

Conclusions: EOI MRD Interfant-06

(ALL-like) induction leads to selection of patients


- Low MRD \rightarrow "ALL-like leukemia" \rightarrow benefit from ALL consolidation (IB)
- High MRD \rightarrow "AML-like leukemia" \rightarrow benefit from AML consolidation (ADE/MAE)

TKI studies and outcomes in Ph+ ALL (courtesy of Thai Ho Tran)

	AALL00311	EsPhALL2 004 ²	EsPhALL2 010 ³	AALL062 24	AALL112 2 ⁵	CCCG-ALL-20156
Phase	3	2	2	2	2	3
ткі	Imatinib 340 mg/m²	Imatinib 300 mg/m²	Imatinib 300 mg/m²	Dasatinib 60 mg/m²	Dasatinib 60 mg/m²	Imatinib 300 mg/m ² vs Dasatinib 80 mg/m ²
Period	2002-2006	2004-2009	2010-2014	2008- 2012	2012- 2014	2015-2018
Patients	91	160	155	60	106	<mark>97 (imatinib)</mark> 92 (dasatinib)
CR1 HSCT	25%	83%	38%	32%	14%	0.5%
5-yr EFS	71% (Cohort 5)	60%	57%	60%	55%	4-yr EFS: 49% (imatinib) 4-yr EFS: 71% (dasatinib)
5-yr OS	81% (Cohort 5)	72%	72%	86%	82%	4-yr OS: 69% (imatinib) 4-yr OS: 88% (dasatinib)

1. Schultz KR, et al. *Leukemia*. 2014; 2. Biondi A, et al. *Haematologica*. 2018; 3. Biondi A, et al. *Lancet Haematol*. 2018; 4. Slayton WB, et al. *J Clin Oncol*. 2018; 5. Hunger SP, et al. SIOP Virtual Congress. 2020; 6. Shen S, et al. *JAMA Oncol*. 2020.

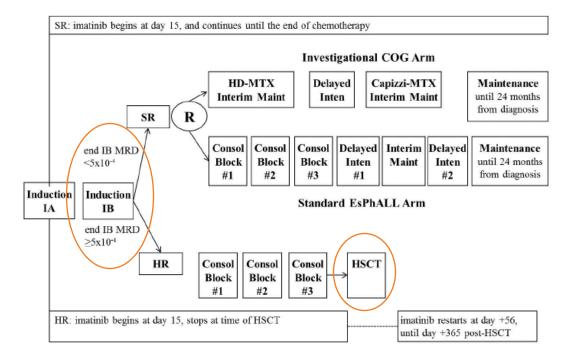
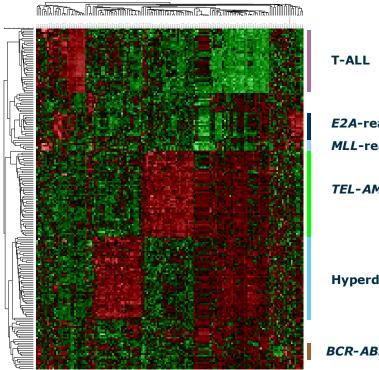


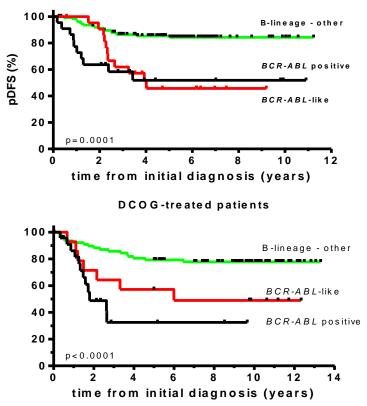
Fig 4 Comparison of event free survival (EES) for Cohort 5 chemotherapy only

EsPhALL2017/COGAALL1631

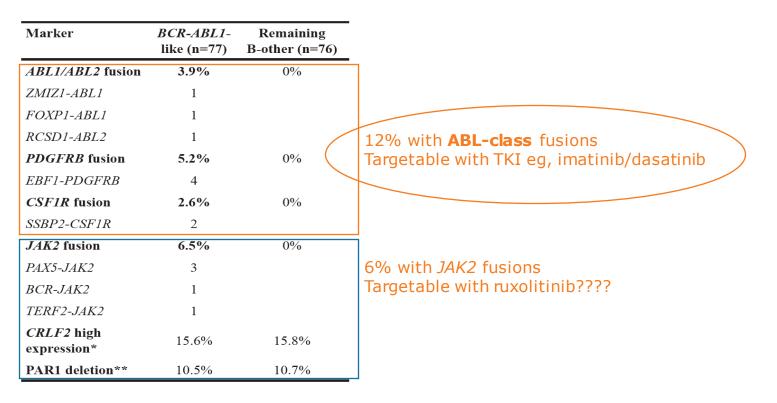


Note. MRD: Minimal Residual Disease, SR:Standard Risk, HR: High Risk, R: Randomization, HD-MTX: High Dose Methotrexate, Maint: Maintenance, Inten: Intensification, Consol: Consolidation, HSCT: Hematopoietic Stem Cell Transplant

Discovery of BCR-ABL1–like ALL in 2009



E2A-rearranged MLL-rearranged

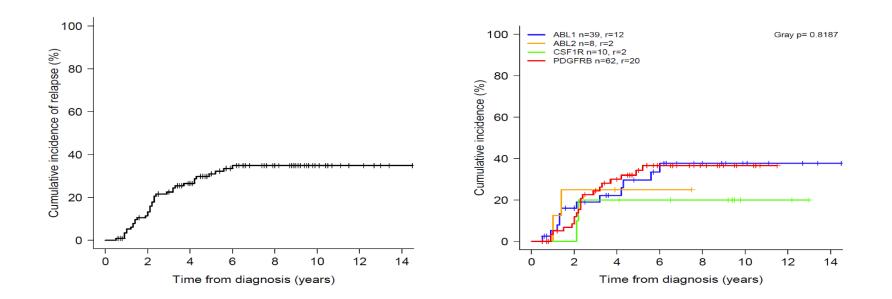

TEL-AML1

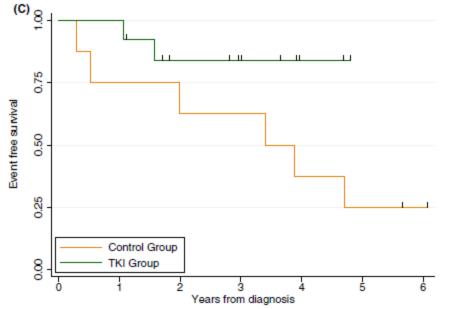
COALL-treated patients

Frequency of identified tyrosine kinase fusion genes in *BCR-ABL1*–like ALL and remaining B-other ALL

Princess

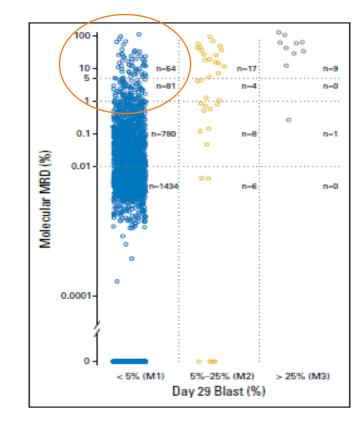
maxima


pediatric oncology

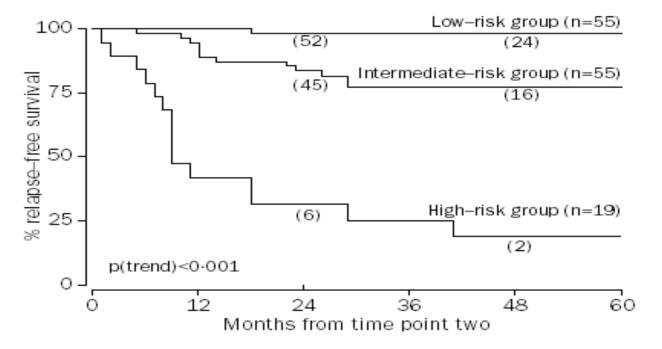

rente

H.H

Cumulative incidence of relapse in ABL-class patients treated without TKI



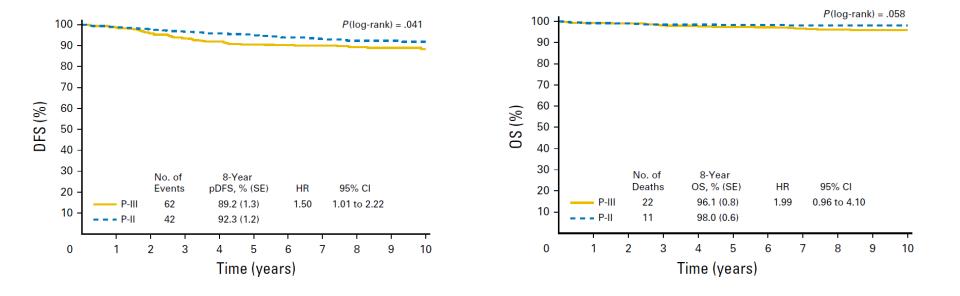
without imatinib

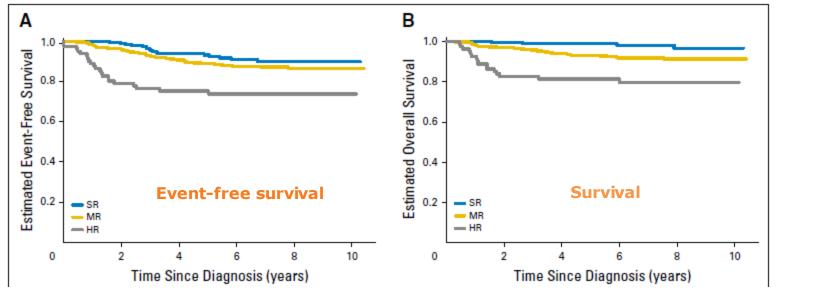

Morphologic vs molecular detection of MRD at end of induction

Minimal residual disease and outcome in ALL

Relapse-free survival of the 3 MRD-based risk groups, as defined by MRD information at time points 1 and 2

Therapy reduction in MRD-negative patients: BFM-II vs BFM-III vs DCOG-IV





	BFM-II	BFM-III	DCOG-IV	Cum dose
Dexamethasone	250	180	180	mg/m2
VCR	6	3	3	mg/m2
Doxorubicin	120	60	0	mg/m2
Native Asp	40.000	40.000	0	U/m2
PEG-Asp	0	0	2.500	U/m2
Cyclophoshamide	1.000	500	0	mg/m2
araC	600	600	0	mg/m2
6-TG	840	840	0	mg/m2

Therapy reduction (P-II to P-III) in AIEOP-BFM 2000: DFS and OS

Princess

maxima

pediatric oncology

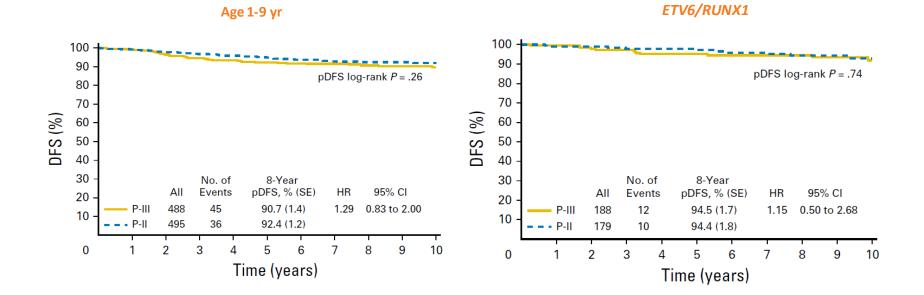
center

Outcome in MRD low-risk patients (25% of all patients)

	Prot II	Prot III	DCOG Prot IV
8yr OS	98%	96%	97%
5yr DFS	96%	91%	93%
5yr CIR	4%	8%	6%

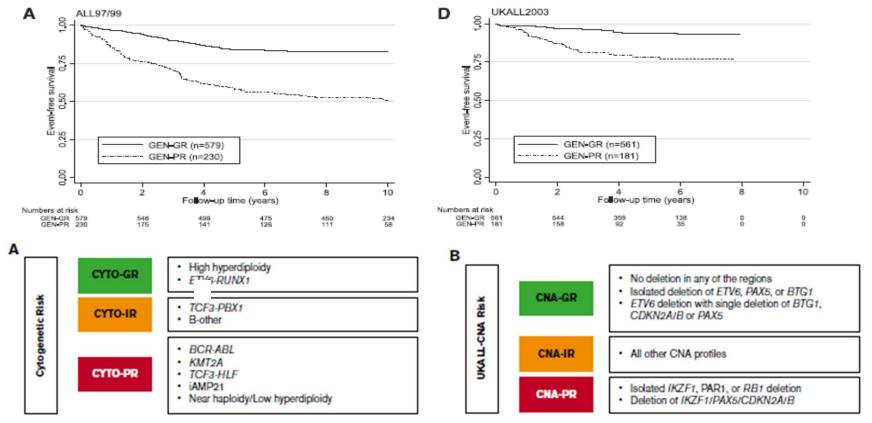
• Therapy reduction: relapse rate ~4% higher but survival not different

Dilemma

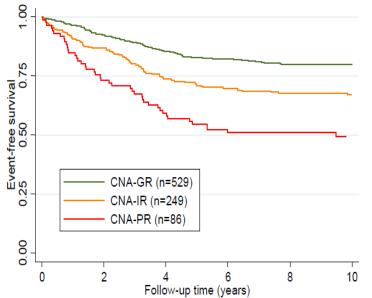

• Decrease of the rapy for all MRD low-risk patients: an extra \sim 4% of them need relapse the rapy

OR

• More intensive therapy for all MRD low-risk patients


Therapy reduction in specific risk groups (AIEOP-BFM 2000)?

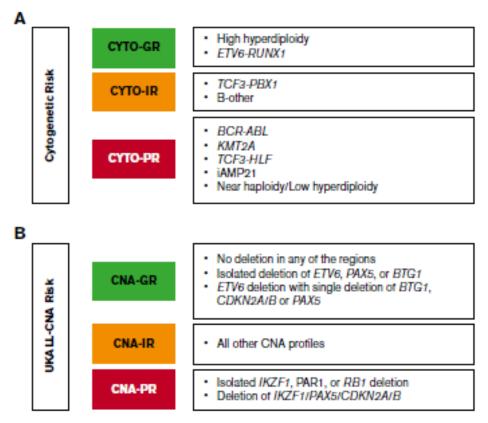
EFS ALL97/99 and UKALL2003 by genetic risk group



Moorman, Blood 2014

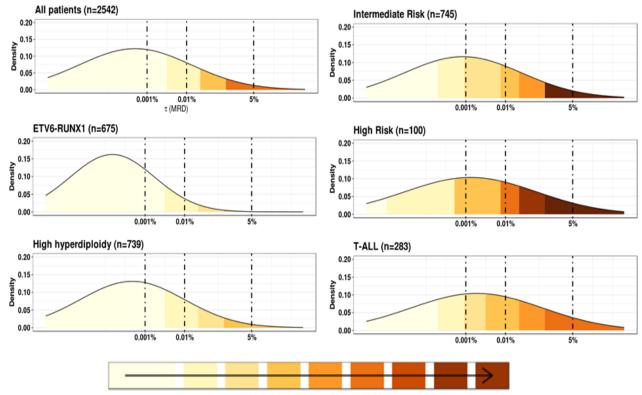
UK copy number alteration (CNA) classifier in UKALL

CNA profile defines risk groups

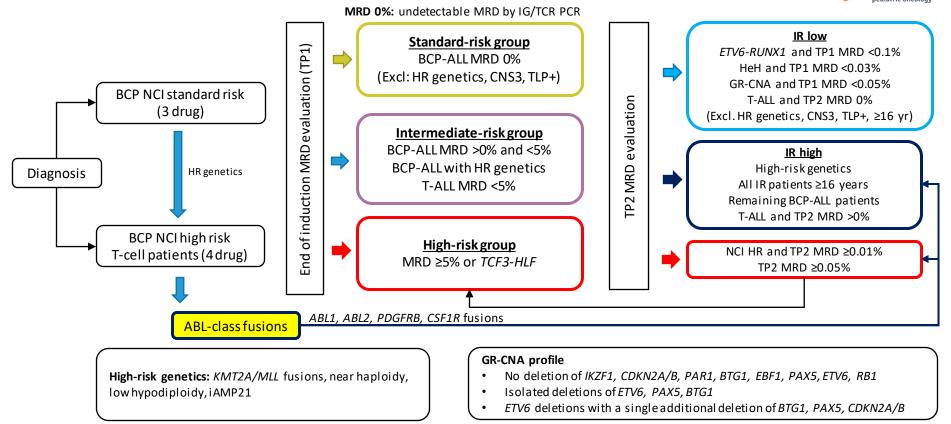

CNA profiles by MLPA

Good risk	
No deleti	on
Isolated	deletion of <i>ETV6, PAX5</i> , or <i>BTG1</i>
	etion + BTG1, CDKN2A/B or PAX5 deletion
Intermed	iate risk
	CNA profiles
-All other	CNA promes
Poor risk	

Isolated *IKZF1, PAR1,* or *RB1* deletion
Deletion of *IKZF1/PAX5/CDKN2A/B*


Novel genetic risk groups in B-lineage ALL by cytogenetics and by CNA

Risk of relapse by MRD value varies by genetic subtype



Increasing relapse rate at 5 years (1-45%)

Risk-stratification algorithm

Risk groups by MRD and genetics: Outcomes and interventions

er 👑	Princess máxima center pediatric oncology
------	--

Risk group	Patients, %	5-yr EFS, %	5-yr OS, %	5-yr relapse, %	Treatment intervention	
SR	23%	95	99 4		Random: reduction doxorubicin	
IR-low	37%	94	98	4	Random: reduction doxorubicin Random: reduction VCR/Dexa pulses	
IR-high	36%	82	89	15	Random: intensification inotuzumab Random: intensification 6TG/MP vs MP Down non-random: blinatumomab ABL-class: non-random imatinib	
VHR	4%	78	78	14	B-lineage: non-random CD19 CAR T T-lineage: non-random nelarabine	

MRD and genetics to guide stratification and therapy

- Specific therapy protocols for high-risk genetic subgroups
- MRD-based choices of specific therapies
- Therapy reduction in MRD low-risk groups
- Therapy intensification in MRD high-risk groups
- Interdependency of MRD and genetics

[repeated question] Question 1 : Which of the following statements is NOT correct?

- a) MRD at end of induction in infant *KMT2A*-rearranged ALL can be used to select the most effective subsequent myeloid-like or lymphoid-like type of consolidation therapy
- b) MRD at end of induction and consolidation in *BCR-ABL1*-positive ALL is used to select patients who do not need a SCT
- c) The prognostic relevance of MRD at end of induction depends on the genetic subtype of ALL
- d) All types of BCR-ABL1-like ALL are sensitive to ABL class tyrosine kinase inhibitors

Thank you!

Q&A session

First-line treatment of pediatric ALL

Martin Schrappe

First-line Treatment of ALL in Childhood and Adolescence

Global Leukemia Academy 2021

Prof Martin Schrappe, MD

Pediatrics I, University Medical Center Schleswig-Holstein

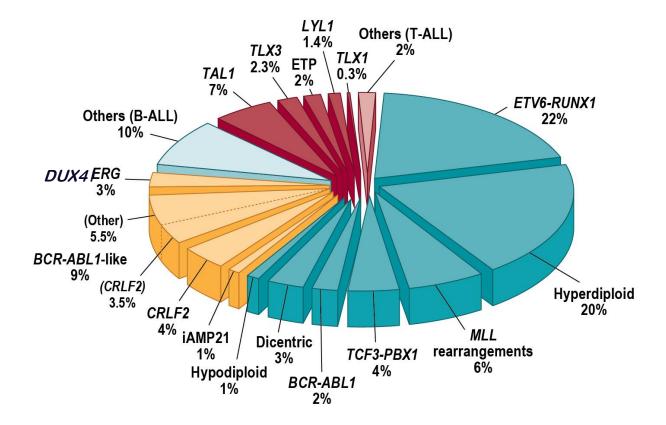
Kiel, Germany

schrappe-office@pediatrics.uni-kiel.de

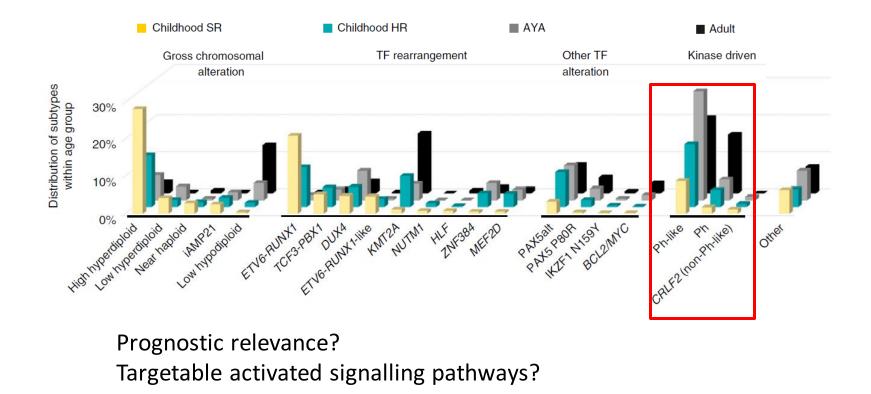
Topics and Objectives

- Genetic subgroups of ALL different by age
- Definitions for diagnostics and disease response NEW
- Key components for stratification
- Key components of ALL therapy
- Contemporary trials for pediatric ALL in Europe
- Outlook
- Only examples can be provided for most issues!

Genetic subgroups in pediatric ALL have been well described. Can you pick the most appropriate definition for a novel entity, called *IKZF1*-plus?


- A. Novel mutation in the *bcr/abl* fusion gene
- B. Simultaneous deletions in *IKZF1* and *PAX5* and/or *CDKN2A* and/or *CDKN2B* and/or *CRLF2* (*PAR*), and negativity for *ERG* deletion
- C. Gain of function in *IKZF1*
- D. Novel term for hypodiploidy
- E. Mutation in drug resistant patients with *ETV6/RUNX1* positivity

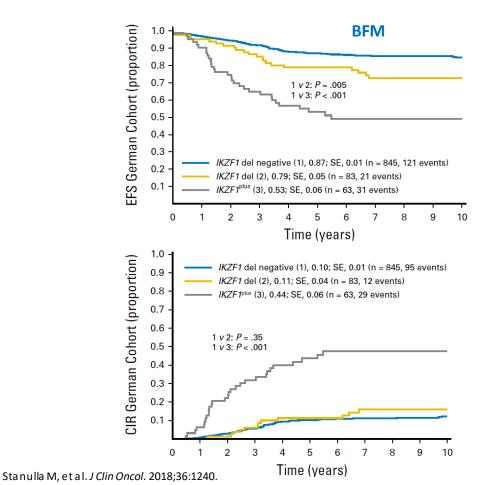
Please indicate which of the following statements for positive testing of MRD at a level of 0.1% is most appropriate:

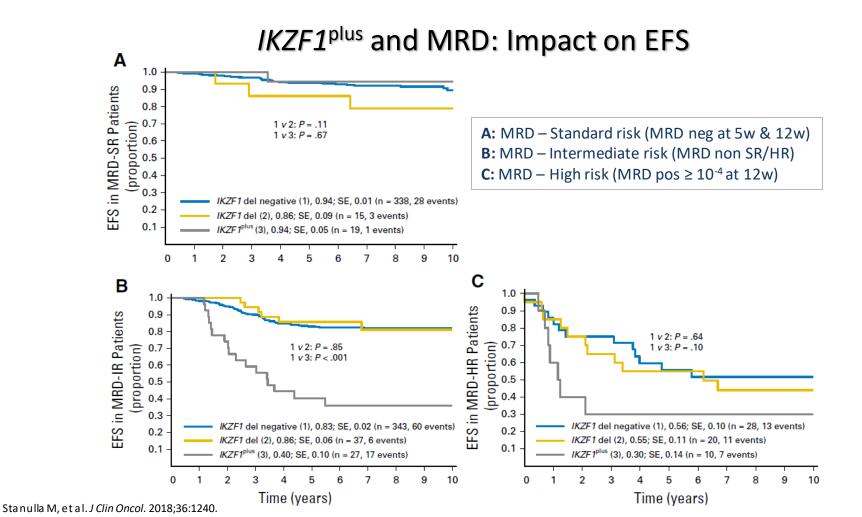

- A. At the end of induction therapy for ALL, such a level of MRD equals induction failure
- B. MRD at this level at the end of consolidation (approximately 12 weeks after start of treatment) can be considered a very favorable response
- C. MRD at this level after allogeneic hSCT is a normal observation when measured at day +100
- D. MRD at this level at any time of ALL therapy equals disease recurrence (relapse)
- E. MRD at this level at the end of induction may indicate a more resistant leukemia, as compared to others with no detectable MRD at the end of induction

All Patients Have Specific Leukemic Genetic Abnormalities

Pui, Mullighan, et al. J Clin Oncol. 2015;33:2938-2948, Zhang et al. Nat Genet. 2016;48:1481-1489.

The Molecular Landscape of pB-ALL


Guetal. Nat Genet. 2019.


IKZF1^{plus} Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia

Martin Stanulla, Elif Dagdan, Marketa Zaliova, Anja Möricke, Chiara Palmi, Giovanni Cazzaniga, Cornelia Eckert, Geertruy te Kronnie, Jean-Pierre Bourquin, Beat Bornhauser, Rolf Koehler, Claus R. Bartram, Wolf-Dieter Ludwig, Kirsten Bleckmann, Stefanie Groeneveld-Krentz, Denis Schewe, Stefanie V. Junk, Laura Hinze, Norman Klein, Christian P. Kratz, Andrea Biondi, Arndt Borkhardt, Andreas Kulozik, Martina U. Muckenthaler, Giuseppe Basso, Maria Grazia Valsecchi, Shai Izraeli, Britt-Sabina Petersen, Andre Franke, Petra Dörge, Doris Steinemann, Oskar A. Haas, Renate Panzer-Grümayer, Hélène Cavé, Richard S. Houlston, Gunnar Cario, Martin Schrappe, and Martin Zimmermann, for the TRANSCALL Consortium and the International BFM Study Group

DOI: https://doi.org/10.1200/JCO.2017. 74.3617

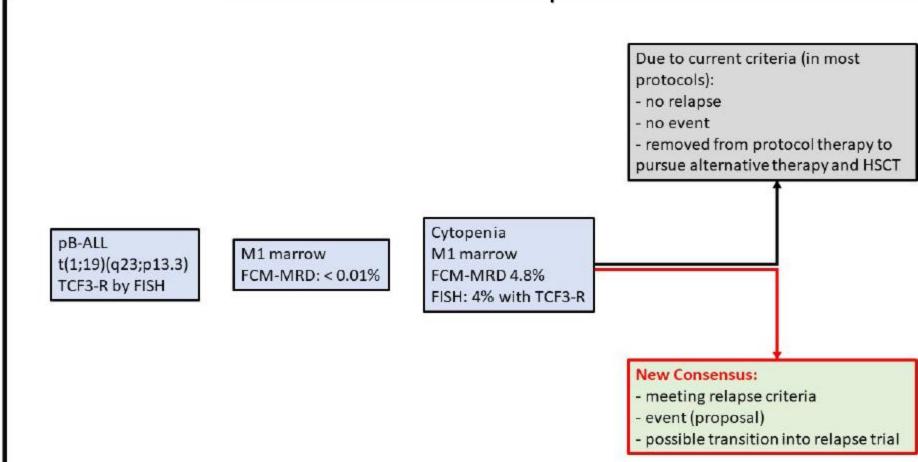
IKZF1 del and *IKZF1*^{plus} – Prognostic Impact

Remission, treatment failure, and relapse in pediatric ALL: An international consensus of the Ponte-di-Legno Consortium

Swantje Buchmann^{1*}, Martin Schrappe^{1*§}, Andre Baruchel², Andrea Biondi³, Michael Borowitz⁴, Myriam Campbell⁵, Gunnar Cario¹, Giovanni Cazzaniga³, Gabriele Escherich⁶, Christine J. Harrison⁷, Mats Heyman⁸, Stephen P. Hunger⁹, Csongor Kiss¹⁰, Hsi-Che Liu¹¹, Franco Locatelli¹², Mignon L. Loh¹³, Atsushi Manabe¹⁴, Georg Mann¹⁵, Rob Pieters¹⁶, Ching-Hon Pui¹⁷, Susana Rives¹⁸, Kjeld Schmiegelow¹⁹, Lewis B. Silverman²⁰, Jan Stary²¹, Ajay Vora²² and Patrick Brown²³ on behalf of the Ponte-di-Legno Consortium

Table 3.2: Bone marrow relapse (MRD unavailable)

	BM #1	BM #2 [@]
Cytomorphology	others	
M3	*	*
M2	1 other test^ with 1% blasts	*
M2	none	M2
M1	2 other tests^ with 1% blasts	*

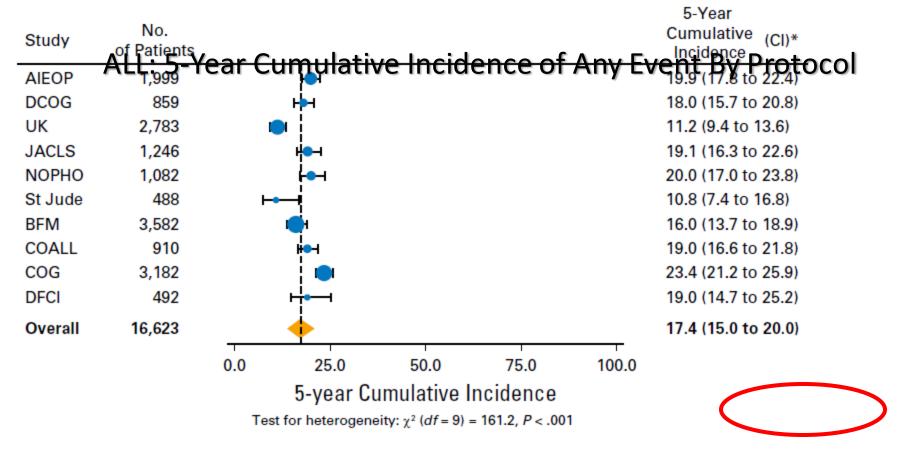

*: not necessary to define relapse; ^FISH/karyotype/PCR demonstrating leukemia-specific marker; [@]second evaluation at least one week later

1 to < 5 %	0 or 1 other test with 1% blasts	2 tests with 1% blasts

*: not necessary to define relapse; FCM/PCR/NGS-based MRD or FISH/karyotype/PCR demonstrating leumarker, or M2/M3 morphology; [@]second bone marrow evaluation at least one week later

Relevance: An Example

Risk Stratification and Therapy


- The 2 main differences in stratification systems in pediatric ALL relate to the use of upfront criteria (e.g. NCI risk grouping) vs the use of "late" criteria such as response
- New subgroups have been described which use either a series of genetic markers, or the combination of genetic markers and treatment response: Ph-like or *BCR/ABL*-like pB-ALL; IKZF1*plus* pB-ALL
- Acute leukemias with ambiguous phenotype form another (rare) subgroup: MPAL
- Early response (through prednisone response, morphological CR, and in particular MRD detection) has been established as the strongest prognostic factor
- Treatment <u>quality</u> has moved to the focus of clinical research to avoid late effects and toxicity

Study	No. of Patients				5-Year Survival (%) (Cl)*
AIEOP	1,999	ALL: 5-Yea	ar Overall Sa	rvival B	Protocog. B to 92.4)
DCOG	859		⊢⊷⊣		87.0 (84.5 to 89.6)
UK	2,783				92.8 (91.3 to 94.4)
JACLS	1,246		H	b	88.8 (86.5 to 91.2)
NOPHO	1,082		F	-	91.3 (89.0 to 93.7)
St Jude	488			, ⊢ •−1	94.6 (91.6 to 97.8)
BFM	3,582				92.0 (91.0 to 93.0)
COALL	910		H	H	90.0 (87.5 to 92.6)
COG	3,182		•		89.0 (87.5 to 90.6)
DFCI	492		F	-	91.0 (88.5 to 93.6)
Overall	16,623		•		90.8 (89.5 to 91.9)
0.0	25.0	50.0	75.0	100.0	
		5-year Surviva	I		
	Test for botor	$\frac{1}{2}$	61 99 B - 001		

Test for heterogeneity: χ^2 (df = 9) = 61.88, P < .001

 \bigcirc

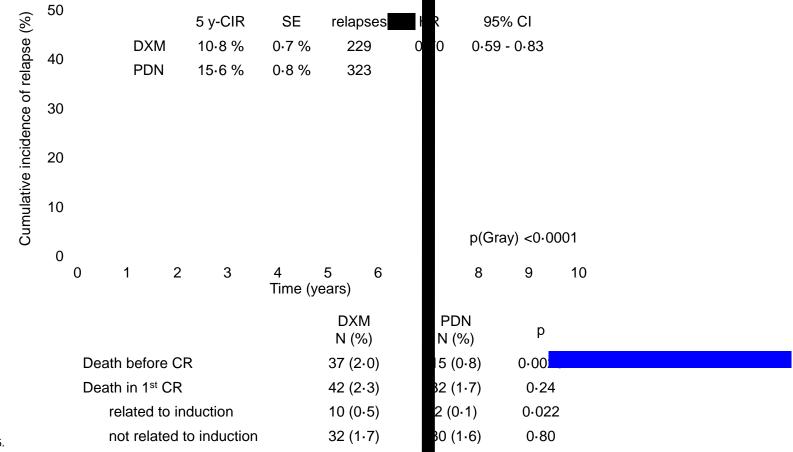
Vora A. J Clin Oncol. 2016;34:919-926.

Vora A. J Clin Oncol. 2016;34:919-926.

Increased Knowledge Through Prospective Randomized Trials *Examples*

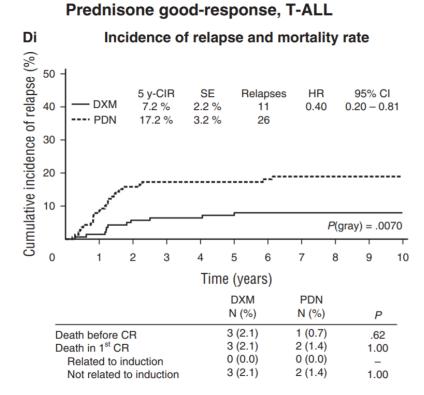
- Dexamethasone vs prednisone in induction
- Reduction of delayed intensification in pB-ALL

CLINICAL TRIALS AND OBSERVATIONS


Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000

Anja Möricke,¹ Martin Zimmermann,² Maria Grazia Valsecchi,^{3,4} Martin Stanulla,² Andrea Biondi,^{4,5} Georg Mann,⁶ Franco Locatelli,⁷ Giovanni Cazzaniga,⁵ Felix Niggli,⁸ Maurizio Aricò,⁹ Claus R. Bartram,¹⁰ Andishe Attarbaschi,⁶ Daniela Silvestri,^{3,4} Rita Beier,^{2,11} Giuseppe Basso,¹² Richard Ratei,¹³ Andreas E. Kulozik,¹⁴ Luca Lo Nigro,¹⁵ Bernhard Kremens,¹¹ Jeanette Greiner,¹⁶ Rosanna Parasole,¹⁷ Jochen Harbott,¹⁸ Roberta Caruso,⁷ Arend von Stackelberg,¹⁹ Elena Barisone,²⁰ Claudia Rössig,²¹ Valentino Conter,^{4,*} and Martin Schrappe^{1,*}

¹Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany; ²Division of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany; ³Medical Statistics Unit, Department of Clinical Medicine and Prevention, University of Milano-Bicocca, Monza, Italy; ⁴Department of Pediatrics, University of Milano-Bicocca, Ospedale S. Gerardo, Monza, Italy; ⁵Centro M. Tettamanti, Clinica Pediatrica Università Milano-Bicocca, Monza, Italy; ⁶Department of Pediatrics, St. Anna Children's Cancer Research Institute and St. Anna Children's Hospital, Medical University School, Vienna, Austria; ⁷Department of Pediatric Hemato-Oncology, Ospedale Bambin Gesù, Rome, University of Pavia, Pavia, Italy; ⁸Department of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland; ⁹Direzione Generale, Azienda Sanitaria Provinciale, Ragusa, Italy; ¹⁰Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany; ¹¹Department of Pediatric Oncology, University Hospital, Essen, Germany; ¹²Pediatric Hemato-Oncology, Department of Women's and Children's Health, University of Padova, Padova, Italy; ¹³Hematology/Oncology, Robert-Rössle-Klinik at the HELIOS Klinikum, Charité, Berlin, Germany; ¹⁴Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany; ¹⁵Department of Pediatric Hemato-Oncology, Azienda Policlinico–Ospedale Vittorio Emanuele, Catania, Italy; ¹⁶Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland; ¹⁷Department of Pediatric Hematology and Oncology, Santobono-Pausilipon Hospital, Napoli, Italy; ¹⁸Pediatric Hematology and Oncology, Justus-Liebig University, Gießen, Germany; ¹⁹Pediatric Hematology and Oncology, Charité Medical Center, Humboldt University, Berlin, Germany; ²⁰Department of Pediatric Hemato-Oncology, Regina Margherita Children's Hospital, Torino, Italy; and ²¹Department of Pediatric Hematology and Oncology, University Children

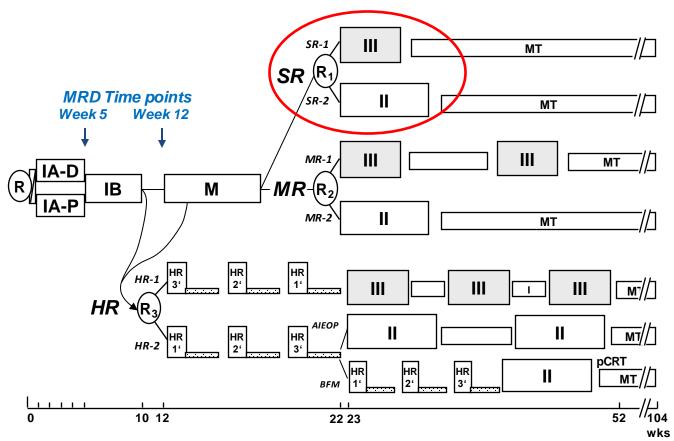

Blood. 2016;127(17):2101-2112

AIEOP-BFM ALL 2000: DEX vs PDN in Induction Therapy

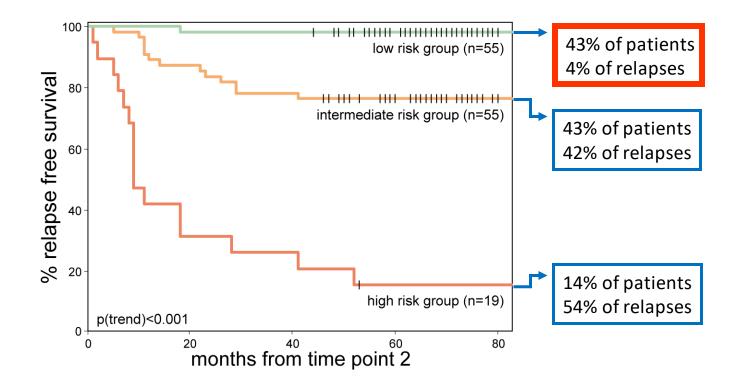
Moericke A, et al. Blood. 2016.

Dexamethasone in Induction in T-ALL

JOURNAL OF CLINICAL ONCOLOGY


ORIGINAL REPORT

Reduced-Intensity Delayed Intensification in Standard-Risk Pediatric Acute Lymphoblastic Leukemia Defined by Undetectable Minimal Residual Disease: Results of an International Randomized Trial (AIEOP-BFM ALL 2000)


Martin Schrappe, Kirsten Bleckmann, Martin Zimmermann, Andrea Biondi, Anja Möricke, Franco Locatelli, Gunnar Cario, Carmelo Rizzari, Andishe Attarbaschi, Maria Grazia Valsecchi, Claus R. Bartram, Elena Barisone, Felix Niggli, Charlotte Niemeyer, Anna Maria Testi, Georg Mann, Ottavio Ziino, Beat Schäfer, Renate Panzer-Grümayer, Rita Beier, Rosanna Parasole, Gudrun Göhring, Wolf-Dieter Ludwig, Fiorina Casale, Paul-Gerhardt Schlegel, Giuseppe Basso, and Valentino Conter

> DOI: https://doi.org/10.1200/JCO.2017. 74.4946

AIEOP-BFM ALL 2000

Relapse-free Survival in I-BFM-SG Study According to the Combined MRD Information at Time Points 1 and 2 (n=129)

I-BFM-SG Report: van Dongen JJM, et al. *Lancet*. 1998;352:1731-1738. See also: van Dongen JJM, et al. *Blood*. 2015;125:3996.

Standard Intensity Reduced Intensity Delayed Intensification Delayed Intensification Protocol III **Protocol II** $10 \text{ mg/m}^2/\text{d}$ DEXA VCR $1.5 \text{ mg/m}^2/\text{d}$ DOX $30 \text{ mg/m}^2/\text{d}$ 10,000 U/m²/d L-ASP (E. coli- MEDAC/KYOWA) $1000 \text{ mg/m}^2/\text{d}$ СРМ $500 \text{ mg/m}^2/\text{d}$ CPM ARA-C 75 mg/m²/d TG $60 \text{ mg/m}^2/\text{d}$ MTX IT ¥ **BM/MRD**

Day 1

15

8

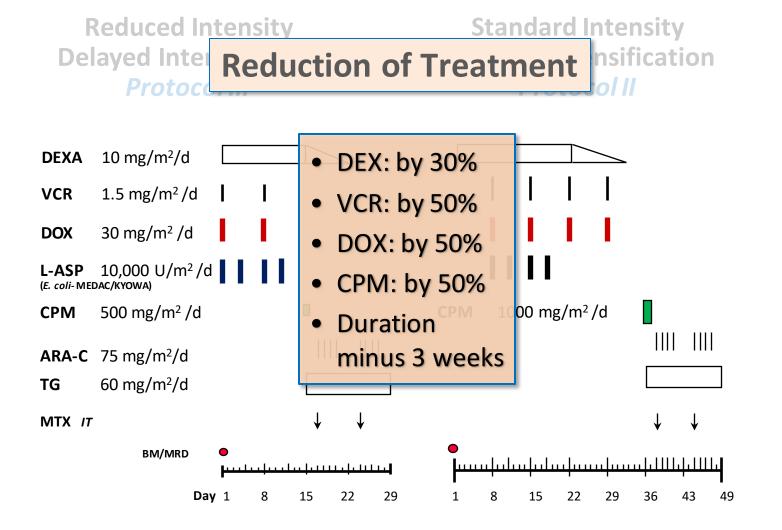
22

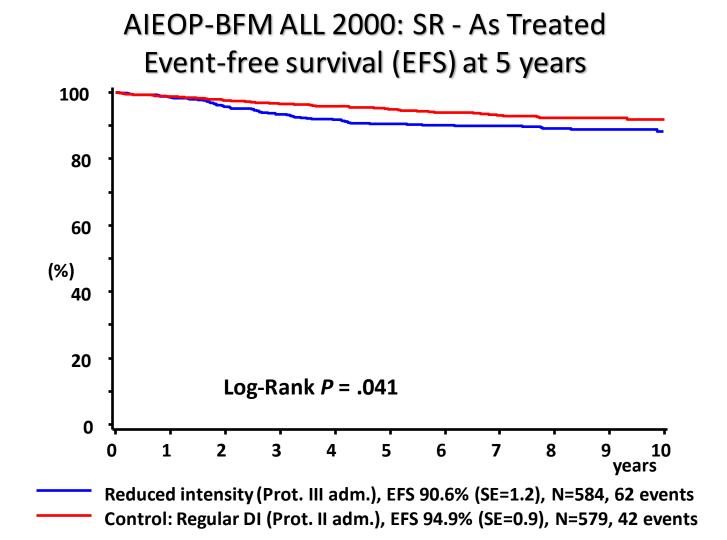
29

8

1

15


22


29

36

43

49

Overall Survival by Type of DI

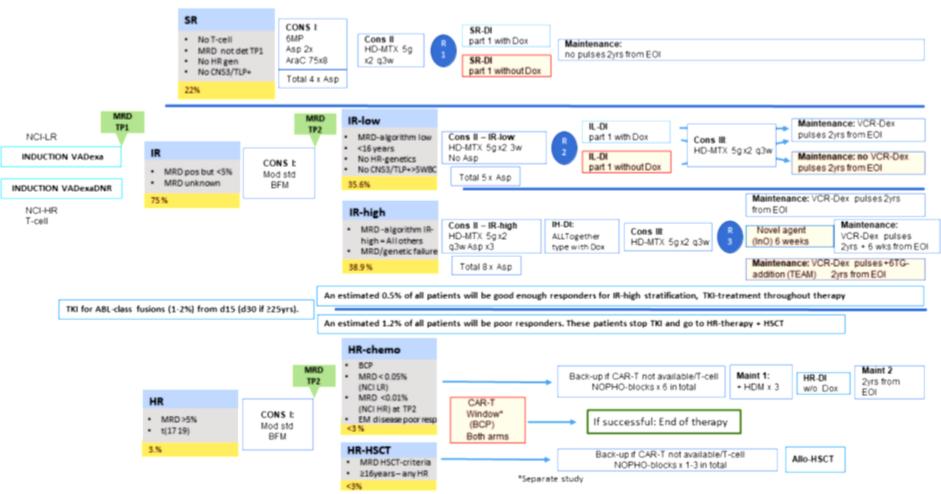
	No.* (%)			Hazard Ratio and 95% CI				4-Year pOS % (SE)		8-Year pOS % (SE)	
	P-III	P-II						P-III	P-II	P-III	P-II
Sex							1				
Male	293 (48.4)	312 (51.6)						97.6 (0.9)	98.1 (0.8)	95.5 (1.3)	97.3 (0.9)
Female	291 (52.2)	267 (47.8)					H	97.6 (0.9)	98.9 (0.6)	96.7 (1.1)	98.9 (0.6)
Age, years											
≥1-≤5	361 (48.3)	386 (51.7)	1		H		1	98.3 (0.7)	98.7 (0.6)	97.0 (0.9)	98.1 (0.7)
≥6-≤9	127 (53.8)	109 (46.2)	1				1	98.4 (1.1)	98.2 (1.3)	98.4 (1.1)	98.2 (1.3)
≥ 10	96 (53.3)	84 (46.7)			H	•	i	88.9 (3.6)	97.6 (1.3)	88.9 (3.6)	97.6 (1.7)
WBC (x 10 ¹ /L)			1				1				
< 20	405 (48.6)	428 (51.4)	1	ŀ			1	98.7 (0.6)	97.9 (0.7)	97.2 (0.9)	97.6 (0.7)
20 - < 100	151 (56.8)	115 (43.2)			-			96.0 (1.6)	100 (0.0)	95.2 (1.8)	96.9 (1.1)
> 100	28 (43.8)	36 (56.3)						89.3 (5.8)	100 (0.0)	85.6 (6.7)	100 (0.0)
Immunophenotype			1				1				
Precursor B	654 (50.8)	537 (49.2)	1					97.4 (0.7)	98.7 (0.5)	96.1 (0.9)	98.3 (0.6)
т	25 (44.6)	31 (55.4)	<u> </u>					100 (0.0)	96.8 (3.2)	95.0 (4.9)	96.8 (3.2)
ETV6-RUNX1							1				
Negative	353 (50.0)	353 (50.0)	1					96.8 (0.9)	98.0 (0.7)	96.2 (1.0)	97.7 (0.8)
Positive	188 (51.2)	179 (48.8)		F				98.4 (0.9)	99.4 (0.6)	96.9 (1.4)	98.8 (0.9)
DNA index											
≥ 1.16	91 (48.1)	98 (51.9)	1					97.8 (1.5)	100 (0.0)	96.7 (1.9)	100 (0.0)
< 1.16	349 (50.9)	337 (49.1)	1		-			96.5 (1.0)	98.2 (0.7)	96.1 (1.1)	97.8 (0.8)
Glucocorticoid											
DXM	251 (51.3)	238 (48.7)	-		-		h	98.0 (0.9)	98.7 (0.7)	96.0 (1.3)	98.7 (0.7)
PDN	268 (49.5)	273 (60.5)	1		H			97.1 (1.1)	97.6 (1.0)	96.7 (1.3)	96.7 (1.1)
Total	584 (50.2)	579 (49.8)				\leq		97.6 (0.6)	98.4 (0.5)	96.1 (0.8)	98.0 (0.6)
			0.1				10				
				Favors P-III		Favors P-II					

DOI: https://doi.org/10.1200/JCO.2017. 74.4946

SR-ALL Defined by PCR-based MRD: Recent clinical trials¹⁻³

	% pts in SR	N / % randomized	Randomiz. question	Cumul. incid. of relapses	pEFS	Р
AIEOP-BFM	39.0	1164/86.5	P-III vs -II	7.5 vs 4.1%	94.9 vs 90.6	.041
UKALL	38.9	521/49.2	1 DI vs 2 DI	5.6 vs 2.4%*	94.4 vs 95.5	n.s.
DCOG	24.9			6.2%	93.2	

*Actuarial percentage (at 5y)


1. Schrappe M, et al. J Clin Oncol. 2017; 2. Vora A, et al. Lancet Oncol. 2013; 3. Pieters R, et al J Clin Oncol. 2016.

Contemporary Trials For Pediatric ALL in Europe

EUDRACT number: 2018-001795-38

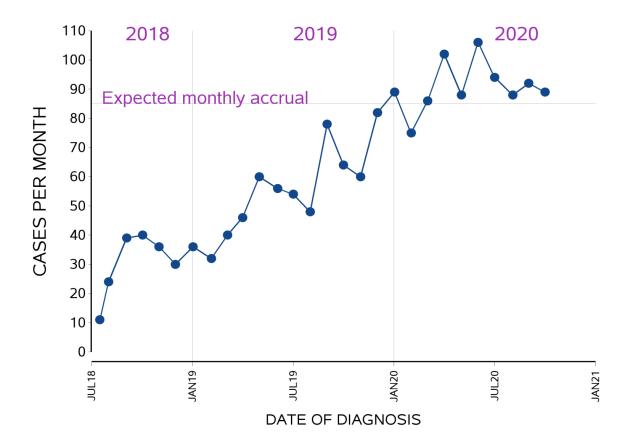
ALLTogether

Therapy overview ALLTogether – including interventions

AIEOP-BFM ALL 2017

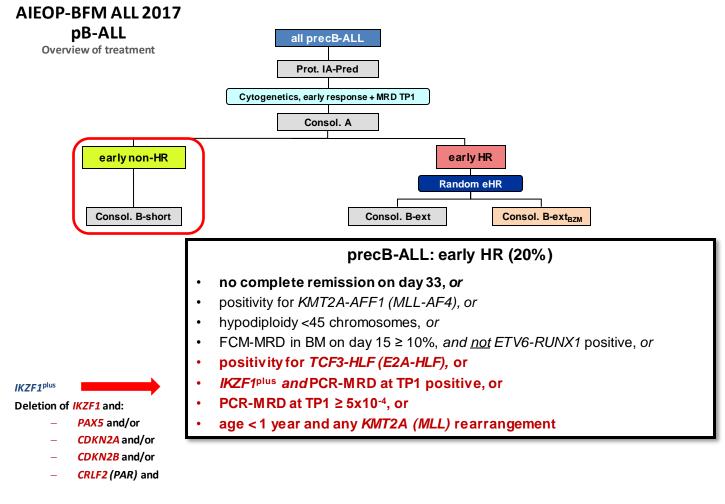
International collaborative treatment protocol for children and adolescents with acute lymphoblastic leukemia

Stratification and Treatment Questions

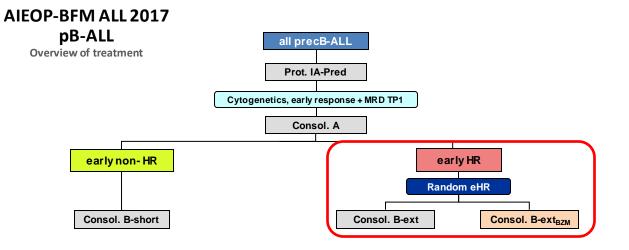

A. Biondi (AIEOP), J. Starý (CPH), S. Elitzur (INS), A. Kolenova (SPHOS), G. Mann (BFM-A), D. Barbaric (ANZCHOG), F. Niggli (BFM-CH), M. Schrappe (BFM-G)

Sponsor: University Medical Center Schleswig-Holstein (Kiel, Germany) EudraCT Number: 2016-001935-12

AIEOP-BFM ALL 2017

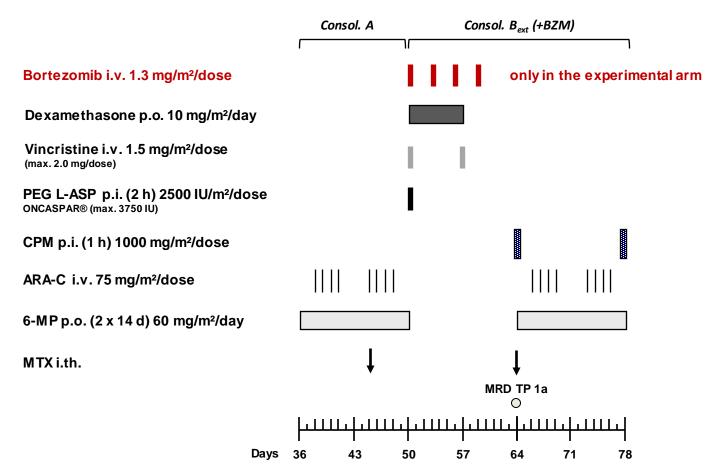

Participating countries (study groups)	 Australia (ANZCHOG) Austria (BFM-A) 			
	 Czech Republic (CPH) 			
	• Germany (BFM-G)			
	• Israel (INS)			
	• Italy (AIEOP)			
	Slovakia (SPHOS)			
	 Switzerland (BFM-CH) 			
Planned recruitment	5 years			
	Approx. 1000 pts p.a.			
Start	7-2018			

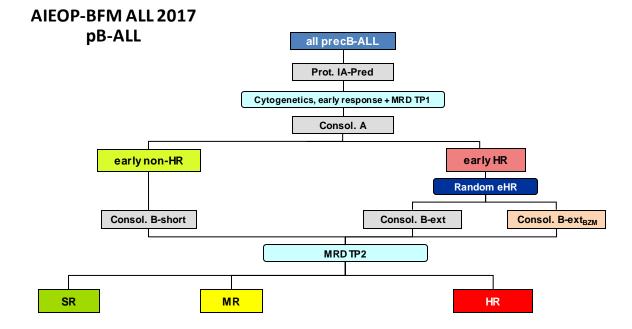
Recruitment in trial AIEOP-BFM ALL 2017

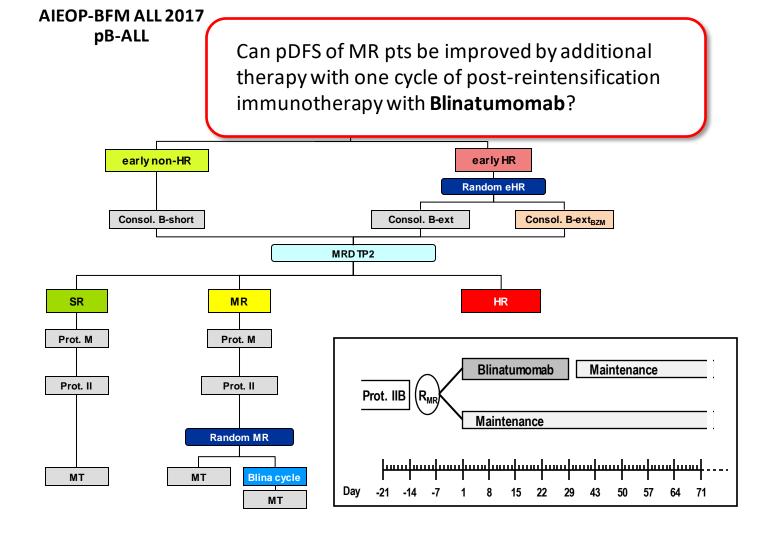


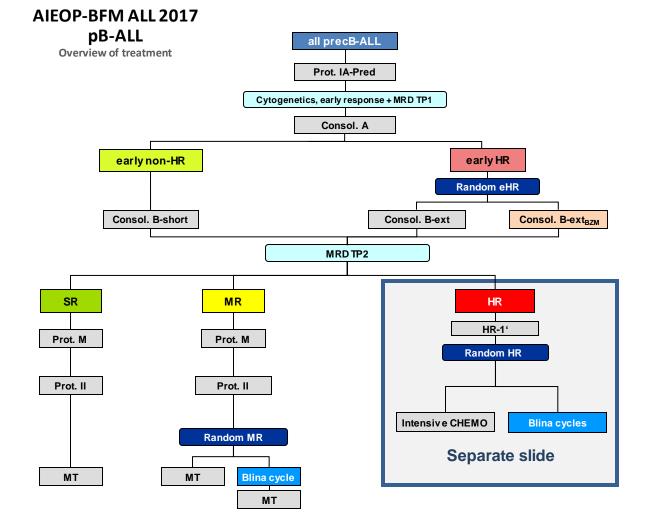
AIEOP-BFM ALL 2017: Risk Criteria for pB-ALL

High Risk (HR)	 no complete remission on day 33 or positivity for <i>KMT2A-AFF1</i> or positivity for <i>TCF3-HLF</i> or hypodiploidy <45 chromosomes or FCM-MRD in BM on day 15 ≥10% and <u>not</u> ETV6-RUNX1 positive or <i>IKZF1</i>^{plus} and PCR-MRD at TP1 positive or inconclusive and <u>not</u> positive for ETV6-RUNX1, TCF3-PBX1 or KMT2A rearrangement other than KMT2A- AFF1 or PCR-MRD at TP1 ≥5 × 10⁻⁴ and positive <5 × 10⁻⁴ at TP2 (PCR-MRD SER) PCR-MRD at TP2 ≥5 × 10⁻⁴ (PCR-MRD-HR) age <1 year and any KMT2A rearrangement
Medium Risk (MR)	 PCR-MRD <i>either</i> positive at TP1 and/or TP2 <i>or</i> PCR-MRD not evaluable
Standard Risk (CD) Combi	 No HR criteria and PCR-MRD pegative at TP1 ned use of FCM-based and ASO-PCR-based MRD-detection

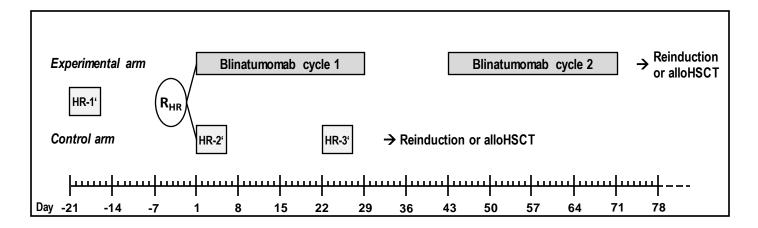


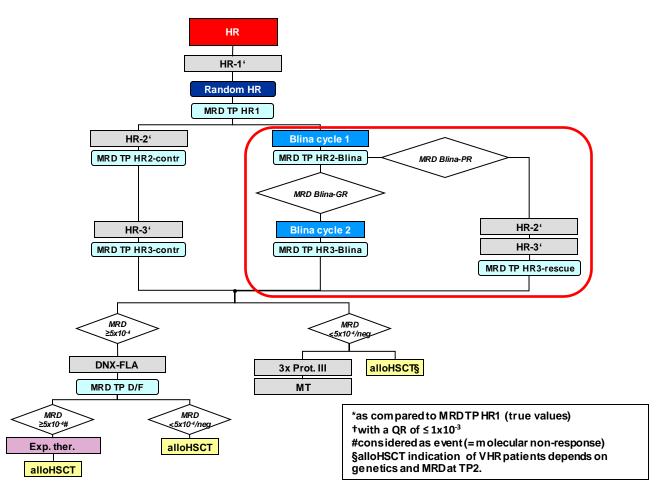

 Negativity for ERG deletion



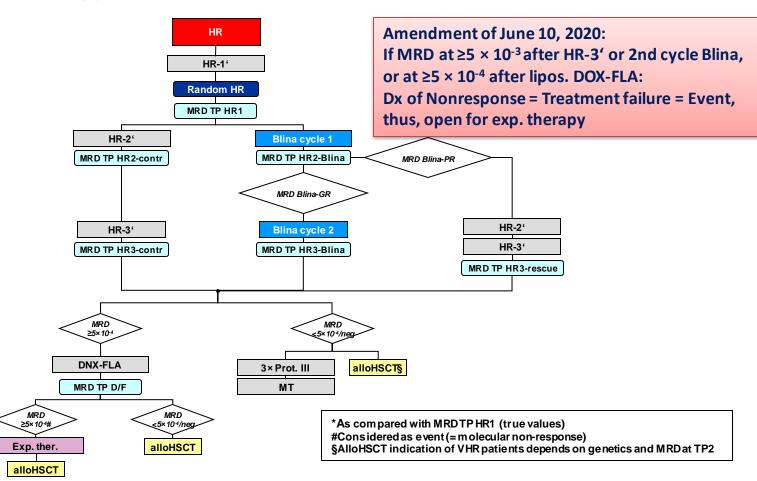

Can pEFS in pcB-early HR pts be improved by additional therapy with Bortezomib during an extended consolidation treatment phase compared to a standard extended consolidation?

Extended Consolidation for early HR pB-ALL Random eHR



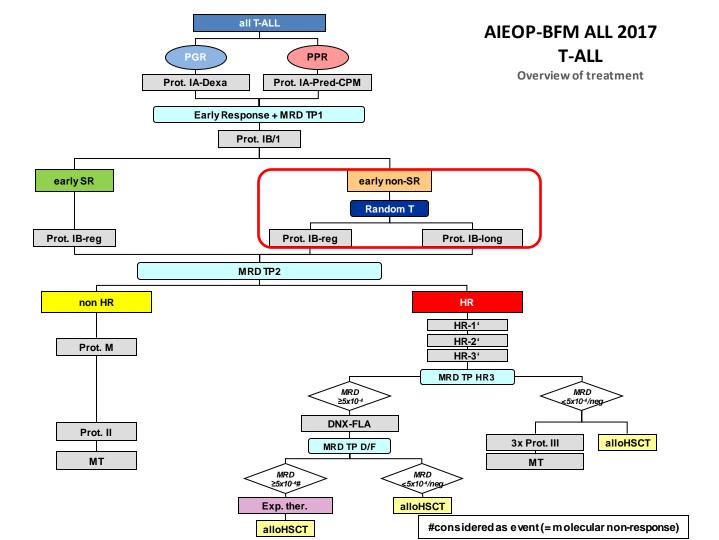

AIEOP-BFM ALL 2017: pB-ALL Approach for HR patients: Randomization HR

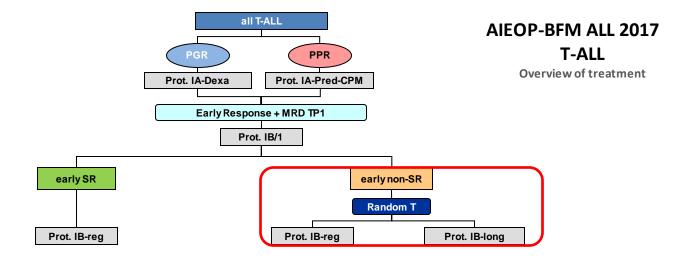
Can the pEFS be improved by a treatment concept including two cycles of post-consolidation immunotherapy with Blinatumomab ($15 \mu g/m^2/d$ for 2 x 28 days) replacing two conventional highly intensive chemotherapy courses?



- Combination of two effects desired for a novel HR post-consolidation therapy:
 - Significant reduction of toxicity
 - More effective therapy for patients with insufficient response to the HR chemotherapy blocks by overcoming resistance to chemotherapy

AIEOP-BFM ALL 2017: pB-ALL Approach for HR patients: Randomization HR



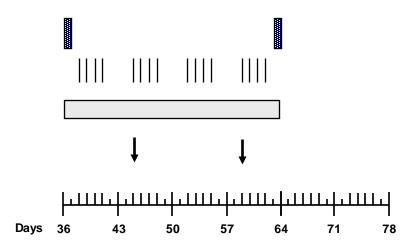

AIEOP-BFM ALL 2017: pB-ALL Approach for HR Patients: Randomization HR

Treatment plan

T-ALL

Can the pEFS be improved by the extension of the standard of care consolidation by 14 days with an increase of the consolidation cumulative doses of Cyclophosphamide, Cytarabine and 6-Mercaptopurine by 50%?

Protocol IB-regular


CPM p.i. (1 h) 1000 mg/m²/dose

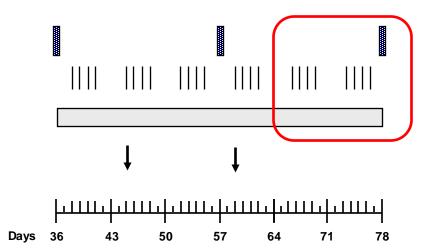
ARA-C i.v. 75 mg/m²/dose

6-MP p.o. (28 d) 60 mg/m²/day

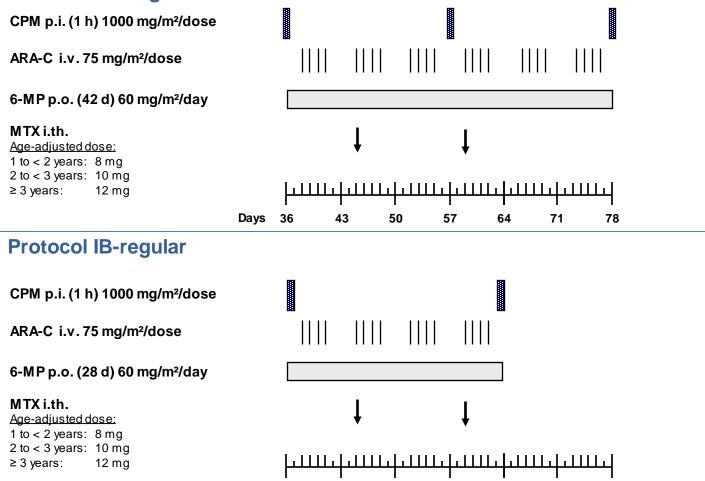
MTX i.th.

<u>Age-adjusted dose:</u> 1 to < 2 years: 8 mg 2 to < 3 years: 10 mg ≥ 3 years: 12 mg

Protocol IB-long


CPM p.i. (1 h) 1000 mg/m²/dose

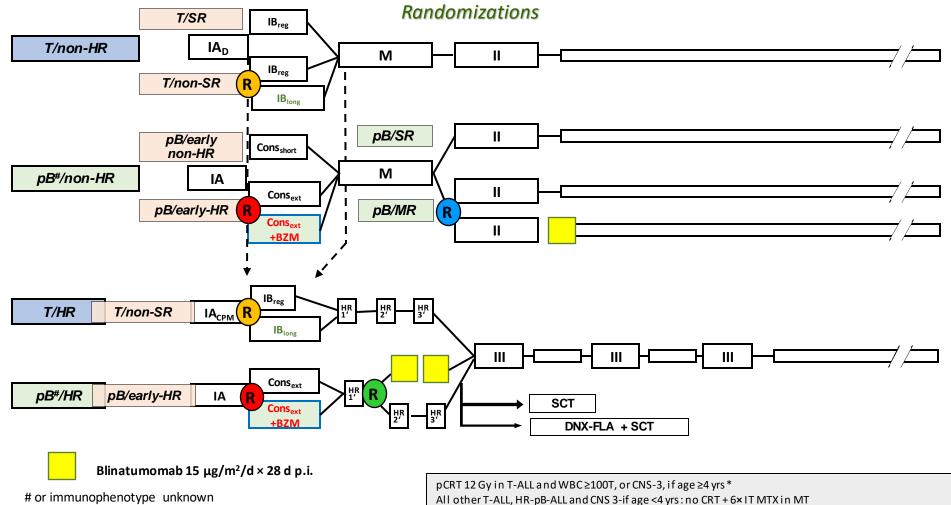
ARA-C i.v. 75 mg/m²/dose


6-MP p.o. (42 d) 60 mg/m²/day

MTX i.th.

Age-adjusted dose:1 to < 2 years:</td>8 mg2 to < 3 years:</td>10 mg \geq 3 years:12 mg

Protocol IB-long



Days

AIEOP-BFM ALL 2017: Genetic Screening and Consequences in Special Subgroups

- See flow chart: Combination of array-based techniques and FISH, sometimes RT-PCR
- Targetable lesions will be identified (Ph-like pos pts may enter EsPhALL/COGAALL1631
- Therapeutic consequences: Due to limited evidence, special consideration only in poor-responding patients if not eligible for the randomizations
- Pts with t(17:19) will be <u>stratified for Blina</u> and will receive BZM in consolidation
- DS-ALL pts with HR-ALL will be <u>stratified for Blina</u> and for the no-BZM arm in consolidation

AIEOP-BFM ALL 2017: Treatment Overview

Summary and Outlook

- Clinically relevant diagnostic subgroups of ALL can be defined more precisely
- Novel definitions for diagnostics and disease response are now available and accepted
- Contemporary trials for pediatric ALL in Europe will provide novel insights into treatment modulation and explore new strategies
- Future aims
 - Safe treatment reduction to avoid critical late effects
 - > Well-balanced treatment intensity of frontline and second-line therapy

Thankyou

ALL-BFM Clinical Trial Center

ALL-BFM Diagnostic Laboratory (Kiel)

ie Iry, Felix Alexandra

ii, Arend eier, Anja onter, , Claudia

[repeated question] Question 1

Genetic subgroups in pediatric ALL have been well described. Can you pick the most appropriate definition for a novel entity, called *IKZF1*-plus?

- A. Novel mutation in the *bcr/abl* fusion gene
- B. Simultaneous deletions in *IKZF1* and *PAX5* and/or *CDKN2A* and/or *CDKN2B* and/or *CRLF2* (*PAR*), and negativity for *ERG* deletion
- C. Gain of function in *IKZF1*
- D. Novel term for hypodiploidy
- E. Mutation in drug resistant patients with *ETV6/RUNX1* positivity

Please indicate which of the following statements for positive testing of MRD at a level of 0.1% is most appropriate:

- A. At the end of induction therapy for ALL, such a level of MRD equals induction failure
- B. MRD at this level at the end of consolidation (approx. 12 weeks after start of treatment) can be considered a very favorable response
- C. MRD at this level after allogeneic hSCT is a normal observation when measured at day +100
- D. MRD at this level at any time of ALL therapy equals disease recurrence (relapse)
- E. MRD at this level at the end of induction may indicate a more resistant leukemia, as compared to others with no detectable MRD at the end of induction

Q&A session

Current treatment options for relapsed ALL in children, including HSCT considerations

Franco Locatelli

APTITUDE HEALTH

Current treatment options for relapsed ALL in children, including HSCT considerations

Franco Locatelli, MD Università Sapienza, Roma Dept. Pediatric Hematology/Oncology and Cell/Gene Therapy IRCCS Ospedale Bambino Gesù, Roma, Italy

Disclosures

Name of Company	Research Support	Employee	Consultant	Stockholder	Speakers' Bureau	Advisory Board	Other
Miltenyi					Х		
Bellicum	X				Х	X	
Amgen					Х	X	
Medac					Х		
Neovii					Х	X	
Novartis						X	
Sanofi						X	
Gilead					Х		
bluebird bio					Х		

Relapsed ALL in childhood: Background

 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

RELAPSE RATE: Approximately 15%–20% of children with ALL relapse after standard treatment¹

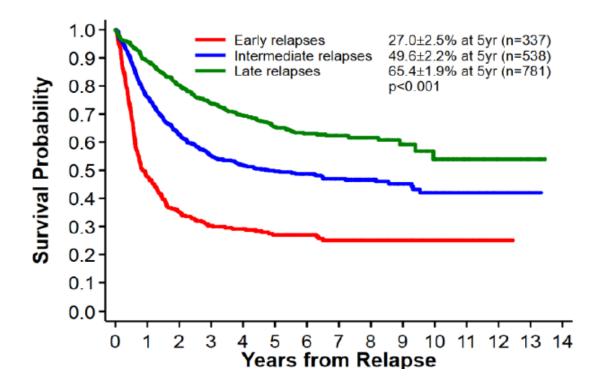
PROGNOSIS OF RELAPSED ALL LARGELY DEPENDS ON²⁻⁶

 ✓ Time from diagnosis to relapse ✓ Site of relapse

 ✓ Blast immunephenotype

Almost all children with relapsed T-ALL and 2/3 of those with BCP-ALL are candidates for alloHSCT after a second morphologic complete remission (M1 marrow) is achieved⁷⁻⁸

BCP-ALL, B-cell precursor acute lymphoblastic leukemia; alloHSCT, allogeneic hematopoietic stem cell transplant.

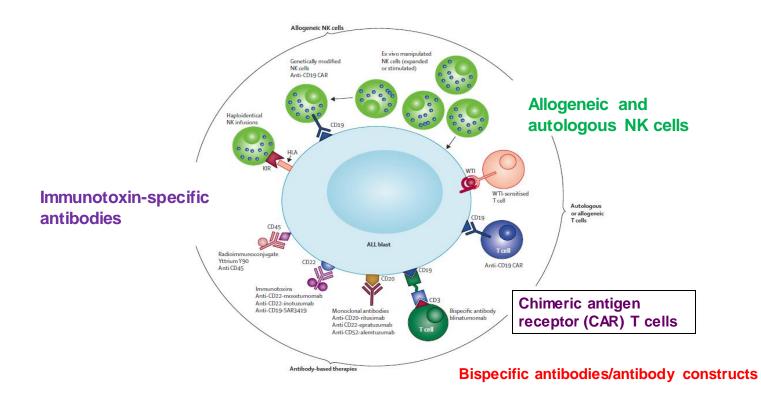

1. Hunger SP, Mullighan CG. N Engl J Med. 2015;373:1541-1552; 2. Chessells JM, et al. Br J Haematol. 2003;123:396-405; 3. Irving JA, et al. Blood. 2016;128:911-922; 4. Krentz S, et al. Leukemia. 2013;27:295-304; 5. Malempati S, et al. J Clin Oncol. 2007;25:5800-5807; 6. Schrappe M, et al. N Engl J Med. 2012;366:1371-1381; 7. Locatelli F, et al. Blood. 2012;120:2807-2816; 8. Peters C, et al. J Clin Oncol. 2015;33:1265-1274.

IntReALL: Definition of strategy groups SR and HR

Immunophenotype		B-cell precur	sor	(pre) T		
Time Point/Site	Extramed isolated	Bone marrow combined	Bone marrow isolated	Extramed isolated	Bone marrow combined	Bone marrow isolated
Very early	HR	HR	HR	HR	HR	HR
Early	SR	SR	HR	SR	HR	HR
Late*	SR	SR	SR	SR	HR	HR

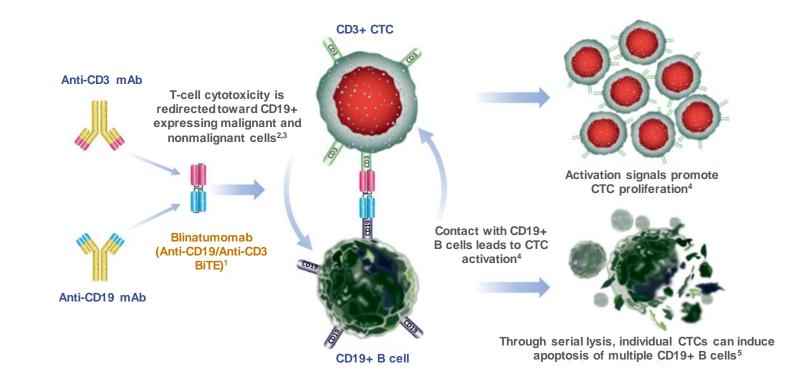
*Late defined as: >6 months after cessation of frontline therapy, ie, >30 months after initial diagnosis. SR, standard-risk group; HR, high-risk group. ClinicalTrials.gov NCT03590171

We need innovative therapies for improving the outcome of patients experiencing leukemia relapse


Rheingold SR, et al. ASCO 2019. Abstract 10008.

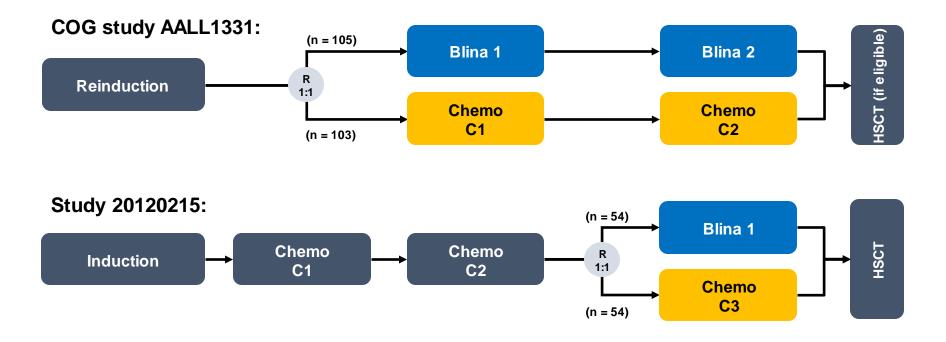
IntReALL-BCP 2020: New risk-stratification

VHR (15%) Eligible for allo-HSCT or consolidation therapy


- TP53 alteration
- Hypodiploidy
- t(1;19)/(17;19)
- MLL/AF4
- Very early relapse (<18 mo)
- **SR (60%)** Late isolated or combined medullary/extramedullary relapse (alloHSCT depending on MRD response at the end of induction)
- **HR (25%)** Early isolated or combined medullary/extramedullary relapse (all these patients are candidates to receive alloHSCT as final consolidation)

New immunologic approaches under investigation in childhood ALL

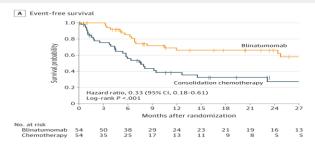
Adapted from Bhojw ani D, Pui CH. Lancet Oncol. 2013;14:e205-e217.


Blinatumomab (CD19 BiTE[®] molecule)

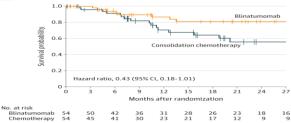
BiTE®, bispecific T cell engager; CD, cluster of differentiation; CTC, cytotoxic T cell; mAb, monoclonal antibody.

1. Baeuerle PA, et al. *Cancer Res*. 2009;69:4941-4944; 2. Bargou R, et al. *Science*. 2008;321:974-977; 3. Topp MS, et al. *Lancet Oncol*. 2015;16:57-66; 4. Klinger M, et al. *Blood*. 2012;119:6226-6233; 5. Hoffmann P, et al. *Int J Cancer*. 2005;115:98-104.

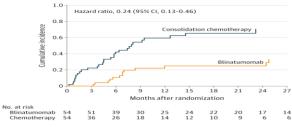
Design of the phase III studies

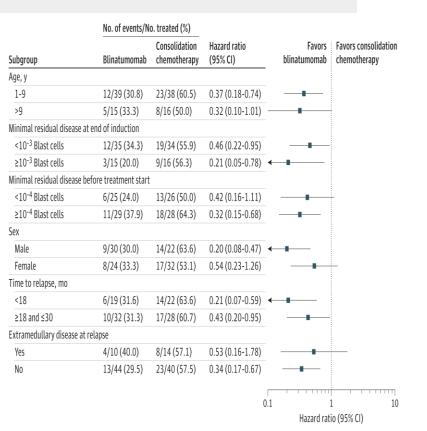


Brow n PA, et al. JAMA. 2021;325:888-842; Locatelli F, et al. JAMA. 2021;325:843-854.

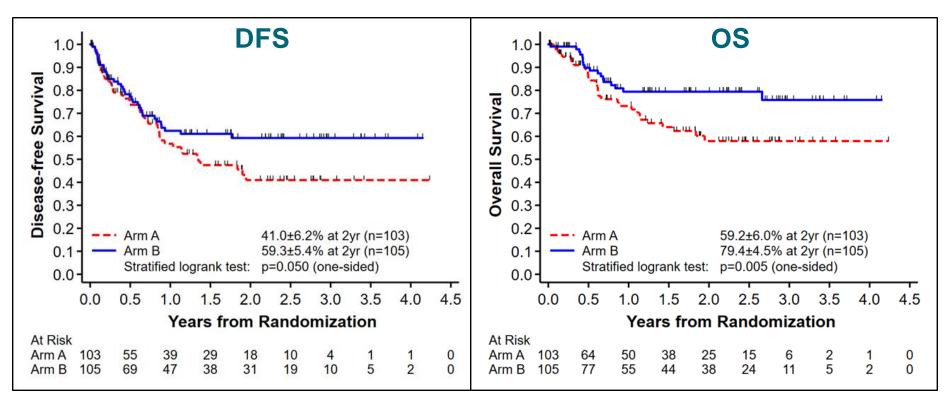


From: Locatelli F, et al. Effect of Blinatumomab vs Chemotherapy on Event-Free Survival Among Children With High-risk First-Relapse B-Cell Acute Lymphoblastic Leukemia: A Randomized Clinical Trial


JAMA. 2021;325:843-854. doi:10.1001/jama.2021.0987



B Overall survival



Survival: Arm A (chemotherapy) vs Arm B (blinatumomab)

Median follow-up 1.4 years

Brow n PA, et al. JAMA. 2021;325:888-842.

Inotuzumab ozogamicin (CMC-544)

 Renewed expression

nucleus

6. DNA

intercalation

7. Apoptosis

1. CMC-544 binding/ CD22 saturation

Proposed mechanism of action of CMC-544:

 Binding of CMC-544 to CD22 receptors at the cell surface of target cells

Internalization of the CMC-544–CD22 receptor complex

- Renewed expression of CD22 receptors at the cell surface, which enables binding and internalization of new CMC-544, leading to intracellular accumulation of calicheamicin
- 4. Fusion of the CMC-544–containing endosome with a lysosome, which will lead to degradation of the acid-labile linker, and

4. Lysosomal release of inactive calicheamicin. Via a thiol-modification step, and active calicheamicin is formed

- calichea5. Active calicheamicin may be removed from the cell by drug efflux pumps
 - 6. DNA intercalation and ds DNA break formation by free calicheamicin entering the nucleus
 - 7. Apoptosis induction due to irreversible DNA damage

Drug efflux

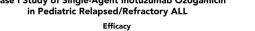
CLINICAL TRIALS AND OBSERVATIONS

A phase 1 study of inotuzumab ozogamici relapsed/refractory acute lymphoblastic leu (ITCC-059 study) Phase I Study of Single-Agent Inotuzumab Ozogamicin in Pediatric Relapsed/Refractory ALL Safety

Similar toxicity at DL1 and DL2

Gr 3/4 neutropenia and thrombocytopenia in almost

2 SOS cases after additional chemotherapy


(1.4 and 1.8 mg/m²/course)

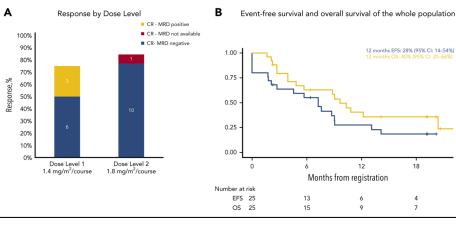
all patients

(1 DL1, 1 DL2)

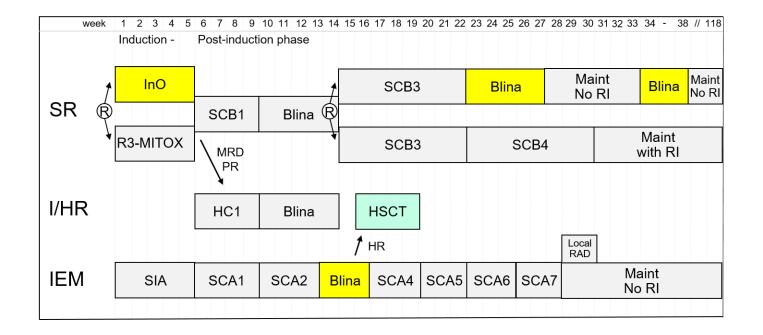
Pharmacokinetics

Erica Brivio,^{1,2} Franco Locatelli,³ Marta Lopez-Yurd Vincent H. J. van der Velden,⁹ Anneke C. J. Amme Comparable plasma PK at DL1 and DL2 Barbara Sleight,¹² Benoit Brethon,¹³ Karsten Nyso and Christian Michel Zwaan^{1,2}

- Higher CR rate (p-value 0.6) and MRD negativity rate (p-value 0.1) at DL2
- Longer median duration of response (p-value 0.1) and OS (p-value 0.06) at DL2

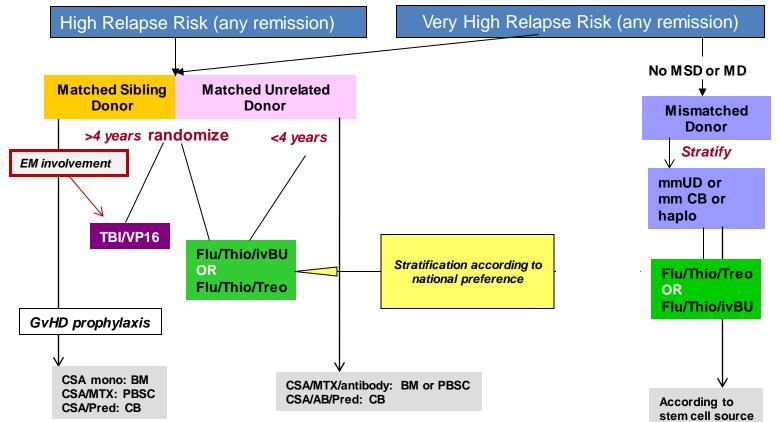

Bel

Mo

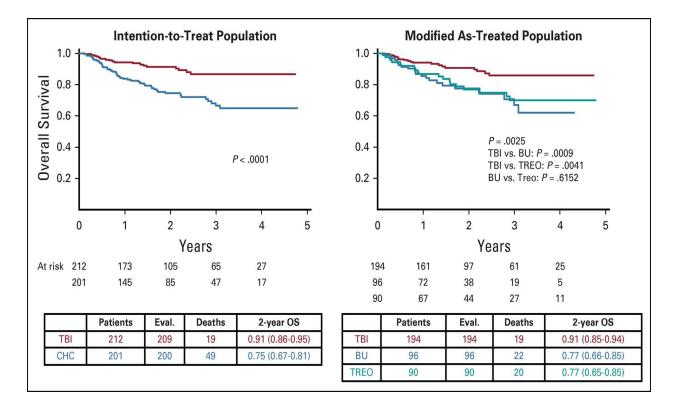

ti,

Differences not statistically significant (small sample size)

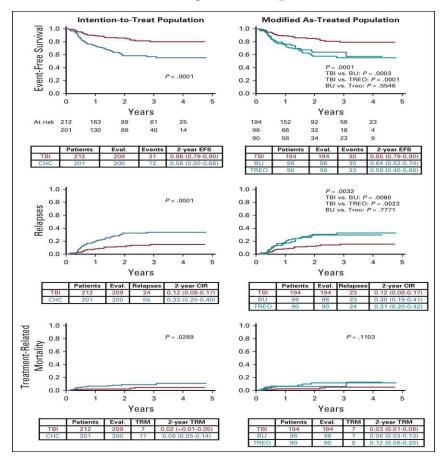
RP2D = DL2 (1.8 mg/m2/course)


Treatment schedule – IntReALL BCP 2020

Arrow down (\downarrow), bone marrow puncture with CR/MRD assessment.

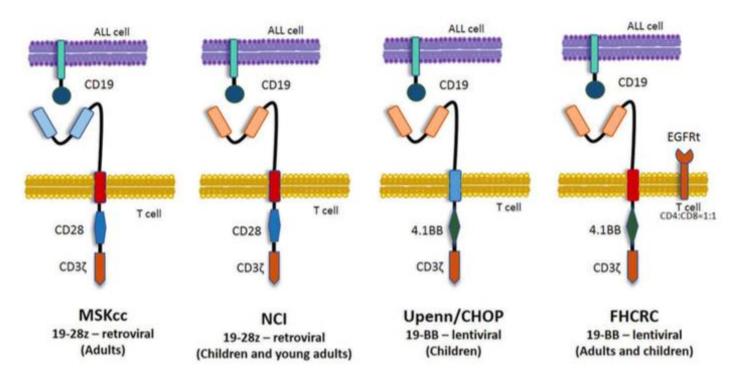

Blina, blinatumomab; HC1, HR consolidation 1; HR, high-risk group; MRD, minimal residual disease; R, randomization; R3BB, ALL R3 backbone; Maint, maintenance therapy; MITOX, mitoxantrone; RI, reinduction pulses; S, stratification; SCB1-4, standard consolidation arm B 1-4; SCT, stem cell transplantation.

The role of the conditioning regimen in HSCT for childhood ALL: The FORUM trial


Peters C, et al. J Clin Oncol. 2021;39(4):295-307.

Primary endpoint: Overall survival

BU, busulfan; CHC, chemo-conditioning; CIR, cumulative incidence of relapse; EFS, event-freesurvival; OS, overall survival; TBI, total body irradiation; TREO, treosulfan; TRM, treatment-related mortality. Peters C, et al. J Clin Oncol. 2021;39(4):295-307.

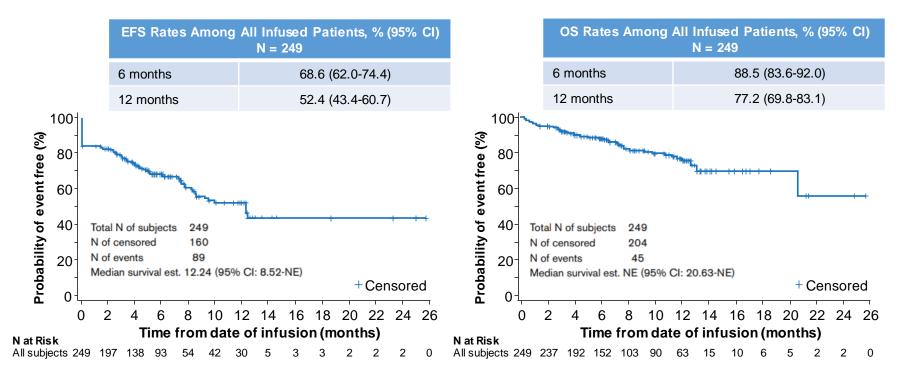

Secondary endpoints

BU, busulfan; CHC, chemo-conditioning; CIR, cumulative incidence of relapse; EFS, event-freesurvival; OS, overall survival; TBI, total body irradiation; TREO, treosulfan; TRM, treatment-related mortality. Peters C, et al. J Clin Oncol. 2021;39(4):295-307.

Published constructs of second-generation CD19 CARs for ALL

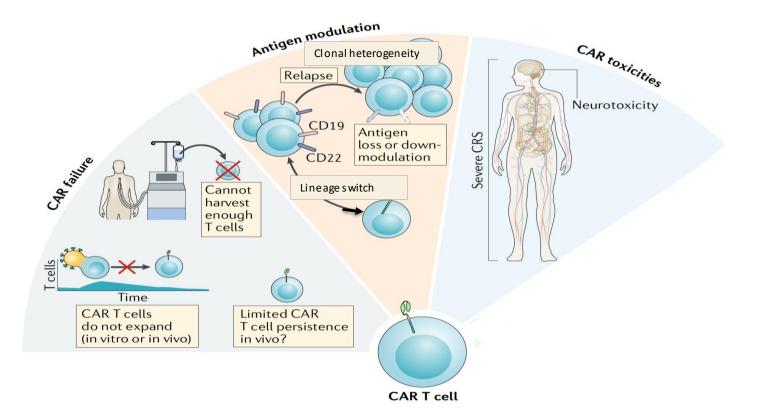
CAR design important for persistence and sustained efficacy

Results: Patient baseline characteristics


Baseline Characteristic	Pediatric ALL (N = 255)	Baseline Chara
Median age, years (range)	13.2 (0.41-26.17)	Prior CNS involve
<3 years	15 (5.9)	Number of prior t (range)
Male/Female, n (%)	150 (58.8)/105 (41.2)	Prior alloSCT, n
Disease status at CT, n (%)		Prior blinatumom
Primary refractory/relapse	159 (62.3)	Prior inotuzumab
Morphologic CR	95 (37.2)	Down syndrome,
Unknown	1 (0.5)	
≥5% blasts in marrow prior to CT, n (%)	84 (33)	Median tir
MRD negative/positive prior to CT ^a , %	46/53	infusion w
Median time from leukapheresis acceptance to infusion, days (range)	33 (21-91)	• The medi 13.4 mon
Median time of follow-up since infusion, month (range)	13.4 (3.5-27.9)	

Baseline Characteristic	Pediatric ALL (N = 255)
Prior CNS involvement, n (%)	24 (9.4)
Number of prior therapies, median (range)	3 (0-15)
Prior alloSCT, n (%)	71 (27.8)
Prior blinatumomab, n (%)	38 (14.9)
Prior inotuzumab, n (%)	27 (10.6)
Down syndrome, n (%)	12 (4.7)

- Median time from ALL diagnosis to CAR T-cell infusion was 32 months
- The median follow-up of patients with ALL was 13.4 months


Results: Event-free and overall survival

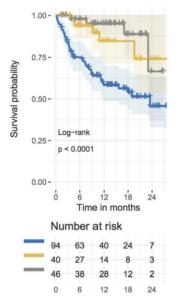
34 (16.1%) patients went on to HSCT after tisagenlecleucel while in remission

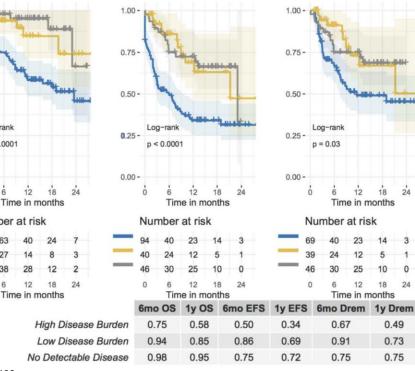
EFS, event-free survival; HSCT, hematopoietic stem cell transplant; OS, overall survival. Pasquini MC, et al. *Blood Adv.* 2020;4:5414-5424.

Current limitations of CAR T cells

Wayne A. Adapted from Shah NN, Fry TJ. Nat Rev Clin Oncol. 2019;16:372-385.

Real-world experience with tisagenlecleucel

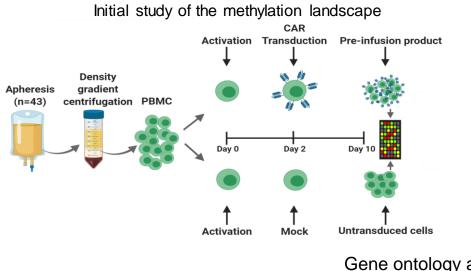

Overall Survival Β.


Event Free Survival

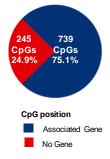
High Disease Burden

Duration of Remission

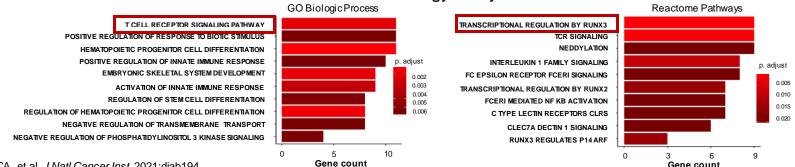
🔶 Low Disease Burden 📥 No Detectable Disease



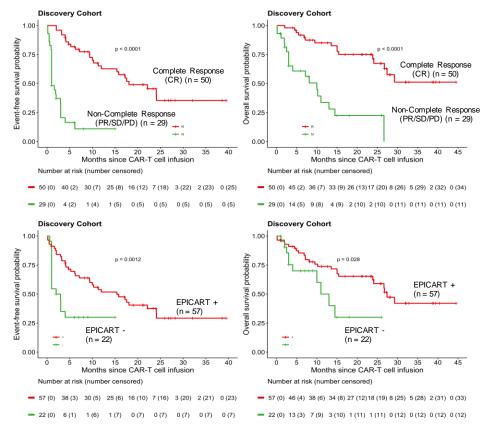
High disease burden

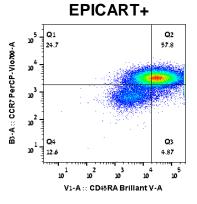

- >5% bone marrow • lymphoblasts
- Peripheral blood • lymphoblasts
- **CNS3** status ٠
- Non-CNS extramedullary • (EM) site of disease

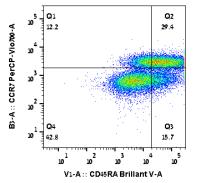
Schultz LM. et al. ASH 2020. Abstract 468.


A specific methylation pattern is identified in CAR-transduced vs untransduced T cells of the patients

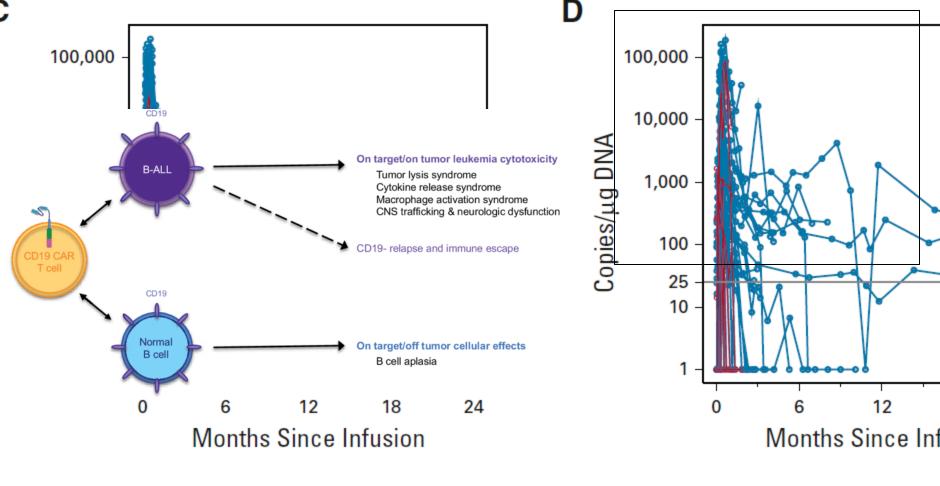
Distribution of CpG sites in the genome




Gene ontology analysis


Garcia-Prieto CA, et al. J Natl Cancer Inst. 2021; djab194.

18 specific methylation sites that independently correlate with survival outcomes and a naive-like/early memory phenotype was identified (EPICART signature)



EPICART-

Villaneuva et al. J Natl Cancer Inst. 2021. In press.

С

1.00 -

Ε

1.00 -

CD19-CAR_Lenti: Peculiarities

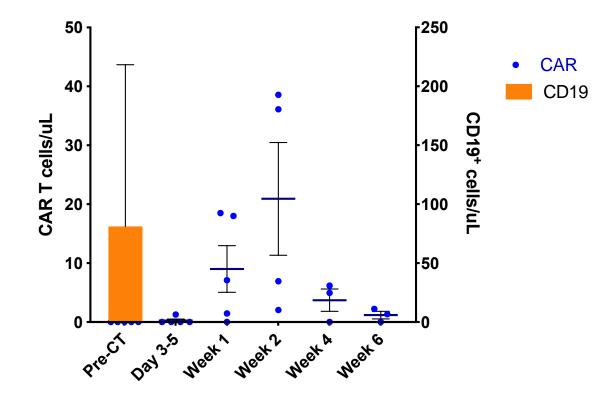
Viral platform	Lentivirus
Viral supernatant	Provided by Miltenyi Biotec
Reagents	Granted by Miltenyi Biotec at reduced costs
Production	Automated (CliniMACS Prodigy®)
Starting material	Fresh apheresis (0.75-1.5 × 10 ⁹ total WBC)
	CD4/CD8 enriched cells (20-200 × 10 ⁶ cells)
Release	Fresh drug product
Time between apheresis and lymphodepletion	9 days
Time between apheresis and infusion	14 days

Patient characteristics

	Pt ID	Gender	Age (y)	Cytogenetic Anomalies	Disease Phase at Infusion	Previous Allogeneic HSCT	BM Blasts at Lymphodepletion
	001	М	7	None	ALL 2nd relapse	No	8.9%
DL1	002	F	5	None	ALL 3rd relapse	Yes	15.7%
	003	F	7	47, XX (+21)	ALL 1st veryearly relapse	No	2.8%
	004	М	4	None	ALL 2nd relapse (combined BM+CNS)	Yes	0.6%
DL2	005	М	12	t(1;19)	ALL 1st refractory relapse (combined BM + bone)	No	2.3%
	006	F	13	None	ALL 1st very early relapse (combined BM + bone + lymph nodes)	Yes	10%

Feasibility and toxicity

ID	Total Cell End- Production (×10 ⁹)	Viability	CAR,%
CD19_Lenti-OPBG-001	1.39	89.1 %	55.4%
CD19_Lenti-OPBG-002	4.05	93.8 %	27.4%
CD19_Lenti-OPBG-003	4.62	97.3%	17.5%
CD19_Lenti-OPBG-004	5.36	95.1%	35%
CD19_Lenti-OPBG-005	4.99	97.4%	39%
CD19_Lenti-OPBG-006	4.83	94%	54.8%
AVERAGE	3.37	94.5%	38.2%


Pre-collection counts

- WBC: 200/µL
- Lymphocytes: 150/µL
- CD3⁺ cells: 120/µL

CRS - Grade 1-2 - Grade 3 - Grade 4	4/6 4 0 0
Neutropenia - Grade 1-2 - Grade 3-4	6/6 0 6
Thrombocytopenia	6/6
Anemia	6/6
B-cell aplasia	6/6
Neurotoxicity	2/6

CAR_Lenti expansion and outcome

All patients obtained CR 2 weeks after infusion

<u>Outcomes</u>

Primary: safety assessments (including incidence of DLTs and AEs) and pharmacokinetics of venetoclax and navitoclax **Secondary:** efficacy assessments (CR rate, PFS, OS) and proportion of patients proceeding to SCT or CAR T-cell therapy

Parameter	B-ALL (n = 25)	T-ALL (n = 19)	LL (n = 3)	All patients* (N = 47)	Pediatric [®] (n=12)
Response ^b , n (%) CR rate (CR/CR _i /CR _p) PR SD PD	16 (64.0) 3 (12.0) 2 (8.0) 4 (18.0)	10 (52.6) 0 6 (31.6) 3 (15.8)	2 (66.7) 0 0 1 (33.3)	28 (59.6) 3 (6.4) 8 (17.0) 8 (17.0)	9 (75.0) 1 (8.3) 0 2 (16.7)
Patients with ALL and morphologic	n=1	n = 4	NA	n = 5	n=1
CR at baseline, n Response, n (%) CR rate (CR/CR _i /CR _p) SD NE ^c	0 0 1 (100)	3 (75.0) 1 (25.0) 0		3 (60.0) 1 (20.0) 1 (20.0)	1 (100) 0 0
DOR ^d in all responders <i>n</i> Median (95% CI), mo	19 9.1 (1.4-14.6)	10 4.2 (0.8-12.3)	2 NE (NE-NE)	31 4.2 (2.3-11.5)	10 3.5 (0.7-3.5)
OS Median (95% Cl), mo 12-month (95% Cl), %	9.7 (4.0-15.7) 33.8 (13.7-55.2)	6.6 (3.2-12.5) 29.7 (10.4-52.2)	NE (2.0-NE) 66.7 (5.4-94.5)	7.8 (4.0-12.5) 35.6 (20.9-50.7)	NE (2.0-NE) 60.8 (25.0-83.6)
Bone marrow MRD, n (%) MRD negative (<10-4) MRD positive Other®	9 (36.0) 10 (40.0) 6 (24.0)	6 (31.6) 3 (15.8) 10 (52.6)	1 (33.3) 1 (33.3) 1 (33.3)	16 (34.0) 14 (29.8) 17 (36.2)	6 (50.0) 5 (41.7) 1 (8.3)
Proceeded to CAR T-cell therapy or HCT, n (%) ^f	8 (32.0)	3 (15.8)	2 (66.7)	13(27.7)	7 (58.3)

Pullarkat VA, et al. Cancer Discov. 2021;11:1440-1453.

Final considerations

- Although leukemia recurrence remains the main cause of treatment failure in childhood ALL, the chance of rescuing relapsed patients is increasing over time
- Immunotherapy is changing the therapeutic scenario of relapsed patients with childhood B-ALL
- BiTE, ADC, and CAR T cells were shown to be effective in inducing, consolidating, and maintaining remission in children with B-ALL
- Future studies are warranted to more precisely define the role of different immunotherapy options with the respective pros and limitations, also in comparison with the standard of care, still represented by allogeneic HSCT
- Patients with T-ALL have much more limited benefit from immunotherapy, and rescue strategy for relapsed patients still represents an unmet medical need
- Targeted therapy may represent a valuable option for both BCP-ALL after immunotherapy and for T-ALL

Bispecific T-cell engagers for pediatric ALL

Christina Peters

A 2-year-old boy (CD19-ALL/MLL-rearrangement) presents with MRD 10⁻² 28 days after 3 high-risk blocks and bone marrow hypoplasia.

Would you

- a) Give another intensive chemo-block
- b) Proceed with allogeneic HSCT with a TBI-containing regimen
- c) Start blinatumomab continuous infusion
- d) Proceed with allogeneic HSCT with a myeloablative chemo-conditioning regimen
- e) Produce CD19 CAR T cells

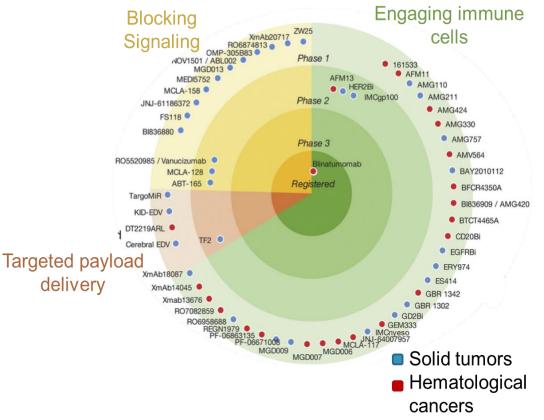
What severe side effect in children is unlikely to be associated with blinatumomab?

- a) Hypotension
- b) Fever
- c) Cytokine release syndrome
- d) Encephalopathy
- e) Seizures
- f) Irreversible bone marrow aplasia

Bispecific T-Cell Engagers for Pediatric ALL

Christina Peters, Medical University Vienna, Vienna, Austria

Global Leukemia Academy 27-28 October 2021


Company name	Disclosure
Amgen	Consultancy, honoraria and travel support
Novartis	Consultancy
Jazz	Speakers bureau
Pfizer	Consultancy
Medac	Consultancy
Neovii	Speakers bureau

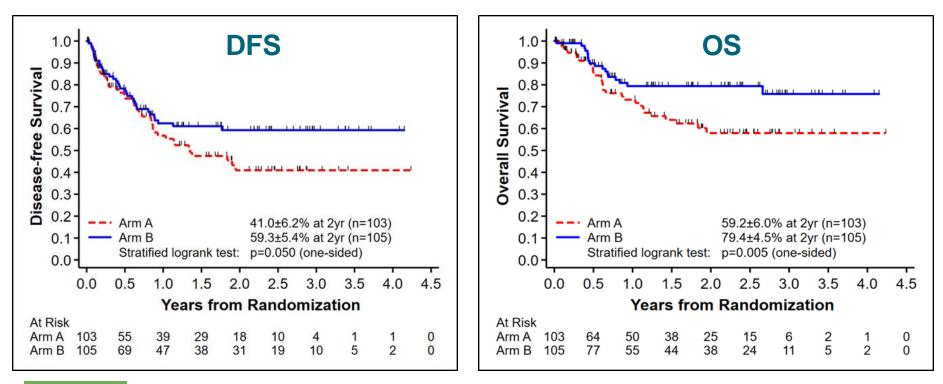
Bispecific Antibodies in children and AYA: Topics

- Treatment options prior to HSCT
- Special pediatric populations
 - Down Syndrome
 - Infant ALL
 - Patients with risk for severe organ toxicities and/or opportunistic infections
- Treatment options post HSCT

Bispecific Antibodies Today

Summary of Blinatumomab Pharmacodynamics

- Blinatumomab cIV infusion leads to rapid depletion of B-cells during Cycle 1, which is associated with decrease in serum immunoglobulin levels^{1–3}
- Blinatumomab leads to a transient decrease in T-cell counts, followed by an accelerated recovery^{1,3–5}
 - May induce peripheral expansion of T-cell compartment, predominantly effector memory T-cell subsets, above baseline levels
- Blinatumomab induces T-cell activation^{1,3,4,6}
 - Associated with cytokine release, mainly in Cycle 1
 - Risk of severe CRS managed by stepped dosing and pre-phase DEX

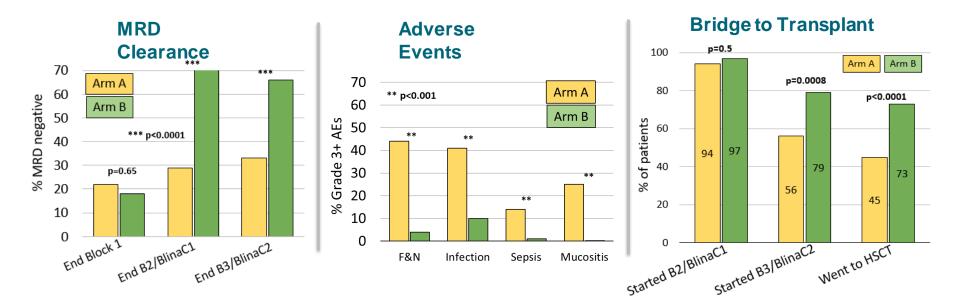

^{1.} Zhu M, et al. *Clin Pharmacokinet*. 2016; 2. Zugmaier G, et al. *Blood Cancer J*. 2014;4:244; 3. Schub A, et al. ASCO 2013. Abstract 7020 and poster presentation; 4. Klinger M, et al. *Blood*. 2012;119:6226-6233; 5. Topp MS, et al. *J Clin Oncol*. 2011;29:2493-2498; 6. Topp MS, et al. *Lancet Oncol*. 2015;16:57-66.

Safety and Adverse Reactions

- Cytokine release syndrome
- Neurological toxicities
- Infections
- Tumor lysis syndrome
- Neutropenia and febrile neutropenia
- Effects on ability to drive and use machines

- Elevated liver enzymes
- Pancreatitis
- Leukoencephalopathy
- Preparation and administration errors
- Immunization
- Risk of serious adverse reactions in pediatric patients due to benzyl alcohol (C7H8O) preservative

ALL 1st Relapse: Survival: Arm A (Chemotherapy) vs Arm B (Blinatumomab)



CHILDREN'S ONCOLOGY GROUP

Median follow-up 2.9 years

Brow n P, et al. JAMA. 2021;325(9):833-842.

Other Endpoints: MRD, AEs, HSCT Bridging

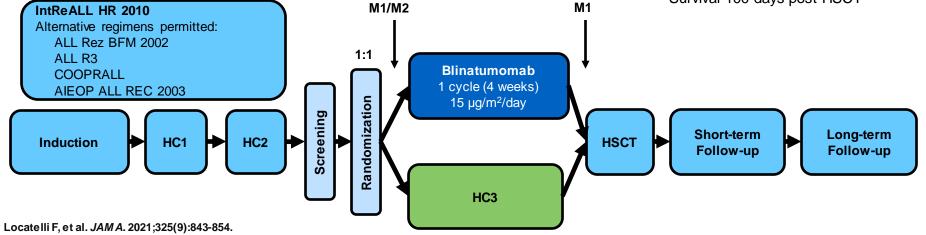
Significant contributors to the improved outcomes for Arm B (blina) vs Arm A (chemo) in HR/IR relapses may include better **MRD clearance, less toxicity, and greater ability to successfully bridge to HSCT**

CHILDREN'S Oncology Group

Brown P, et al. JAM A. 2021;325(9):833-842.

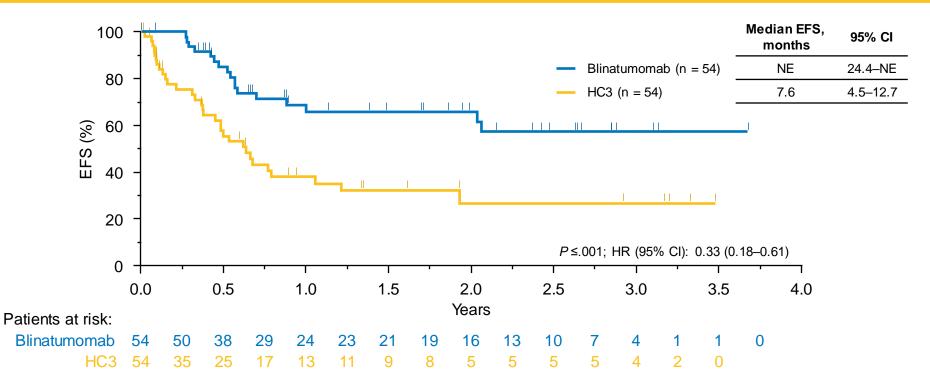
Amgen 20120215: Open-Label, Randomized, Phase III Trial – 47 Centers, 13 Countries

Key eligibility criteria


- Age >28 days <18 years
- HR 1st relapse Ph⁻ BCP-ALL
- M1 or M2 marrow at randomization
- No CNS disease, unless treated before enrolment
- No clinically relevant CNS pathology

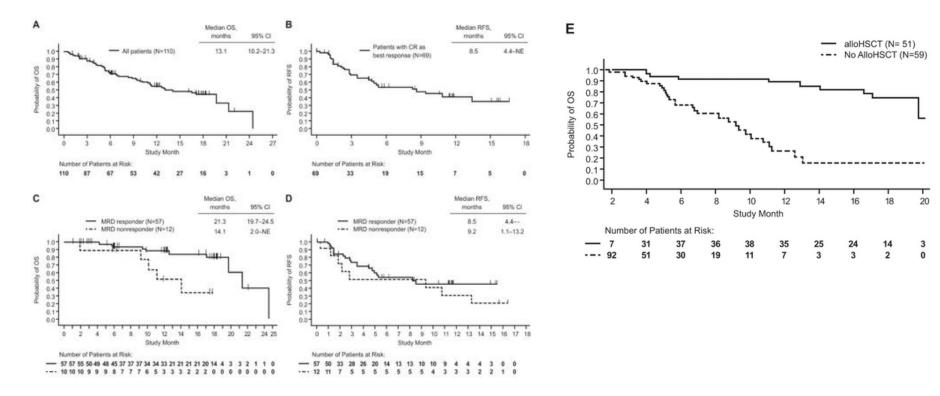
Stratification

- Age: <1 year, 1 to 9 years, >9 years
- BM status at end of HC2
 - M1 with MRD >10⁻³
 - M1 with MRD <10⁻³
 - M2


Endpoints

- Primary: EFS
- Secondary
 - OS
 - MRD response (end of blinatumomab or HC3)
 - Cumulative incidence of relapse
 - Incidence of AEs
 - Survival 100 days post-HSCT

BCP, B-cell precursor; EFS, event-free survival; HC, high-risk consolidation.


Superior EFS in the Blinatumomab Arm

Locatelli F, et al. JAM A. 2021;325(9):843-854.

P, stratified log rank *P* value; HR, hazard ratio from stratified Cox regression.

Blinatumomab Use in Pediatric Patients With Relapsed/Refractory B-Precursor Acute Lymphoblastic Leukemia From an Open-Label, Multicenter, Expanded Access Study (RIALTO)

Children With Down Syndrome (DS)¹⁻⁶

- Have a greater risk for developing leukemia
- Experience significant adverse effects of chemotherapy
- Increased risk for infection-associated TRM
- Buitenkamp TD, Izraeli S, Zimmermann M, Forestier E, Heerema NA, van den Heuvel-Eibrink MM, Pieters R, Korbijn CM, Silverman LB, Schmiegelow K, Liang DC, Horibe K, Arico M, Biondi A, Basso G, Rabin KR, Schrappe M, Cario G, Mann G, Morak M, Panzer-Grümayer R, Mondelaers V, Lammens T, Cavé H, Stark B, Ganmore I, Moorman AV, Vora A, Hunger SP, Pui CH, Mullighan CG, Manabe A, Escherich G, Kowalczyk JR, Whitlock JA, Zwaan CM. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. *Blood*. 2014;123(1):70-77.
- Meissner B, Borkhardt A, Dilloo D, Fuchs D, Friedrich W, Handgretinger R, Peters C, Schrauder A, Schuster FR, Vormoor J, Maecker B, Sykora KW, Zintl F, Welte K, Sauer M. Relapse, not regimen-related toxicity, was the major cause of treatment failure in 11 children with Down syndrome undergoing haematopoietic stem cell transplantation for acute leukaemia. *Bone Marrow Transplant*. 2007;40(10):945-949.
- Hitzler JK, He W, Doyle J, Cairo M, Camitta BM, Chan KW, Diaz Perez MA, Fraser C, Gross TG, Horan JT, Kennedy-Nasser AA, Kitko C, Kurtzberg J, Lehmann L, O'Brien T, Pulsipher MA, Smith FO, Zhang MJ, Eapen M, Carpenter PA; CIBMTR Pediatric Cancer Working Committee. Outcome of transplantation for acute lymphoblastic leukemia in children with Down syndrome. Pediatr Blood Cancer. 2014;61(6):1126-1128.
- Wadhwa, A, Kutny, MA, Xavier, AC. Blinatumomab activity in a patient with Down syndrome Bprecursor acute lymphoblastic leukemia. *Pediatr Blood Cancer*. 2018;65:e26824..

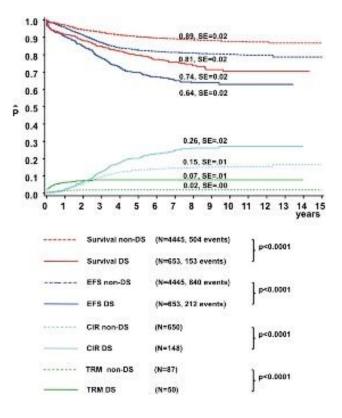
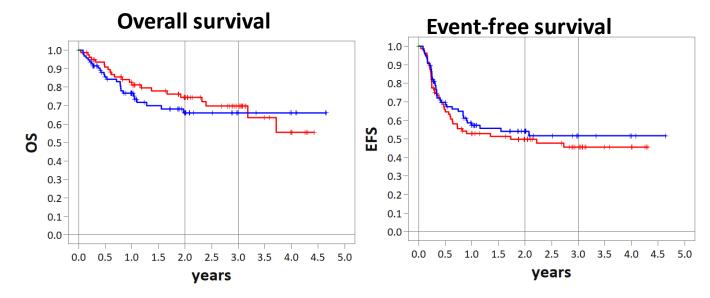


Image: Buitenkamp TD, et al. Acute lymphoblastic leukemia in children w ith Dow n syndrome: a retrospective analysis from the Ponte di Legno study group. *Blood.* 2014;123(1):70-77.

New Trials for Patient With DS and ALL

- A Phase III Trial Investigating Blinatumomab in Combination With Chemotherapy in Patients With Newly Diagnosed Standard Risk or Down Syndrome B-Lymphoblastic Leukemia (B-ALL) and the Treatment of Patients With Localized B-Lymphoblastic Lymphoma (B-LLy): <u>NCT03914625 (NCI)</u>
 - Primary Outcome Measure: DFS in randomization eligible patients with higher risk features (SR-High) or standard risk average (SR-Avg) B-ALL patients based on randomization with addition of Blinatumomab
 - Secondary: TRM, Neurocognitive functions, QOL, Caregiver burden, MRD
- Some frontline trials are now enabling DS-patients with high-risk features access to upfront-access with Blinatumomab: <u>NCT03643276</u> (AIEOP 2017), <u>NCT04307576</u> (AIITogether1) and <u>NCT03117751</u> (TOTAL St. Jude).

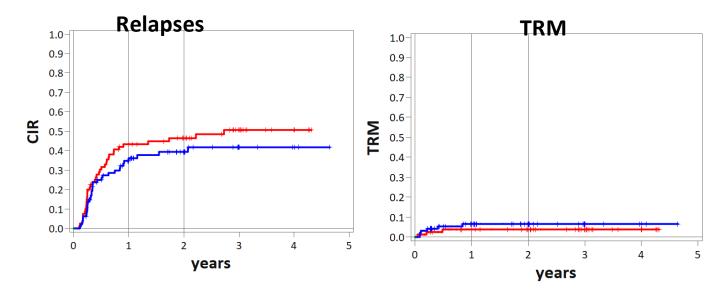

Infant ALL: Poorer Outcome Compared With Older Children

- Biology: 80% KMT2A-rearrangement
- Treatment related toxicity: 18.4% in prospective INTERFANT-trial
- Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, Hovi L, Le Blanc T, Szczepanski T, Ferster A, Janka G, Rubn itz J, Silverman L, Stary J, Campbell M, Li CK, Mann G, Suppiah R, Biondi A, Vora A, Valsecchi MG. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. *Lancet*. 2007;370(9583):240-250.
- Pieters R, De Lorenzo P, Ancliffe P, Aversa LA, Brethon B, Biondi A, Campbell M, Escherich G, Ferster A, Gardner RA, Kotecha RS, Lausen B, Li CK, Locatelli F, Attarbaschi A, Peters C, Rubnitz JE, Silverman LB, Stary J, Szczepanski T, Vora A, Schrappe M, Valsecchi MG. Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. J Clin Oncol. 2019;37(25):2246-2256
- HSCT with TBI associated with several late effects
- Sanders JE, Im HJ, Hoffmeister PA, Gooley TA, Woolfrey AE, Carpenter PA, Andrews RG, Bryant EM, Appelbaum FR. Allogeneic hematopoietic cell transplantation for infants with acute lymphoblastic leukemia. *Blood.* 2005;105(9):3749-3756.

• HSCT with chemo-conditioning is associated with higher relapse incidence

- Peters C, Schrappe M, von Stackelberg A, Schrauder A, Bader P, Ebell W, Lang P, Sykora KW, Schrum J, Kremens B, Ehlert K, Albert MH, Meisel R, Matthes-Martin S, Gungor T, Holter W, Strahm B, Gruhn B, Schulz A, Woessmann W, Poetschger U, Zimmermann M, Klingebiel T. Stem-cell transplantation in children with acute lymphoblastic leukemia: A prospective international multicenter trial comparing sibling donors with matched unrelated donors-The ALL-SCT-BFM-2003 trial. J Clin Oncol. 2015;33(11):1265-1274.
- Willasch AM, Peters C, Sedláček P, Dalle JH, Kitra-Roussou V, Yesilipek A, Wachowiak J, Lankester A, Prete A, Ham idieh AA, Ifversen M, Buechner J, Kriván G, Ham Iadji RM, Diaz-de-Heredia C, Skorobogatova E, Michel G, Locatelli F, Bertaina A, Veys P, Dupont S, Or R, Güngör T, Aleinikova O, Sufliarska S, Sundin M, Rascon J, Kaare A, Nemet D, Fagioli F, Klingebiel TE, Styczynski J, Bierings M, Nagy K, Abecasis M, Afanasyev B, Ansari M, Vettenranta K, Alseraihy A, Chybicka A, Robinson S, Bertrand Y, Kupesiz A, Ghavamzadeh A, Campos A, Pichler H, Dalissier A, Labopin M, Corbacioglu S, Balduzzi A, Galimard JE, Bader P; EBMT Paediatric Diseases Working Party. Myeloablative conditioning for allo-HSCT in pediatric ALL: FTBI or chemotherapy?-Amulticenter EBMT-PDWP study. *Bone M arrow Transplant*. 2020;55(8):1540-1551.

MSD/MD<4 yrs.


age2	Patients	Events	2-yrs OS	3-yrs. OS	p-value	Events	2-yrs EFS	3-yrs. EFS	p-value
0-2	86	22	0.74±0.05	0.70±0.06	0.612	41	0.50±0.06	0.46±0.06	0.472
2-4	101	26	0.66±0.06	0.66±0.06		41	0.54±0.05	0.52±0.06	÷

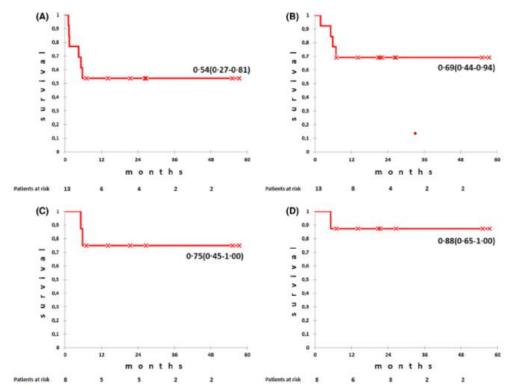
ALL SCTped 2012 FORUM Study March 2021, Virtual Study Committee Meeting

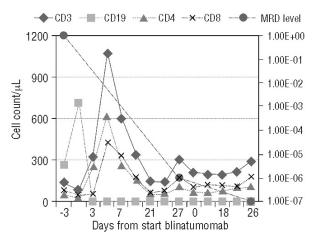
ALL SCTped FORUM MSD/MD<4 yrs. Flu/Thio/Bu; Flu/Thio/Treo

age2	Patients	n(CIR)	2 years CIR	n(TRM)	2 years TRM	n(Sec. mal)	2 years EFS
0-2	86	38	0.46±0.06	3	0.04±0.02	0	0.50±0.06
2-4	101	35	0.39±0.05	6	0.07±0.03	0	0.54±0.05
P-value	•		0.255	•	0.442	•	0.472

Blinatumomab for Infants

- Clesham K, Rao V, Bartram J, Ancliff P, Ghorashian S, O'Connor D, Pavasovic V, Rao A, Samarasinghe S, Cummins M, Malone A, Patrick K, Bonney D, James B, Gibson B, Vora A. Blinatumomab for infant acute lymphoblastic leukemia. *Blood*. 2020;135(17):1501-1504..
- Sutton R, Pozza LD, Khaw SL, Fraser C, Revesz T, Chamberlain J, Mitchell R, Trahair TN, Bateman CM, Venn NC, Law T, Ong E, Heatley SL, McClure BJ, Meyer C, Marschalek R, Henderson MJ, Cross S, White DL, Kotecha RS. Outcomes for Australian children with relapsed/refractory acute lymphoblastic leukaemia treated with blinatumomab. *Pediatr Blood Cancer.* 2021;68(5):e28922.
- Popov A, Fominikh V, Mikhailova E, Shelikhova L, Tsaur G, Abugova Y, Zerkalenkova E, Olshanskaya Y, Balashov D, Novichkova G, Maschan A, Miakova N. Blinatumomab following haematopoietic stem cell transplantation a novel approach for the treatment of acute lymphoblastic leukaemia in infants. *Br J Haematol.* 2021;194(1):174-178.
- Interfant network: Blinfant protocol: Pilot study the addition of Blinatumomab to the Interfant-06 backbone in infants with MLL-rearranged acute lymphoblastic leukaemia. EudraCT: 2016-00467417




Fig 1. Disease-free survival (panels A and C) and overall survival (panels B and D) of all studied patients (n = 13, panels A and B), as well as of eight infants, who were treated with blinatumomab with subsequent haematopoietic stem cell transplantation in first complete remission because of slow clearance or persistence of multicolour flow cytometry minimal residual disease (MRD) or fusion-gene transcript MRD (panels C and D). The 95% confidential intervals are indicated in parenthesis. Censored patients are marked with ×sign. [Colour figure can be viewed at wiley onlinelibrary.com]

Other Rare Pediatric Conditions

- Minson KA, Prasad P, Vear S, Borinstein S, Ho R, Domm J, Frangoul H. t(17;19) in Children with Acute Lymphocytic Leukemia: A Report of 3 Cases and a Review of the Literature. *Case Rep Hematol.* 2013;2013:563291. doi: 10.1155/2013/563291. PMID: 23346431; PMCID: PMC3549381.
- Tambaro FP, Khazal S, Nunez C, Ragoonanan D, Tewari P, Petropoulos D, Kebriaei P, Wierda WG, Mahadeo KM. Complete remission in refractory acute lymphoblastic leukemia using blinatumomab after failure of response to CD-19 chimeric antigen receptor T-cell therapy. Clin Case Rep. 2020;8(9):1678-1681. doi: 10.1002/ccr3.2918. PMID: 32983475; PMCID: PMC7495807.
- Borriello A, Locasciulli A, Bianco AM, Criscuolo M, Conti V, Grammatico P, Cappellacci S, Zatterale A, Morgese F, Cucciolla V, Delia D, Della Ragione F, Savoia A. A novel Leu153Ser mutation of the Fanconi anemia FANCD2 gene is associated with severe chemotherapy toxicity in a pediatric T-cell acute lymphoblastic leukemia. *Leukemia*. 2007;21(1):72-78. doi: 10.1038/sj.leu.2404468. PMID: 17096012.

Blinatumomab After HSCT

- Handgretinger R, Zugmaier G, Henze G, Kreyenberg H, Lang P, von Stackelberg A. Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. *Leukemia.* 2011;25(1):181-184
- Schlegel P, Lang P, Zugmaier G, Ebinger M, Kreyenberg H, Witte KE, Feucht J, Pfeiffer M, Teltschik HM, Kyzirakos C, Feuchtinger T, Handgretinger R. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. *Haematologica*. 2014;99(7):1212-1219.
- Wu H, Cai Z, Shi J, Luo Y, Huang H, Zhao Y. Blinatumomab for HLA loss relapse after haploidentical hematopoietic stem cell transplantation. *Am J Cancer Res.* 2021;11(6):3111-3122.
- Stein AS, Kantarjian H, Gökbuget N, Bargou R, Litzow MR, Rambaldi A, Ribera JM, Zhang A, Zimmerman Z, Zugmaier G, Topp MS. Blinatumomab for Acute Lymphoblastic Leukemia Relapse after Allogeneic Hematopoietic Stem Cell Transplantation. *Biol Blood Marrow Transplant.* 2019;25(8):1498-1504.
- Alcharakh M, Yun S, Dong Y, Vincelette ND, Daud M, Manzoor S, Riaz IB, Anwer F. Blinatumomab-induced donor T-cell activation for post-stem cell transplant-relapsed acute CD19-positive biphenotypic leukemia. *Immunotherapy*. 2016;8(8):847-852.
- Blinatumomab Maintenance Following Allogeneic Hematopoietic Cell Transplantation for Patients With Acute Lymphoblastic Leukemia: (NCT02807883)
- Blinatumomab after T-cell receptor (TCR) alpha/beta-depleted HSCT (NCT04746209)
- Blinatumomab for MRD in pre-B-ALL patients following HSCT (NCT04044560)

Allogeneic Stem Cell Transplantation for Children and Adolescents with Acute Lymphoblastic Leukaemia: ALL SCTped FORUM (For Omitting Radiation Under Majority age)

> Christina Peters, Peter Bader, Franco Locatelli for the Study Group

Multicentre phase II study

Add-on study to ALL SCTped 2012 FORUM (EudraCT number: 2012-003032-22)

A Phase II Study of Blincyto in Children with CD19+ precursor B-lineage ALL and MRD-Positivity before and/or following first allogeneic HSCT in second remission

International treatment protocol

Investigator-Sponsored Study Proposal: Synopsis

- Indication for first allogeneic HSCT: CD19+ALL in first, second, > second remission
- Inclusion criteria
 - Age: ≥0.5 years and ≤21 years of age
 - Confirmed CD19+ disease prior to enrollment on study
- Exclusion criteria
 - Patients with recent episode of seizures or posterior reversible encephalopathy syndrome in the past 30 days
- Patients must be at least ≥60 days post-SCT without evidence of grade 2 or higher acute GVHD and no steroid use. Withdrawal of immunosuppression will be allowed. The dose of blinatumomab used in this trial will be 15 mcg/m²/day for 28 days (starting with 5 mcg/m²/day)
- The study drug will be provided by AMGEN and will be directly distributed to the European study sites. Decentral study visits and lab investigations if study site is experienced with Blincyto-treatment
- Documentation, data collection, and central monitoring vial FORUM-Marvin
- Study aims: (to be amended?)
 - To assess the feasibility of administering blinatumomab post SCT
 - To define and describe the toxicities of blinatumomab when given in the peri-SCT setting
 - To estimate the 6-month event-free survival (EFS) rate
 - To evaluate the 1-year overall survival rate

Conclusions

- Blinatumomab is approved in Europe for pediatric patients >1 year or older with R/R Phnegative CD19-positive B-precursor ALL
- Prospective randomized trials show superior survival compared with intensive chemotherapy
- The toxicity profile is less severe than that observed with contemporary chemotherapy
- Extremely vulnerable ALL patients such as patients with Down syndrome and infants and patients with chromosomal breakage syndromes might benefit from bispecific antibody treatment
- Pre-emptive therapy might reduce relapse-risk after hematopoietic stem-cell transplantation without increasing graft-vs-host disease
- Bispecific monoclonal antibodies might replace toxic chemotherapy for different conditions in pediatric leukemia

Repeated Question 1

A 2-year-old boy (CD19-ALL/MLL-rearrangement) presents with MRD 10⁻² 28 days after 3 high-risk blocks and bone marrow hypoplasia.

Would you

- a) Give another intensive chemo-block
- b) Proceed with allogeneic HSCT with a TBI-containing regimen
- c) Start blinatumomab continuous infusion
- d) Proceed with allogeneic HSCT with a myeloablative chemo-conditioning regimen
- e) Produce CD19 CAR T cells

Repeated Question 2

What severe side effect in children is unlikely to be associated with blinatumomab?

- a) Hypotension
- b) Fever
- c) Cytokine release syndrome
- d) Encephalopathy
- e) Seizures
- f) Irreversible bone marrow aplasia

Q&A session

Case-based panel discussion – management of long- and short-term toxicities in pediatric ALL patients

Presenters: Francesca Del Bufalo, Natalia Zubarovskaya

Faculty panel: Rob Pieters, Franco Locatelli, Patrick Brown, Christina Peters, Martin Schrappe

APTITUDE HEALTH

Management of long- and shortterm toxicities in pediatric ALL patients – case 1

Francesca Del Bufalo

APTITUDE HEALTH

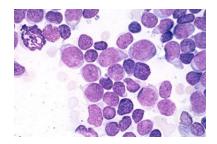
GLOBAL LEUKEMIA ACADEMY 2021

CRS management in pediatric ALL

Case presentation

Francesca del Bufalo, MD

IRCCS Bambino Gesù Children's Hospital, Rome, Italy



No relevant disclosures

Medical history

- 5-year-old boy
- Diagnosis of BCP-LLA, t(12;21) in December 2013
- First-line treatment according to the AIEOP-BFM ALL 2009 international protocol – intermediate risk (TP1 and TP2 response)
- Stop therapy: December 2015
- First combined relapse (BM + testicles + CNS): February 2016
- Bilateral orchiectomy + enrollment in the first-relapse protocol IntReALL SR 2010, arm B

IntReALLSR 2010, Arm B

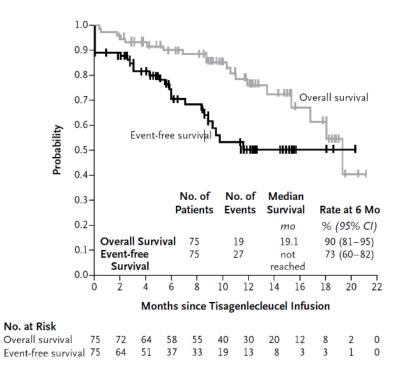
2 TREATMENT SCHEDULE INTREALL SR 2010

.Arrow down (\downarrow), bone marrow puncture with CR/MRD assessment; CNS-RAD, irradiation of the central nervous system, if indicated; CR, cytological remission; MRD, minimal residual disease; SIA ALL-REZ BFM induction course; SCA 1-7 ALL-REZ BFM consolidation courses; \otimes , randomization; SIB, UK-R3 induction courses; SCB 1-4 UK-R3 consolidation / intensification courses; SCT, stem-cell transplantation; SR, standard risk group.

Medical history

- Second, CNS-isolated relapse → rescue chemotherapy (intratecal and systemic) + allogeneic HSCT (June 2017)
- Subsequently, third CNS and bone marrow relapse

 \rightarrow Enrollment in the academic clinical trial CD19-CAR01 (phase I, DL3: 3 × 10⁶ CAR+ cells/kg patient body weight)



CART cells for R/R ALL: Summary of ELIANA study

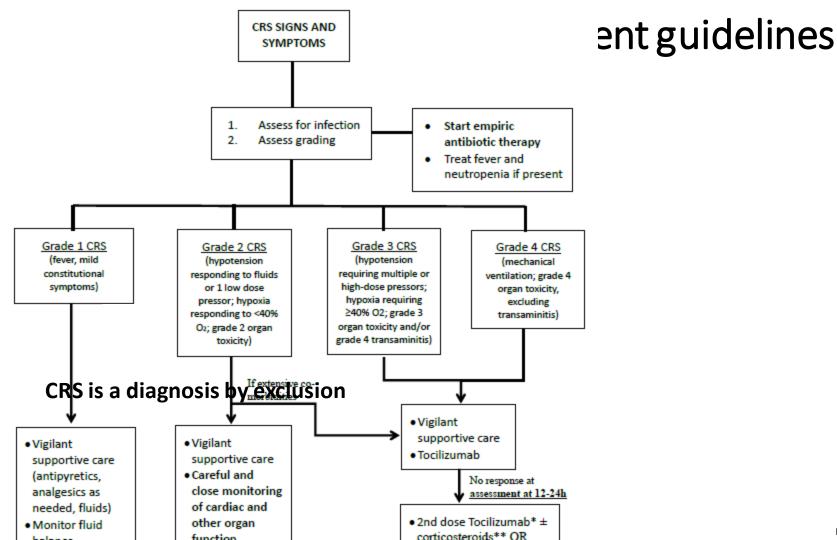
ORIGINAL ARTICLE

Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia

- 92 patients enrolled, 75 treated
- 73% grade 3–4 AEs related to CAR T
- 81% → CR/CRi, all MRD negative; 66% in intention-to-treat analysis
- 1-year EFS at 50%
- · Demonstrates feasibility of delivery in multiple centers
- FDA approval for R/R pediatric ALL: August 2017

Monitoring after CAR T-cell infusion

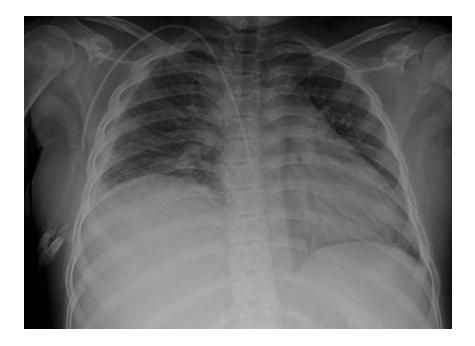
- From day 0: Severe cytopenia
- D +3: Persistent fever (T >39°C)


10-year-old boy with R/R ALL, fever, and severe cytopenia on day +3 after CAR T-cell infusion

Question

What is the approriate initial management for this case?

- a) Administer steroids
- b) Close observation, wide microbiologic screening, empiric antibiotic therapy, management of symptoms (paracetamol, fluids . . .); keep tocilizumab available in the unit
- c) Administer tocilizumab
- d) Transfer to ICU



Lee DW et al. Blood 2014

Monitoring after CAR T-cell infusion

- From day 0: Severe cytopenia
- D +3: Persistent fever (T >39°C)
 - \rightarrow Empiric antibiotic therapy
 - →Negative wide microbiologic screening
 - \rightarrow Grade 1 CRS
- D +5: Hypotension despite IV fluids, initial dyspnea

10-year-old boy with R/R ALL, CRS on day +5 after CAR T-cell infusion, and development of hypotension and low oxygen saturation

Question

What is the grade of CRS and the relative management at this point?

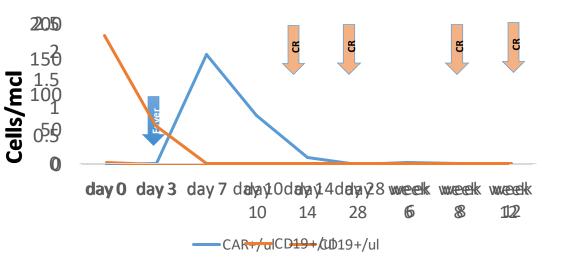

- a) Grade 2; administer steroids
- b) Grade 1; close observation, wide microbiologic screening, empiric antibiotic therapy, management of symptoms (paracetamol, fluids...)
- c) Grade 4; administer tocilizumab
- d) Grade 2; start of vasopressors, administration of oxygen, and evaluation with the ICU team, administer tocilizumab

Table 2 Cytokine-release sy	yndrome grading and management				
Grade 1 CRS	Grade 2 CRS	Grade 3 CRS	Grade 4 CRS	nes	
Signs and symptoms					
Temperature ≥38 °C No hypotension	Any temperature and any of the following: • Hypotension that responds to i.v. fluids or	Any temperature and any of the following:	Any temperature and any of the following:	rof	
• No hypoxia • Grade ≤1 organ toxicity*	low-dose vasopressor treatment • SpO ₂ <90% on room air: FiO ₂ requirement <40% to keep SpO ₂ >88% • Grade 2 organ toxicity*	 Hypotension (age 1–10 years: SBP <(70 + (2 × age in years)) mmHg: age >10 years: SBP <90 mmHg) requiring high-dose or multiple vasopressors FiO₂ requirement ≥40% and/or requiring BiPAP to keep SpO₂ >88% Grade 3 organ toxicity^a Grade 4 transaminitis (>20× ULN) 	 Persistent hypotension despite fluid resuscitation and treatment with multiple vasopressors Requirement for invasive mechanical ventilation Grade 4 organ toxicity^a (except grade 4 transaminitis) 		
Paediatric considerations					
 Asymptomatic sinus tachycardia is defined by heart rates above the age- specific normal range or baseline values) 	 Hypotension is defined as follows: SBP <(70 + (2 × age in years)) mmHg in patients aged 1–10 years; SBP <90 mmHg in patients aged >10 years 	 Oliguria is defined as a urine output of <0.5 ml/kg per hour for 8 hours 	 Anuria is defined as a urine output of <0.3 mL/kg per hour for 24 hours or 0 mL/kg per hour for 12 hours 		
Management					
 Acetaminophen, as needed, for fever Evaluate for infectious aetiologies (blood and urine cultures and chest radiography) Consider broad-spectrum antibiotics and filgrastim (if patient is neutropenic) Assess for adequate hydration Consider anti-IL-6 therapy for persistent or refractory fever^b 	 Manage according to recommendations for grade 1 CRS (if applicable) Administer i.v. fluid bolus of 10-20 ml/kg normal saline; repeat as necessary to maintain SBP above baseline or age-specific normal range For hypotension refractory to fluid boluses or hypoxia, consider anti-IL-6 therapy with i.v. tocilizumab (12 mg/kg for patients weighing <30 kg or 8 mg/kg for those weighing ≥30 kg, to a maximum of 800 mg per dose); repeat dose every 8 hours for up to 3 doses within 24 hours (but titrate frequency according to response) 	 Manage according to recommendations for grades 1 and 2 CRS Transfer patient to PICU and obtain echocardiogram, if not performed already Administer i.v. dexamethasone 0.5 mg/kg (maximum 10 mg per dose) every 6 hours; can increase dose to maximum of 20 mg every 6 hours if patient is refractory to lower dose (alternatively, methylprednisolone 1-2 mg/kg per day divided 	 Administer i.v. fluids, anti-IL-6 therapy, corticosteroids, and vasopressors and perform haemodynamic monitoring as described for grades 1, 2, or 3 CRS If low doses of corticosteroids do not lead to clinical improvement, consider high-dose methylprednisolone (1 g daily for 3 days followed by rapid taper on the basis of 		

Monitoring after CAR T-cell infusion

- From day 0: Severe cytopenia
- D +3: Persistent fever (T >39°C)
 - \rightarrow Empiric antibiotic therapy
 - → Negative wide microbiologic screening
 - \rightarrow Grade 1 CRS
- D +5: Hypotension despite IV fluids
 - \rightarrow Grade 2 CRS
 - \rightarrow Tocilizumab (8 mg/kg)
 - \rightarrow Dopamine (6 µg/kg/min)
 - ightarrow Low-flow nasal cannulae
 - \rightarrow Daily monitoring together with ICU team
- D +10: Disappearance of the fever and improvement of BP
 - → Decrease of dopamine (3 µg/kg/min) until withdrwal on d +12

Thank you!

Discussion – case 1

Faculty panel: Rob Pieters, Franco Locatelli, Patrick Brown, Christina Peters, Martin Schrappe

APTITUDE HEALTH

Management of long- and shortterm toxicities in pediatric ALL patients – case 2

Natalia Zubarovskaya

APTITUDE HEALTH

Patient case

16 y/o female

Diagnosed with B-ALL, CD19+46XX; del(9p13); del(21q22) CNSII

MRD+ at TP1 (10- 2) and TP2 (10- 3)

Allogeneic HSCT, MUD (9/10), BM 07/2018

TBI-based conditioning with 12 Gy and Vp-16

GvHD prophylaxis:

ATG 3 \times 15 mg/kg, CsA 3 mg/kg (day –1), MTX 10 mg/m² (day +1, +3, +6)

Complications

- FUO, BKV viremia, and hemorrhagic cystitis
- aGvHD: skin IV, overall IV

Day +100 after allo-HSCT

Presented with acute kidney disease

- Proximal tubulopathy (Fanconi syndrome)
- Elevated creatinine and cystatin
- GFR 20 mL/min/1.73 m^2
- Normal urine output

Kidney biopsy: glomeruli intact, subacute tubules damage

Patient: Progress

1. Late bone marrow relapse 04/20 (CD19+ and CD19– populations)

Complications: stable chronic kidney disease, asymptomatic CMV reactivation

Treatment: CAR T-cell infusion 06/20

2. Allogeneic HSCT, PBSC (haploidentical donor – mother) 08/20

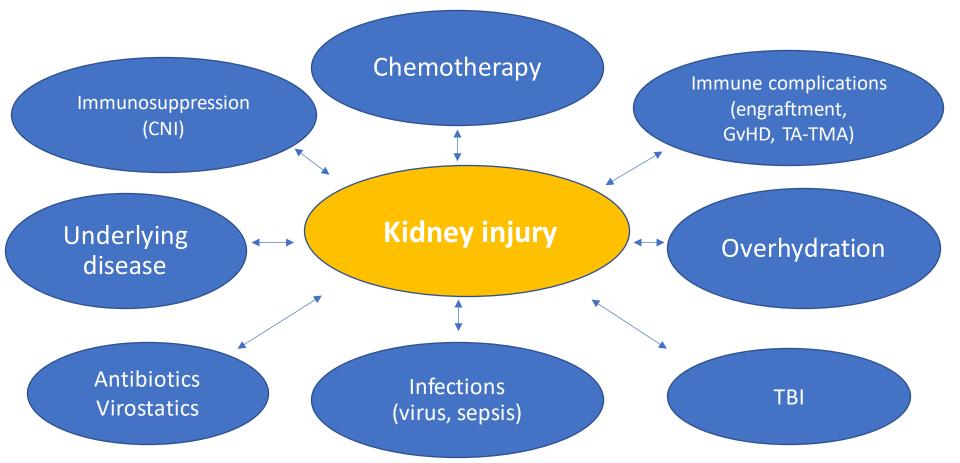
GvHD prophylaxis: ptCy (day +3, +4), FK-506

End of immunosuppression day +36

Complications: slow hematologic engraftment, HHV-6/7 reactivation

2. Early bone marrow relapse 07/21

Treatment: cytoreductive therapy, CAR T-cell infusion (07/21)


Complications: stable chronic kidney disease (KD), invasive mycoses

What would be your strategy in case of ALL – relapse after allo-HSCT in a patient with chronic KD (GFR 20 mL/min/1.73 m²)?

- a) Second allo-HSCT with myeloablative conditioning
- b) Second allo-HSCT with reduced-intensity conditioning
- c) Palliative approach
- d) Other treatment

Pathogenesis of acute and chronic KD

How do we screen acute and chronic KD?

- Ultrasound diagnostic
- RR
- Diuresis
- Urine analysis (proteinuria, albuminuria)
- Monitoring of retention parameter (creatinine, BUN, cysC) and electrolytes, GFR
- Monitoring during long-term follow-up

Prevention and treatment of acute and chronic KD

Prevention and mon	itoring
Optimization of flu	uid balance
Careful use of nep	hrotoxic medication and contrast fluid
Monitoring of kidr	ney function
Treatment: General	measures
Optimization of flu	Jid balance
Discontinuation of	nephrotoxic medications
Aggressive treatm	ent of underlying infections
Treatment: Specific	measures
Marrow infusion syn	drome: steroids
Hepaticsinusoidal ol	ostruction syndrome: albumin and terlipressin, defibrotide
Thrombotic microan complement inhibiti	giopathy: treatment of hypertension, cessation of CNI and mTOR inhibitors, on

DeMauro Renaghan A, et al. Clin J Am Soc Nephrol. 2020;15(2):289-297.

What options would you choose during pre- and post-HSCT in a patient with chronic KD?

- a) Dose reduction of chemotherapy drugs
- b) Drug monitoring
- c) Prevention of overhydration
- d) Drug application with less nephrotoxicity
- e) Aggressive treatment of infections

Discussion

What conditioning would you recommend for second allo-HSCT? What type of donor would you use in this setting?

Discussion – case 2

Faculty panel: Rob Pieters, Franco Locatelli, Patrick Brown, Christina Peters, Martin Schrappe

APTITUDE HEALTH

Final discussion, Q&A, and session close

Franco Locatelli

APTITUDE HEALTH

Interactive Q&A

Franco Locatelli

APTITUDE HEALTH

Educational ARS questions

Franco Locatelli

Repeated Question 1: Which of the following subsets of first-relapse ALL patients can be considered at very high risk?

- a) All patients with B-ALL relapsing within 18 months from diagnosis
- b) All patients with hypodiploidy
- c) All patients with t(17;19) or t(1;19)
- d) Each of the 3 previous subsets

Repeated Question 2: Which assertion is correct for children with B-ALL?

- a) Inotuzumab is approved for induction treatment of relapsed B-ALL in childhood
- b) Inotuzumab dosage is 3 mg/m²
- c) Blinatumomab is approved for consolidation treatment before HSCT in children with B-ALL
- d) None of the patients relapsing later than 6 months after treatment discontinuation should be transplanted

Repeated Question 3: Which children with relapsed ALL should be transplanted after a TBI-containing regimen?

- a) All children
- b) Children above the age of 4 years
- c) Children above the age of 10 years
- d) Those with T-ALL

Repeated Question 4: Which of the following statements is incorrect?

- a) Leukemia recurrence in patients given CAR T cells is associated with early disappearance of CAR T cells in peripheral blood
- b) Leukemia recurrence in patients given CAR T cells is associated with B-cell aplasia
- c) Leukemia recurrence in patients given CAR T cells is associated with disease burden at time of infusion
- d) Leukemia recurrence in patients given CAR T cells is associated with reappearance of MRD

Closing remarks

Franco Locatelli

- > Thank you to our sponsors, expert presenters, and to you for your participation
- > Please complete the **evaluation survey** that will be sent to you via chat
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website in our Ask the Experts section

THANK YOU!

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

