

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

27-28 October 2021

State APTITUDE HEALTH

Welcome and meeting overview

Elias Jabbour and Franco Locatelli

APTITUDE HEALTH

Pediatric ALL

FACULTY

Elias Jabbour, MD Professor of Medicine UT MD Anderson Cancer Center, USA

Patrick A. Brown, MD Johns Hopkins University School of Medicine, USA

Josep-Maria Ribera, MD Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Spain

Franco Locatelli, MD, PhD Professor of Pediatrics Sapienza, University of Rome and IRCCS Bambino Gesù Children's Hospital, Italy

Rob Pieters, MD, PhD Princess Máxima Center for Pediatric Oncology, University of Utrecht, The Netherlands

Christina Peters, MD St. Anna Children's Hospital, Austria

Naval Daver, MD Assistant Professor of Medicine UT MD Anderson Cancer Center, USA

Prof Charles Craddock, CBE, FRCP (UK), FRCPath, DPhil Centre for Clinical Haematology at the Queen Elizabeth Hospital, United Kingdom

Richard Schlenk, MD University Hospital Heidelberg, Germany

Nicola Gökbuget, MD University Hospital Frankfurt, Germany

Philippe Rousselot, MD, PhD University of Versailles Saint-Quentin-en-Yvelines, France

Martin Schrappe, MD, PhD University Medical Center Schleswig-Holstein, Germany

Understand current treatment patterns for acute leukemias including incorporation of new technologies Uncover when genomic testing is being done for acute leukemias, and how these tests are interpreted and utilized Understand the role of stem cell transplantation in acute leukemias as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring acute leukemias Gain insights into antibodies and bispecifics in ALL: what are they? When and how should they be used? Where is the science going? Discuss the evolving role of ADC therapies in acute leukemias Review promising novel and emerging therapies in acute leukemias

Explore regional challenges in the treatment of acute leukemias across Europe

Global Leukemia Virter Plenary Session (Day 1) 16.00 – 20.00 (CET) Chairs – Elias Jabbour, Franco Locatelli, Naval Daver

Time CET	Title	Speaker/Moderator
16.00 – 16.10	Welcome and meeting overview	Elias Jabbour, Franco Locatelli
16.10 – 16.40	Recent developments in acute leukemias	Elias Jabbour
16.40 - 17.00	Review of prognostic value of MRD in acute leukemias	Josep-Maria Ribera
17.00 – 17.15	Genetic variants in ALL – Ph+ and Ph-like	Philippe Rousselot
17.15 – 17.35	AYA ALL patients – what is the current treatment approach for this diverse patient population?	Rob Pieters
17.35 – 17.45	Break	
17.45 – 18.05	Bispecifics as post-reinduction therapy improve survival in high-risk first-relapse pediatric and AYA B-ALL	Patrick Brown
18.05 – 18.25	Therapeutic approaches in high-risk and older AML patients	Naval Daver
18.25 – 18.45	Current and future role of transplantation in acute leukemias	Charles Craddock
18.45 – 19.15	 Debate on sequencing CD19-targeted approaches Monoclonal antibodies and bispecifics first CAR T first Discussion and voting 	Moderator: Franco Locatelli Elias Jabbour Josep-Maria Ribera All faculty
19.15 – 19.55	 Leukemia board discussion Optimal treatment and patient access, regional challenges in Europe Discussion 	Moderator: Elias Jabbour Rob Pieters and Philippe Rousselot All faculty
19.55 – 20.00	Session close	Elias Jabbour, Franco Locatelli

Global Leukemia Vitteren Breakout – Adult Leukemia Patients (Day 2) 17.00 – 20.00 Chairs – Elias Jabbour, Naval Daver

Time CET	Title	Speaker/Moderator
17.00 – 17.10	ALL session open	Elias Jabbour
17.10 – 17.30	Optimizing first-line therapy in adult and older ALL - integration of immunotherapy into frontline regimens	Elias Jabbour
17.30 – 17.50	Current treatment options for relapsed ALL in adult and elderly patients	Nicola Gökbuget
17.50 – 18.20	 Case-based panel discussion on toxicity management for adult and elderly ALL patients Case presentation 1: Fabian Lang Case presentation 2: Anna Torrent 	Moderator: Elias Jabbour <i>Faculty panel</i> : E. Jabbour, N. Gökbuget, J.M. Ribera, P. Rousselot
18.20 – 18.30	Break	
18.30 – 18.35	AML session open	Naval Daver
18.35 – 18.55	Personalized induction and maintenance approaches for AML	Richard Schlenk
18.55 – 19.15	Optimizing management of relapsed/refractory AML	Charles Craddock
19.15 – 19.45	 Case-based panel discussion or questions to the panel on regional challenges in AML care Case presentation 1: Justin Loke Case presentation 2: Sonia Jaramillo Segura 	Moderator: Naval Daver <i>Faculty panel</i> :N. Daver, C. Craddock, R. Schlenk
19.45 – 20.00	Session close	Elias Jabbour

Global Leukemia Vifteren Breakout – Pediatric ALL Patients (Day 2) 17.00 – 19.45 Chair – Franco Locatelli

Time CET	Title	Speaker/Moderator
17.00 – 17.15	Session open	Franco Locatelli
17.15 – 17.40	How to use MRD and genetics for risk stratification and therapy guidance in pediatric ALL	Rob Pieters
17.40 – 18.05	First-line treatment of pediatric ALL	Martin Schrappe
18.05 – 18.30	Current treatment options for relapsed ALL in children, including HSCT considerations	Franco Locatelli
18.30 – 18.55	Bispecific T-cell engagers for pediatric ALL	Christina Peters
18.55 – 19.25	 Case-based panel discussion on management of long- and short-term toxicities in pediatric ALL patients Case presentation 1: Francesca Del Bufalo Case presentation 2: Natalia Zubarovskaya 	Moderator: Franco Locatelli <i>Faculty panel:</i> R. Pieters, F. Locatelli, P. Brown, C. Peters, M. Schrappe
19.25 – 19.45	Final discussion, Q&A, and session close	Franco Locatelli

Introduction to the Zoom platform

Elias Jabbour



After each presentation, there will be 5 min for Q&A

Questions can be asked live or via the Q&A box

- > Live use "Raise Hand" function at the bottom of your screen
 - You will be given permission to speak
- > **Q&A box** type your question in the Q&A box

Global Leukemia Academy Functionality and settings – polling questions

Polls - D Polls $-\times$ -- × 1. What's your favorite color? 1. What's your favorite color? O Red C Red Orange Orange Velkw O Vellow C Green Green O Blue O Blue 🔿 Indigo 🔿 Indiga O Vielet O Vielet Submit Submit **Choose Your Answer** Select Submit Click on the answer (or After choosing your answer, answers if multiple choice) select submit to finalize

Desktop View

Click on the answer (or

answers if multiple choice)

select submit to finalize

Where are you from?

- a) United Kingdom
- b) Germany
- c) Spain
- d) France
- e) Italy
- f) The Netherlands
- g) Poland
- h) Russia
- i) Other country in Europe
- j) Outside Europe

Which patients do you treat?

- a) Adults only
- b) Children only
- c) Adults and children
- d) Other

Which of the following is NOT true?

- a) Inotuzumab and blinatumomab + chemotherapy is active in both frontline and salvage for ALL
- b) ALK inhibitors can be combined with other therapy modalities in Ph+ ALL
- c) MRD is highly prognostic for relapse and survival in Ph– ALL
- d) CAR T approaches are not active beyond 2L in Ph– ALL

In AML the MRD assessment by RT-qPCR is especially useful for

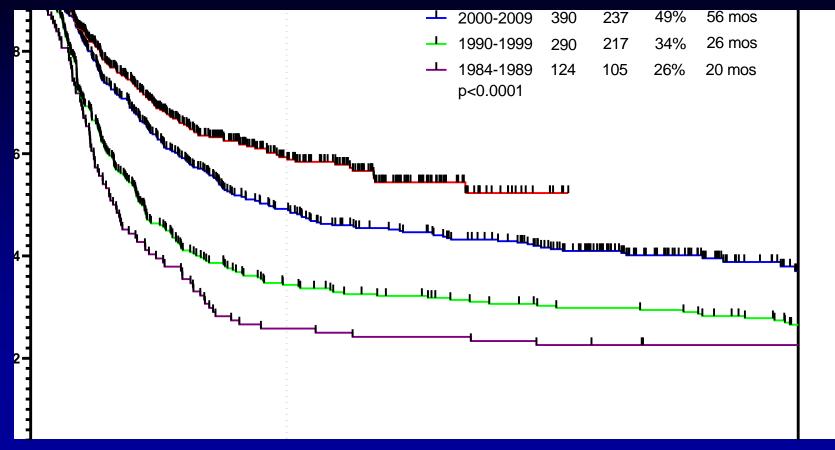
- a) FLT3 ITD
- b) NPM1 mutation
- c) Biallelic CEBPA mutation
- d) SF3B1 mutation
- e) ASXL1 mutation

Recent developments in acute leukemias

Elias Jabbour

Recent Developments in Acute Leukemia

Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center, Houston, TX

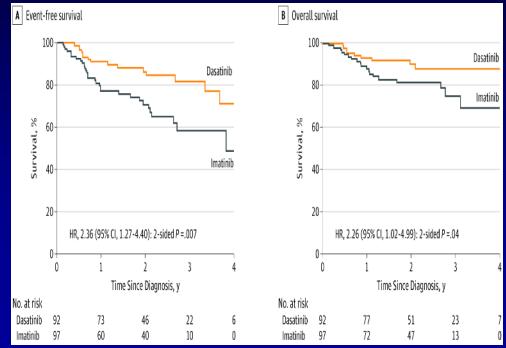

GLA, October 2021

Conflict of Interest Disclosure

- Research grants
 - Pfizer, Takeda, Amgen, AbbVie, Novartis
- Consultancy and advisory roles

 Pfizer, Takeda, Amgen, AbbVie, BMS

ALL: Survival by Decade (MDACC 1985-2020)

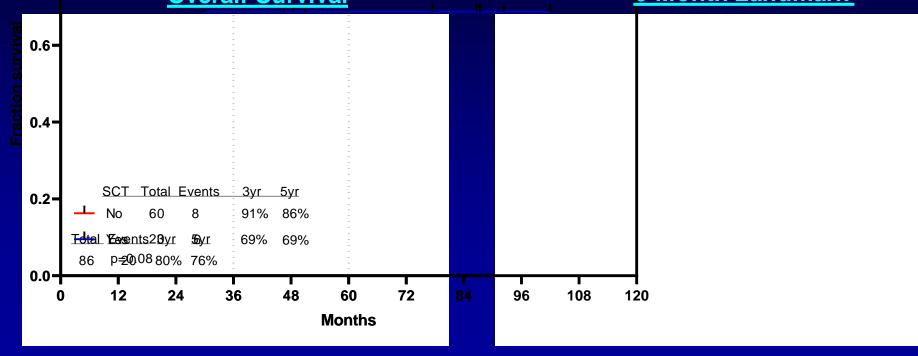

Reasons for Recent Success in Adult ALL

- Addition of TKIs (ponatinib) +/- blinatumomab to chemoRx in Ph+ ALL
- Addition of rituximab to chemoRx in Burkitt and pre–B-ALL
- Addition of CD19 bispecific T-cell engager (BiTE) antibody blinatumomab, and of CD22 monoclonal antibody drug conjugate (ADC) inotuzumab to chemoRx in salvage and frontline ALL Rx
- CAR T therapy
- Importance of MRD in CR (at CR vs 3 mos; NGS)

Dasatinib vs Imatinib in Pediatric Ph-Positive ALL

- 189 pts randomized Rx + dasatinib (n = 92) or imatinib (n = 97)
- Median F/U 26 mos; Triple IT 19 or 21

% 4-yr	Dasatinib	Imatinib	P Value	A
EFS	71	49	.005	
OS	88	69	.04	
Relapse	20	34	.01	
CNS	2.7	8.4	.06	

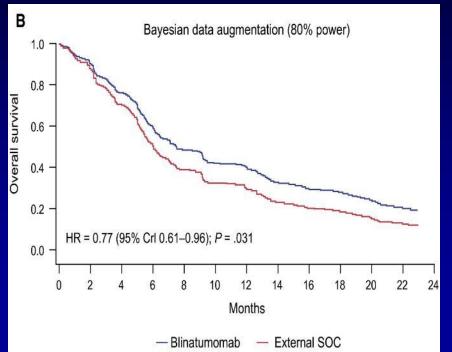

Overall Survival

HyperCVAD + Ponatinib in Ph+ ALL

86 pts Rx; median age 47 yrs (39–61); median FU 48 mos (10–100)

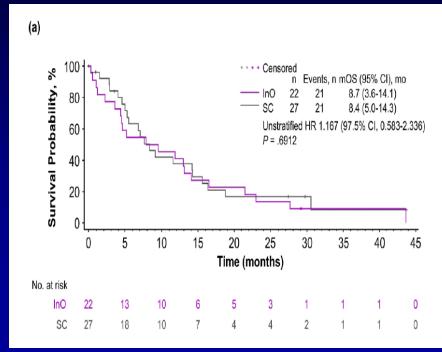
CR 68/68 (100%); FCM-MRD negative 85/86 (90%); CMR 84%; 3/5-yr OS 80/76%, EFS 76/71%

 Overall Survival
 6-Month Landmark



Jabbour E, et al. Lancet Hematol. 2018;618:(and update December 2020); Short et al. Blood. 2019;134:Abstract 283.

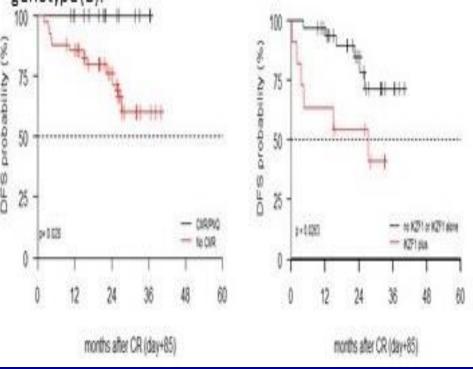
Blinatumomab and Inotuzumab in R/R Ph+ ALL


Blina vs SOC

- CR/CRh 36% vs 25%
- 1-yr OS 41% vs 31%

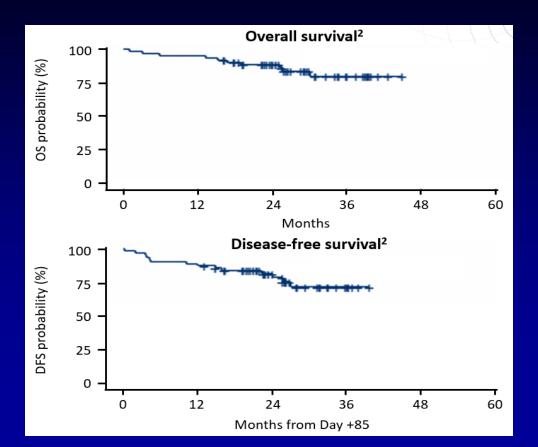
Ino vs SOC

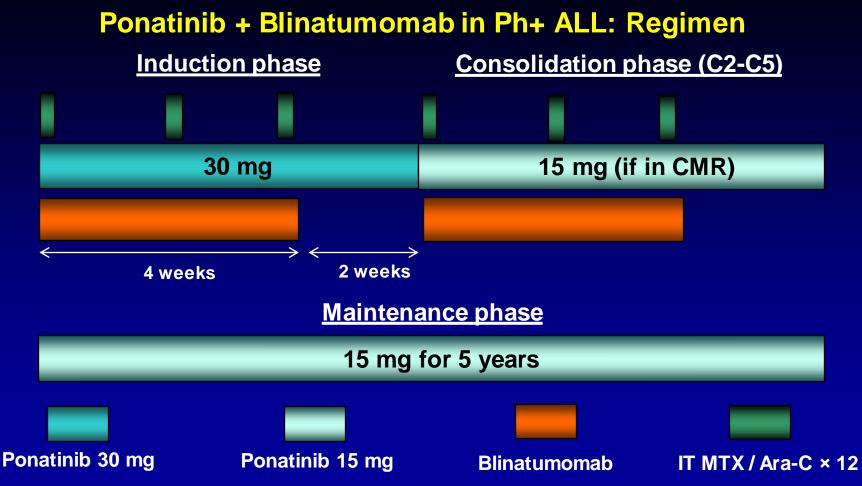
- CR/CRi 73% vs 56%
- 1-yr PFS 20% vs 4.8%


Ram baldi et al. Cancer. 2019;126:304-310.

Stock W, et al. Cancer. 2020;127(6):905-913.

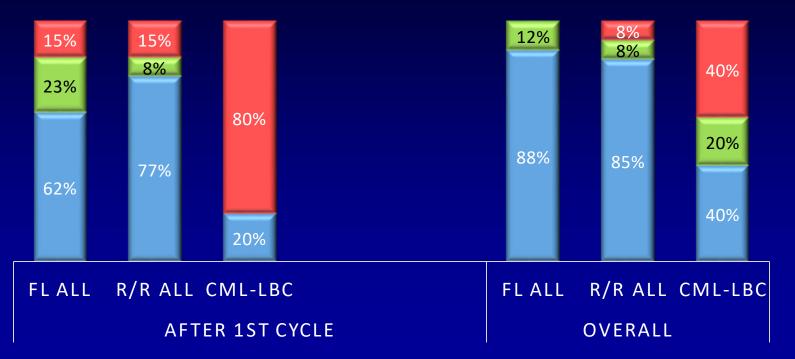
Dasatinib + Blinatumomab (D-ALBA) in Newly- Dx Ph+ ALL – Update

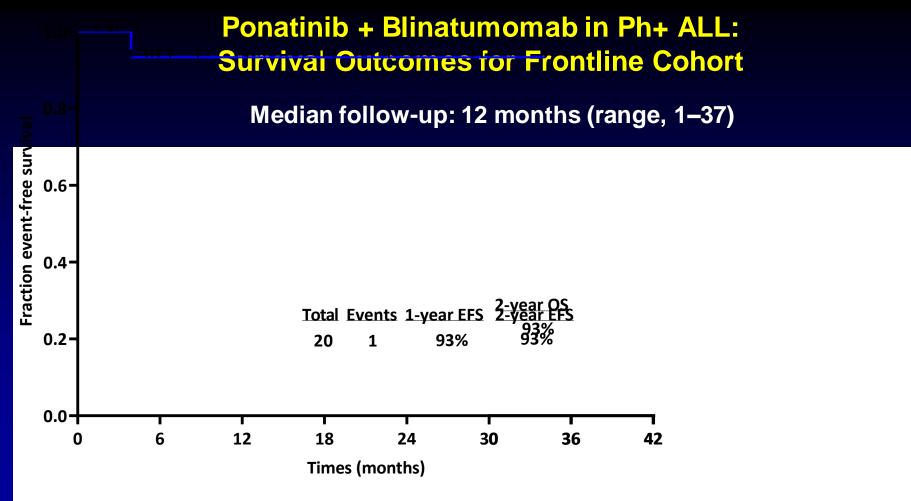

- 64 pts Rx; median age 54 yrs (24-82). Median FU 27 mos
- Molecular response (32/53 = 60%) $-22 \,\mathrm{CMR}(41\%)$
- 29/58 (50%) who started blina has SCT
- 9 relapses: 4 hematologic, 4 CNS, 1 nodal
- 24-mos OS 88%, DFS 80%
- Outcome better if MR: DFS 100% vs 80% (P = .028)
- Outcome worse if IKZF1+: 2-yr OS 84% vs 54% (P = .026)

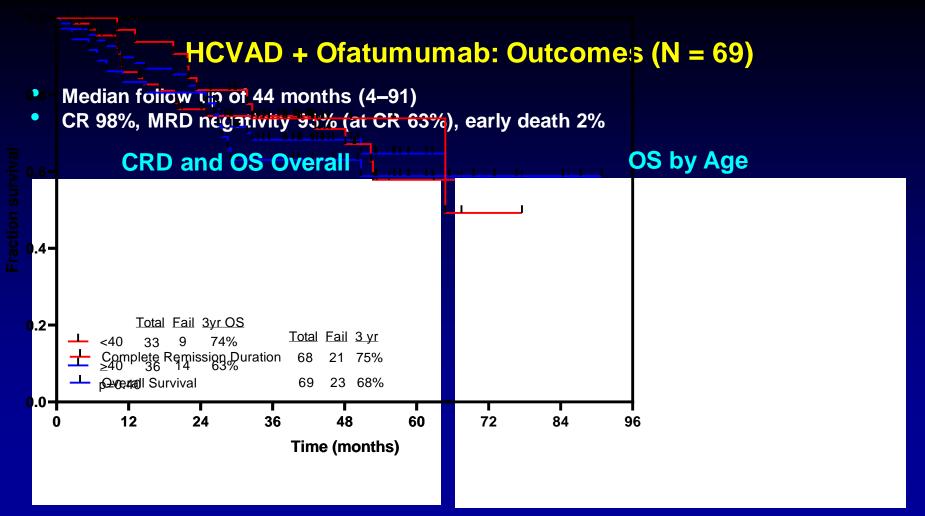

Fig 1. DFS according to molecular response (A) and IKZF1 plus genotype(B).

Dasatinib-Blinatumomab in Ph-positive ALL

- 63 pts, median age 54 yrs (24-82). Dasatinib 140 mg/D × 3 mos; add blinatumomab × 2-5
- 53 post dasa-blina × 2-molecular response 32/53 (60%), 23CMR (42%)
- MRD ↑ in 15— 6 T315I; 9 relapses: 4 hematologic, 4 CNS, 1 nodal
- 3-yr OS 77%; DFS 71%
- 29/58 (50%) allo SCT

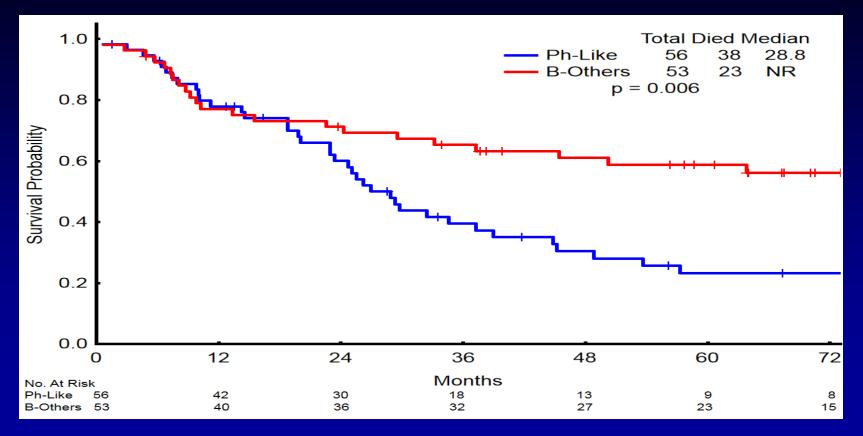





Short NJ, et al. J Clin Oncol. 2021;39(suppl 15): abstract 7001.

Ponatinib + Blinatumomab in Ph+ ALL: MRD Response Rates

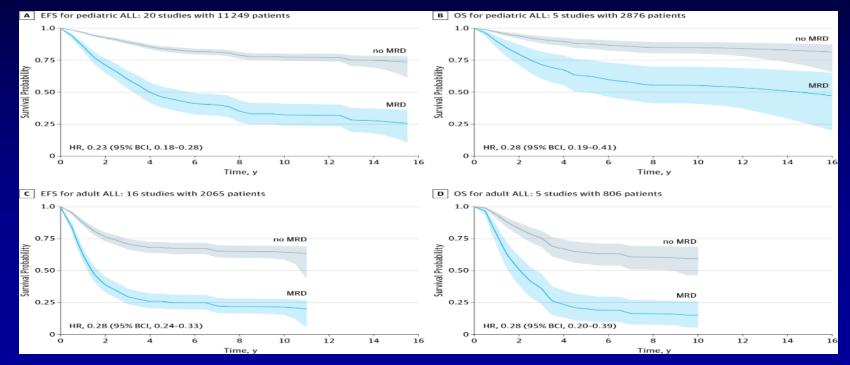
🗷 CMR 🛛 MMR 🖉 No MMR



Jabbour E, et al. Lancet Haematol. 2020;7:e523-e533.

Ph-like ALL – Worse Survival

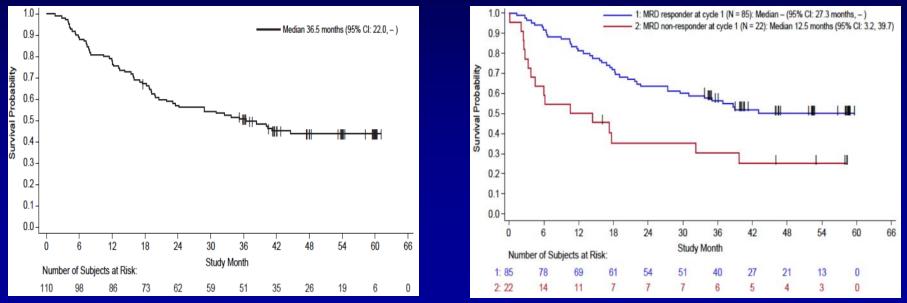
Jain et al. Blood. 2017;129:572-581.

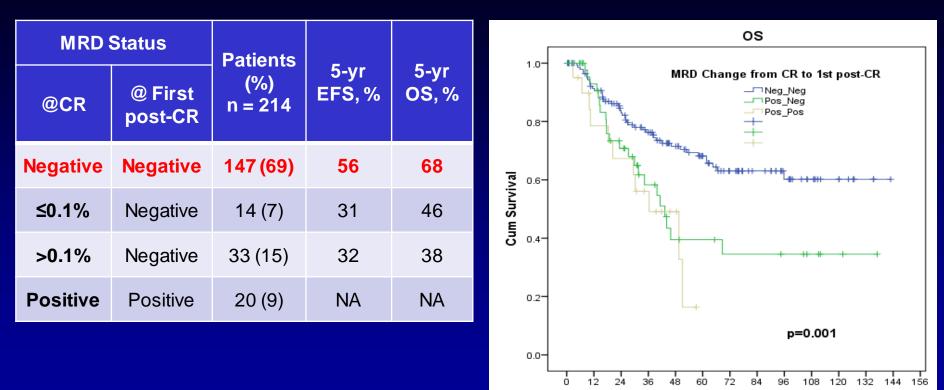

Ph-Like ALL: Higher MRD+ Rate

	B-ALL Ca				
	Ph-like	Ph+	B – other	Dyoluo	
Ν	56	46	53	<i>P</i> value	
CR/CRp	50 (89)	43 (93)	50 (94)	.57	
MRD at CR					
Positive	23 (70)	15 (44)	4 (13)	<.001	
Negative	10 (30)	19 (56)	27(87)		

Jain et al. *Blood.* 2017;129:572-581.

MRD in ALL

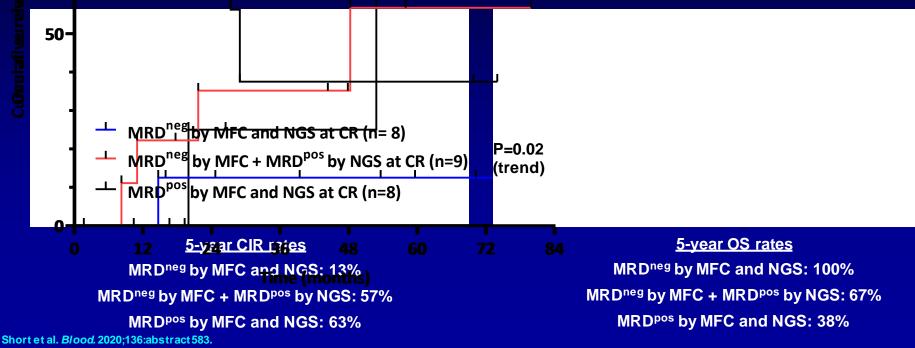

- Meta-analysis of 39 studies (pediatric and adult), including 13,637 patients with all ALL subtypes
- Prognostic impact of MRD clearance consistent across therapies, MRD method, timing, level of cutoff and subtypes


Berry DA, et al. JAM A Oncol. 2017;3(7):e170580.

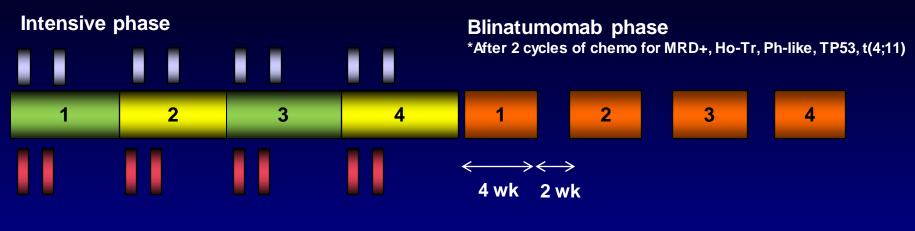
Blinatumomab for MRD+ ALL in CR1/CR2

- 113 pts Rx. Post-blina MRD– 88/113 = 78%
- 110 evaluated (blasts <5%, MRD+); 74 received alloSCT. Median F/U 53 mo
- Median OS 36.5 mo; 4-yr OS 45%; 4-yr OS if MRD– 52%
- Continuous CR 30/74 post-alloSCT (40%); 12/36 without SCT (33%)

Dynamics of MRD: Outcome

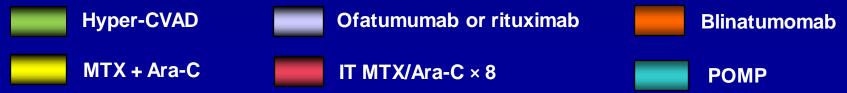


Month

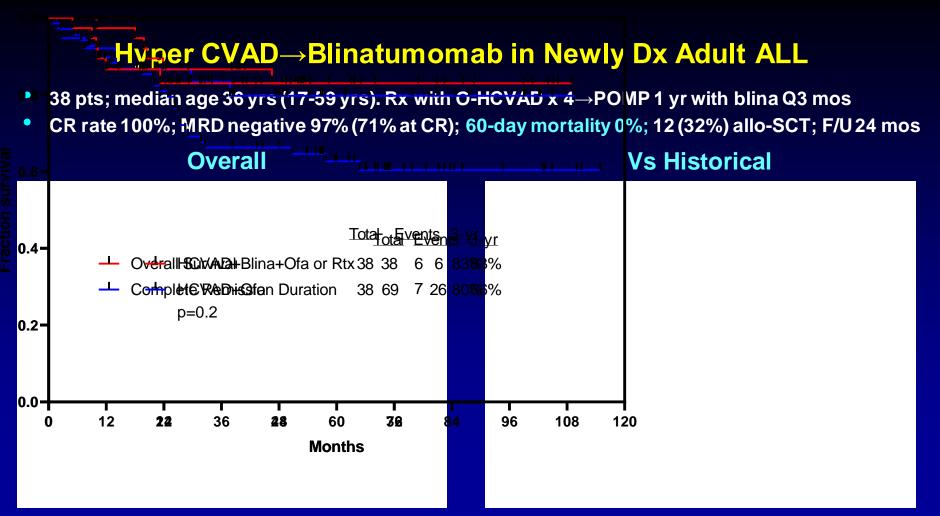

Yilmaz et al. Am J Hematol. 2020;95(2):144-150.

^{ce} by MFC and MRD in ALL: NGS vs FCM

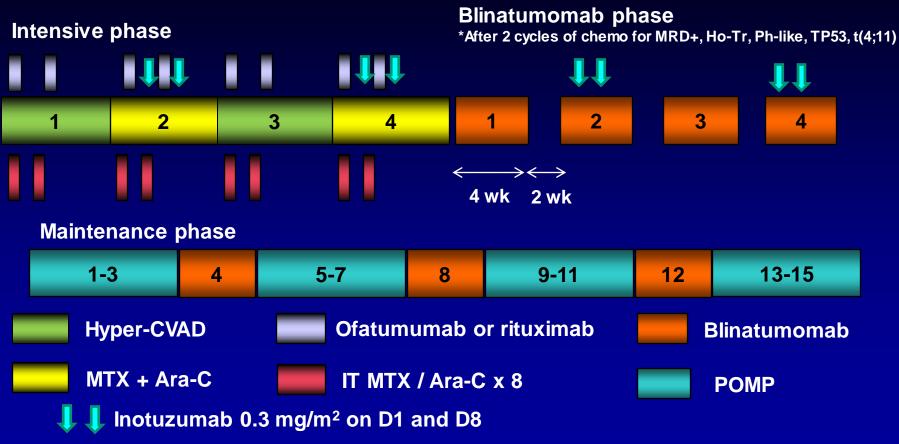
- 67 pts Rx (66% HCVAD; 34% mini-HCVD)
 - 32/84 (38%) discordant (ie, MRDneg by MFC but MRDpos by NGS)
 - 48% at CR and 30% at mid-consolidation
 - MRDneg by NGS highly predictive at CR with HCVAD



Hyper-CVAD + Blinatumomab in B-ALL: Regimen



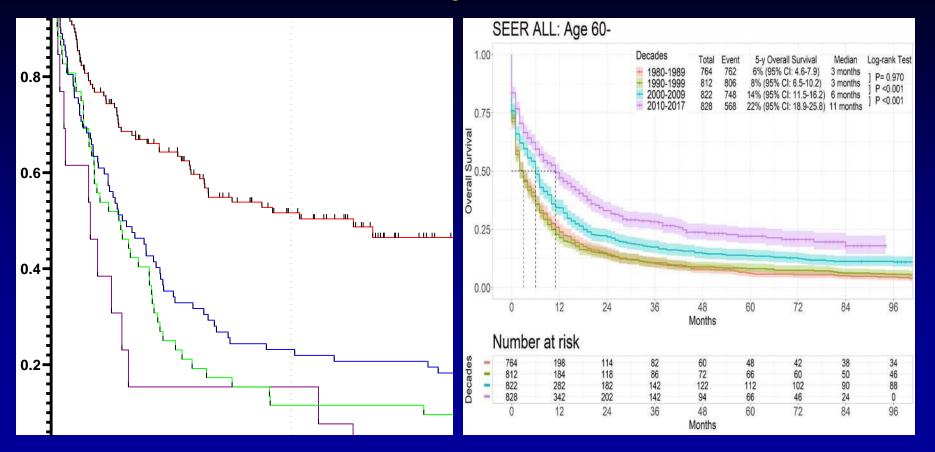
Maintenance phase



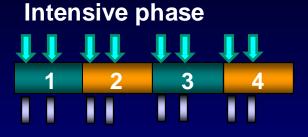
Short et al. Blood. 2020;136:abstract 464.

Short et al. Blood. 2020;136:abstract 464.

Hyper-CVAD + Blinatumomab in B-ALL: Regimen



Short et al. Blood. 2020;136:abstract 464.


Sequential Chemo Rx and Blinatumomab in Newly Dx ALL

- 149 pts; median age 41 yrs (18–65; 18% >55)
- Chemo Rx GIMEMA LAL1913-blina × 2 post C3 and C6
- CR 90%
- MRD clearance: 73% post early consolidation; 96% post blina × 1. Conversion to MRD-negative post blina 20/23 = 87%
- 12-mos OS 84%, DFS 72%, 12 mos relapse 11%

MDACC ALL: Survival by Decades for ≥60 Years

Mini-HCVD + INO ± Blina in Older ALL: Modified Design

Consolidation phase							
5	6	7	8				

🜗 INO* 🛛	Total dose	Dose per day
	(mg/m²)	(mg/m²)
C1	0.9	0.6 D2, 0.3 D8
C2-4	0.6	0.3 D2 and D8

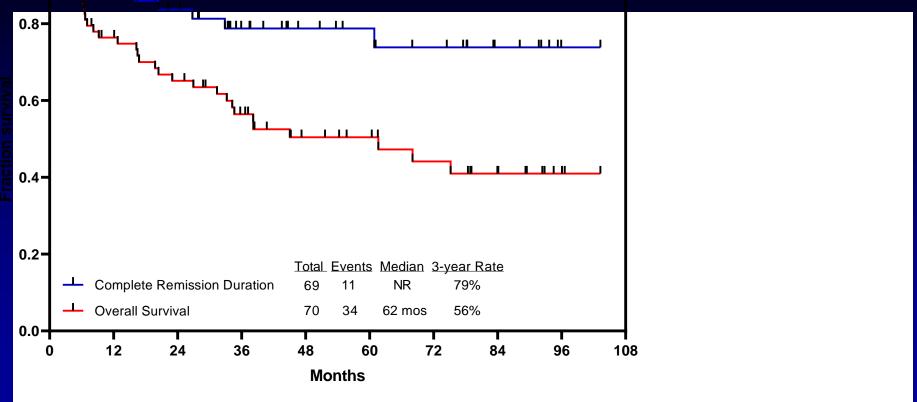
Total INO dose = 2.7 mg/m²

*Ursodiol 300 mg tid for VOD prophylaxis

Maintenance phase

18 months-

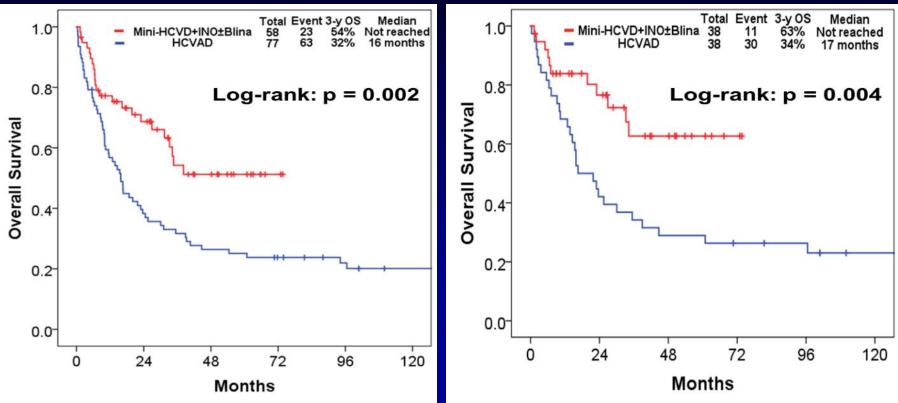
Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Kantar jian H, et al. Lancet Oncol. 2018;19:240.


Mini-HCVD + Ino ± Blina in Older ALL (N = 70)

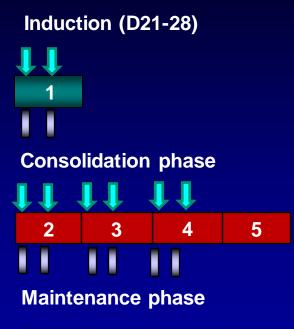
Characteristic	Category	N (%)/Median [range]		
Age (years)	≥70	68 [60–81] 29 (41)		
Performance status	≥2	10 (14)		
WBC (×10 ⁹ /L)		3.1 [0.6–111.0]		
Karyotype	Diploid HeH Ho-Tr Tetraploidy Complex t(4;11) Misc IM/ND	23 (33) 5 (7) 12 (17) 3 (4) 3 (4) 1 (1) 10 (14) 13 (19)		
CNS disease at diagnos	sis	4 (6)		
CD19 expression, %		99.6 [30–100]		
CD22 expression, %		96.7 [27–100]		
CD20 expression	≥20%	38/64 (59)		
CRLF2+ by flow		7/38 (18)		
TP53 mutation		21/51 (41)		

Response (N = 64)	N (%)
ORR	63 (98)
CR	56 (88)
CRp	6 (9)
CRi	1 (2)
No response	1 (2)
Early death	0
Flow MRD response	N (%)
D21	53/66 (80)
Overall	65/68 (96)

Short et al. Blood. 2020;136:abstract 1014.


Mini-HCVD + INO ± Blina in Older ALL: CRD and OS (Entire Cohort)

Mini-HCVD + INO ± Blina vs. HCVAD in Elderly ALL: Overall Survival


Pre-matched

Matched

Sasaki. Blood. 2018;132:abstract 34.

INO + Blina in Older ALL: Amended Design (pts ≥70 years)

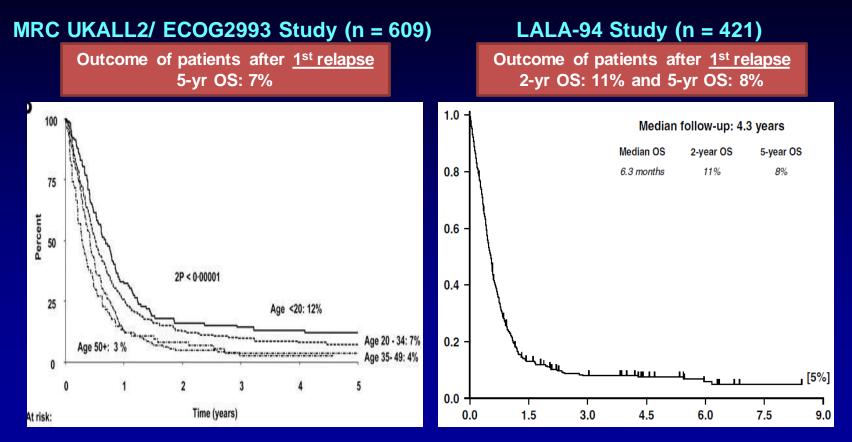
Dexa 20 mg D1-4 and VCR 1 mg D4
Blinatumomab
IT MTX, Ara-C

INO*	Total dose (mg/m²)	Dose per day (mg/m²)
C1	0.9	0.6 D2, 0.3 D8
C2–C4	0.6	0.3 D2 and D8

Total INO dose = 2.7 mg/m²

*Ursodiol 300 mg tid for VOD prophylaxis

Inotuzumab Followed by Chemo Rx in ALL 55+ Years

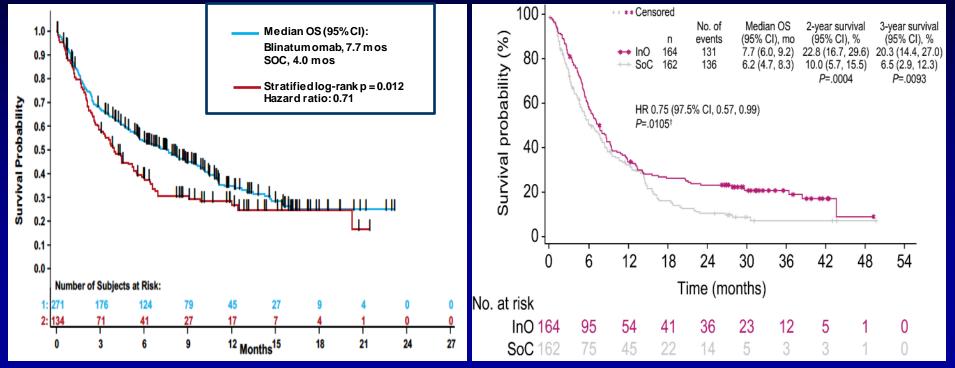

- Course 1 Ino 0.8 mg/m² D1, 0.5 g/m² D8 and 15 (1.8 mg/m²) in Course 1
 CTX-VCR-steroids pre phase TIT × 1/course
- Courses 2 and 3 Ino 0.5 mg/m² Days 1, 8, 15 (1.5 mg/m²)
 - 5 consolidations: 3 MTX/Asp, 2 ID-ara-C \rightarrow 1 reinduction IDA-ara-C-CTX-Dex
 - 6MP-MTX maintenance × 1.5 yr
- 36 Rx, results in 31; Median age 65 years (56–80)
- CR/CRi 31/31 (100%); MRD negative 21/27 (78%)
- 1-yr OS 87%; 1-yr EFS 87%
- No VOD

Stelljes et al. Blood. 2020;136:abstract 267.

ALL Salvage Standards of Care in 2021

- Refer for investigational therapies mini-CVD-ino-blina; CAR T
- Ph-positive ALL TKIs (ponatinib preferred) + chemoRx/blinatumomab
- Pre-B ALL
 - Blinatumomab (FDA approval 12.2014)
 - Inotuzumab (FDA approval 8.2017)
 - CAR Ts (FDA approvals 8.2017 and 10.2021)
- T ALL: nelarabine
- ChemoRx: FLAG IDA, Hyper CVAD, augmented HCVAD, MOAD
- BUT very promising new therapies with chemoRx + TKIs/BCL2i (venetoclax; navitoclax)/ADCs/BiTES/CAR Ts

ALL – Historical Survival Rates After First Relapse

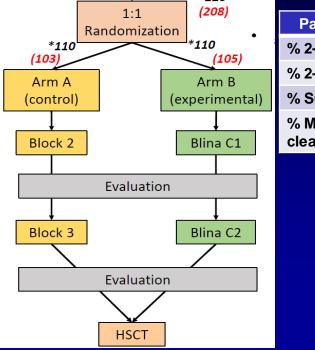


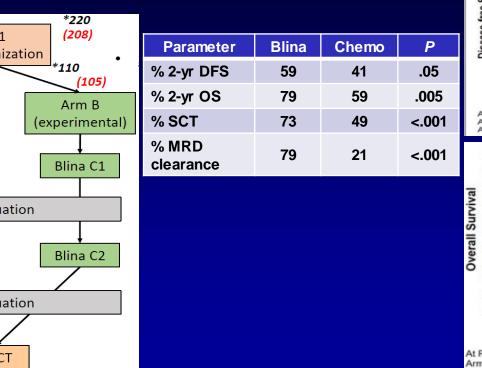
Fielding et al. *Blood*. 2007;109:944-950; Tavernier E, et al. *Leukemia*. 2007;21:1907-1914.

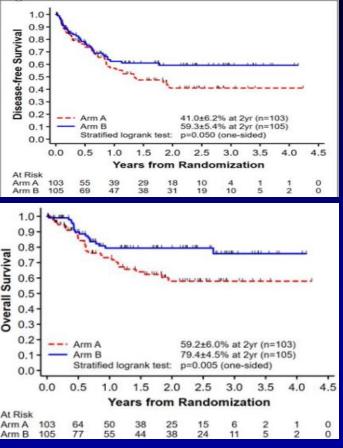
Blinatumomab/Inotuzumab vs ChemoRx in R/R ALL

Marrow CR Blina vs SOC: 44% vs 25%

Ino vs SOC: 74% vs 31%




Kantarjian H, et al. N Engl J Med. 2017;376:836-847.

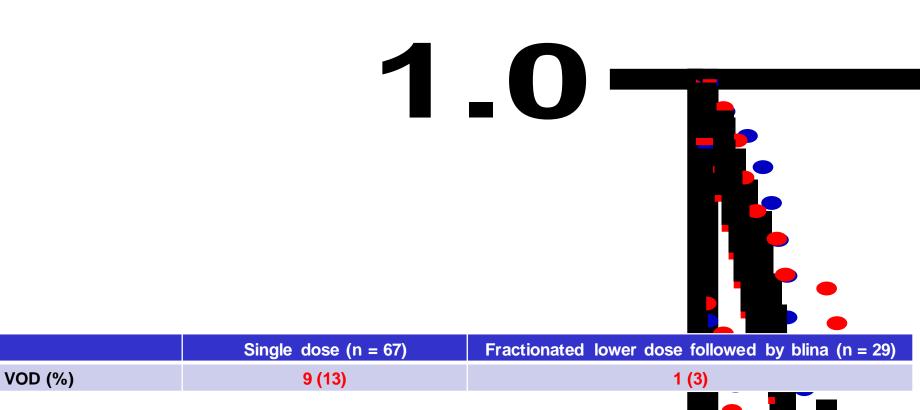

Kantarjian H, et al. N Engl J Med. 2016;375:740; Kantarjian H, et al. Cancer. 2019;125(14):2474-2487.

Phase III Study of Blinatumomab vs ChemoRx in **Children-AYA in Salvage 1**

Brown et al. JAMA. 2021:325(9):833-842.

Phase II Study of Inotuzumab in R/R Pediatric ALL

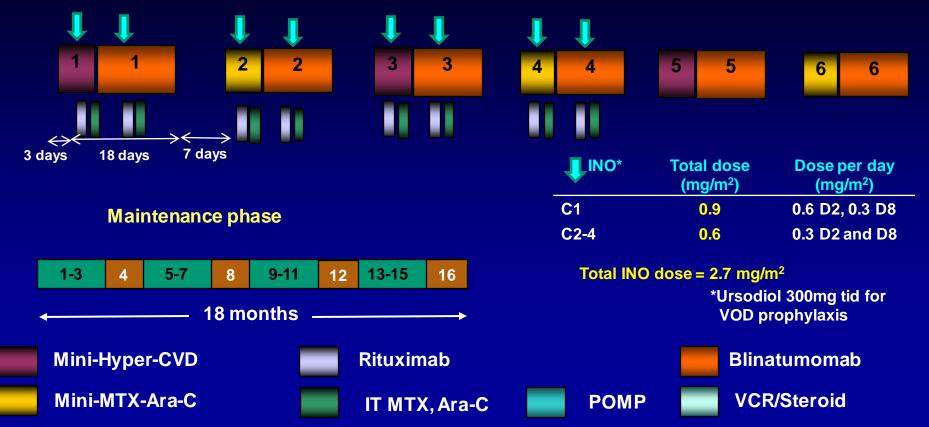
- 32 pts enrolled, 28 Rx, 27 evaluable
- Median age 7.5 yrs (1.7–17). S2+ 57% Prior blina 25%; prior ASCT 50%; prior CAR T Rx 11%
- Inotuzumab weekly × 3 up to 6 courses
 - RP2D 1.8 mg/m² (0.8-0.5-0.5)
- ORR = 81.5% (CR 50%); MRD neg 95% (82% after C1)
- 64% proceeded to ASCT and 14% to CAR T Rx
- 12-mos EFS 23%; 12-mos OS 46.5%
- 6 VOD (22%): 1 during InO; 5/14 post ASCT (36%)


Brivio et al. Blood. 2020;136:abstract 164.

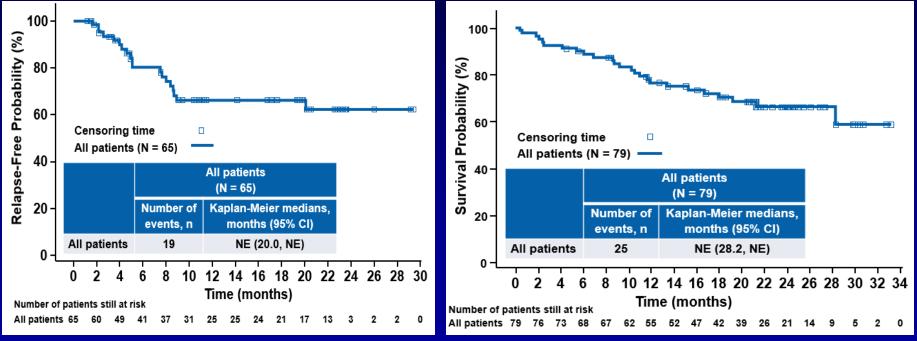
Mini-HCVD + INO ± Blina in R/R ALL (N = 96)

Characteristic	Category	No. (%)	С
Age (year)	Median [range]	37 [17–87]	Re
Gender	Male	45 (47)	
ECOG PS	2+	18 (19)	
Salvage Status	S1 S1, Primary Refractory S1, CRD1 <12 months S1, CRD1 ≥12 months S2 ≥S3	64 (67) 8 (8) 25 (26) 31 (32) 18 (19) 14 (15)	
Prior ASCT		19 (20)	0
Karyotype	Diploid T(4;11) Ho-Tr Complex Misc IM/ND	23 (24) 10 (10) 10 (10) 14 (16) 23 (24) 16 (17)	M
CD22	Median [range]	95 [14–100]	
CD20	≥20%	23 (24)	

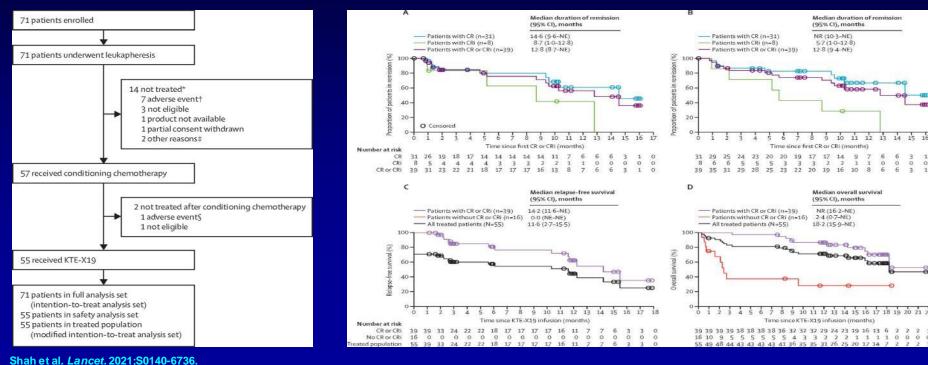
Characteristic	No. (%)			
Response, No. (%)				
Salvage1	58/64 (91)			
S1, Primary refractory	8/8 (100)			
S1, CRD1 <12 mos	21 (84)			
S1, CRD1 ≥12 mos	29 (94)			
Salvage 2	11 (61)			
≥ Salvage 3	8 (57)			
Overall	77/96 (80)			
MRD negativity	62/75 (83)			
Salvage1	50/56 (89)			
≥ Salvage 2	12/19 (63)			


Sasaki et al. Blood. 2020;136: abstract 1895.

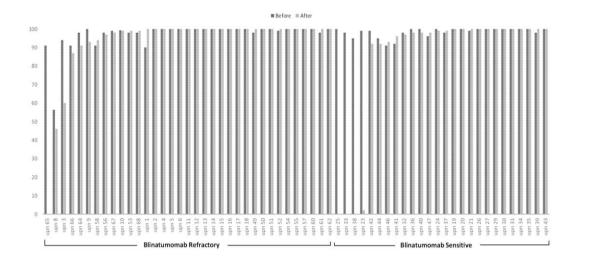
Sasaki et al. Blood. 2020;136: abstract 1895.


Dose-dense Mini-HCVD + INO ± Blina in ALL: Modified Design

Intensive phase: C1-C6


ELIANA Trial Update

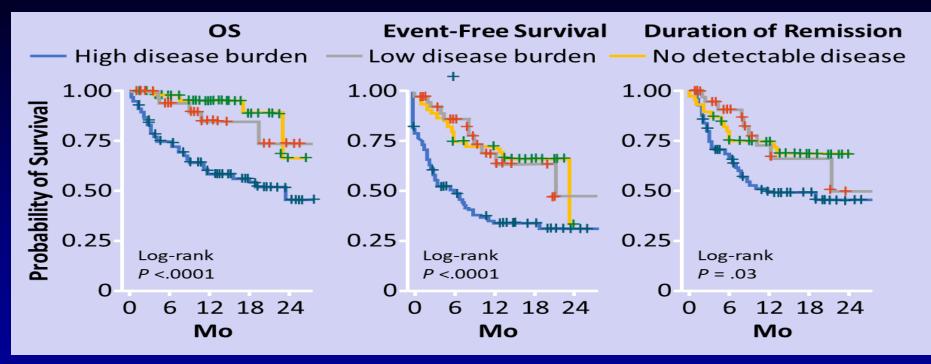
- 113 screened, 97 enrolled, 79 infused
- 3-mo CR 65/79 = 82%, or 65/97 = 67%
- 24-mos OS 66%; RFS 62% Gr 3-4 CRS 49% ICU 48%


KTE-X19 Anti-CD19 CAR T-cells RX (Kite) in R/R ALL: Phase II (ZUMA-3)

- 71 enrolled, 55 infused; median age 40 yrs (28-52)
- CR/CRi 39/55 (71%, CR 56%); ITT (39/71; 55%---CR 44%); MRD- response 76% (97% among responders); 10 pts (18% Rx ASCT)
- mDOR 12.8 mos; mRFS 11.6 mos; mOS 18.2 mos
- Grade ≥3: CRS 24%; NE 25%

CD19 (%) Expression Before and After Blinatumomab Therapy

CD19 (%) Expression Before and After Blinatumomab Therapy



• 61 patients evaluated for immunophenotype, 56 (92%) had CD19-positive disease

- 5 (8%) had ALL recurrence with CD19-negative disease
- 2 patients progressed with lower CD19-positive disease

Jabbour et al. Am J Hematol. 2018;376:836-847.

Real-Word CAR Consortium and Disease Burden

High Burden Disease (n = 94; 47%)

- 1-yr OS 58%
- 1-yr EFS 34%

1-yr OS 85%

1-yr EFS 69%

Undetectable Disease (n = 46; 23%)

- 1-yr OS 95%
- 1-yr EFS 72%

Schultz. Blood. 2020;136.abstract 468.

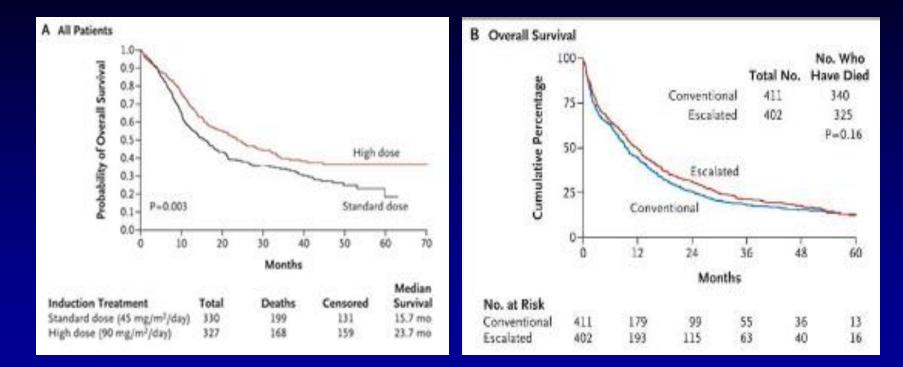
CAR T in ALL – The Beginning of a Great Journey

- CART Rx today is what allogeneic SCT was in 1980 a great beginning
- Improved CAR T designs
- Dual CAR Ts targeting CD19, CD22, CD20
- Allogeneic off-the-shelf CAR Ts
- Smaller repeated allogeneic CAR Ts infusions (fractionated CAR Ts)
- CAR Ts in first CR in MRD to replace allo SCT

ALL Summary

- Significant progress and improved outcomes across all ALL categories: Phpositive, Burkitt, younger and older pre-B ALL, T-ALL, ALL salvage. Rapidly evolving therapies
- Antibody-based Rxs and CAR Ts both outstanding; not mutually exclusive/competitive (vs); rather complementary (together)
- Future of ALL Rx: 1) less chemotherapy(?) and shorter durations; 2) combinations with ADCs and BiTEs/TriTEs targeting CD19, CD20, CD22; 3) CARTs in sequence in CR1 for MRD and replacing allo SCT
- Importance of MRD testing and changing Rx accordingly

AML in 2021 – The Next Questions

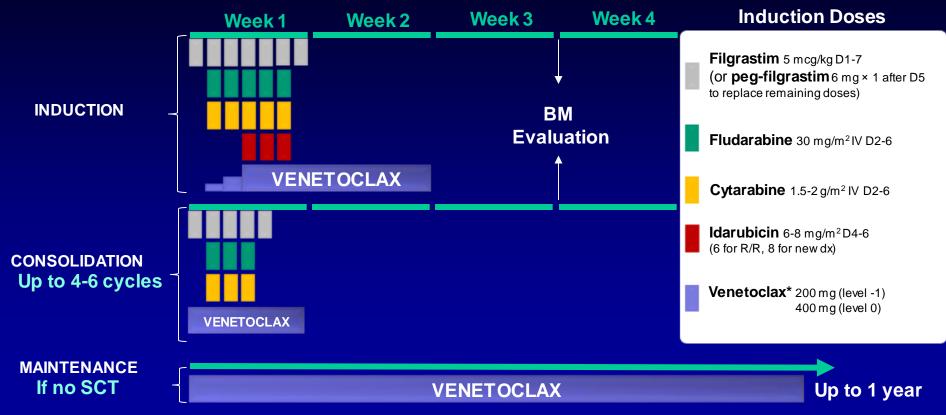

AML in 2017–2020, 10 Agents FDA Approved

- Midostaurin (RYDAPT) for de novo younger AML (≤60 yr), *FLT3* mutation April 2017
- Gilteritinib (FLT3 inhibitor) for FLT3+ R/R AML
- Enasidenib (AG-221; IDHIFA) for R/R AML and *IDH2* mutation August 2017
- Ivosidenib (AG-221) for R/R AML August 2018
- CPX-351 (Vyxeos) for newly Dx Rx-related AML and post-MDS AML August 2017
- Gemtuzumab ozogamicin revival for frontline AML Rx August 2017
- Venetoclax for newly Dx older/unfit for intensive chemo, with AZA/DAC, ara-C
- Glasdegib for newly Dx older/unfit, with ara-C
- Oral decitabine HMA Rx for MDS and CMML August 2020
- Oral azacitidine in AML maintenance Sept 2020

AML in 2021 – Brief Summary

- 3+7 outdated standard of care Cure in younger AML 30%–40%; in older fit or unfit, cure <10%
- Better intensive + targeted Rxs in younger patients FLAG-IDA-VEN, CLIA-VEN; also addition of FLT3/IDH inhibitors
- Better lower intensity regimens in older/unfit or even fit patients with proven resistance to intensive chemoRx (complex CG, MECOM, MLL, etc)
 Triple nucleosides-VEN/targeted agents
- New Rxs Venetoclax, FLT3i, IDHi, GO, oral HMAs, menin inhibitors, immuno-Rxs (CLL1 CAR Ts, CD47/SIRP1alpha targeting, NK cells)
- Note Like with allo SCT, immune-targeting Rx should focus on MRD ... Active AML = 1 trillion cells (1 Kg); in CR = 1-20 billion cells (1 g). If we provide >20 billion killer cells (NK) this could eradicate resistant AML

Actual Results of "3+7"

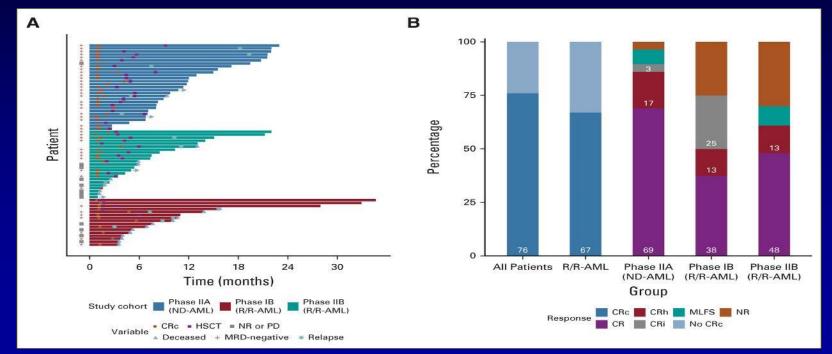

5-yr survival 20%–35% in young, 10% in old

Fernandez HF, et al. N Engl J Med. 2009;361:1249-1259; Löwenberg B, et al. N Engl J Med. 2009;3611235-1248.

FLAG-IDA and CLIA

- Fludarabine 30 mg/m²/D × 5
 - AraC 2 g/m²/D \times 5
- IDA 8-10 mg/m²/D × 3
- **2** inductions
- FLAG-IDA × 2 \rightarrow HD Ara C 1.5-3 g/m² Q12h D1, 3, 5— × 2
- CLIA F replaced with CDA 5 mg/m² daily × 5 in induction

FLAG-IDA-VEN Treatment Plan

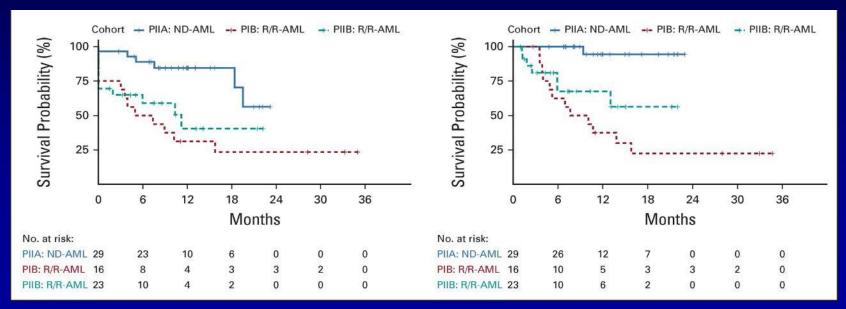


Abou Dalle, et al. Blood. 2019;134:abstract176.

*Concomitant azole permitted with adequate dose reduction.

FLAG-IDA + Venetoclax in AML

- FLAG-IDA + VEN evaluated in R/R AML, then newly Dx AML
- 68 pts Rx: ND AML 29; R/R AML 39


DiNardo CD, et al. J Clin Oncol. 2021 May 27. Online ahead of print.

FLAG-IDA + Venetoclax in AML

- FLAG-IDA + VEN evaluated in R/R AML, then newly Dx AML
- 68 pts Rx: ND AML 29; R/R AML 39. Median FU 12 months; ND AML 12-mos OS 94%

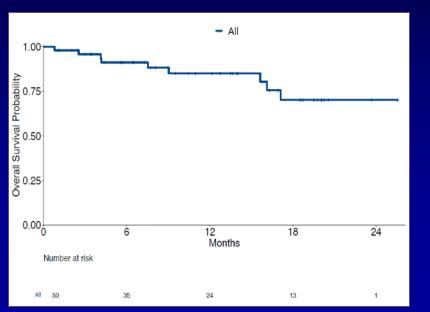
EFS

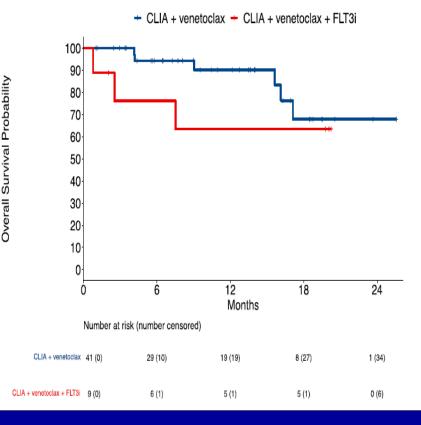
OS

DiNardo CD, et al. J Clin Oncol. 2021 May 27. Online ahead of print.

CLIA-Venetoclax: Study Design

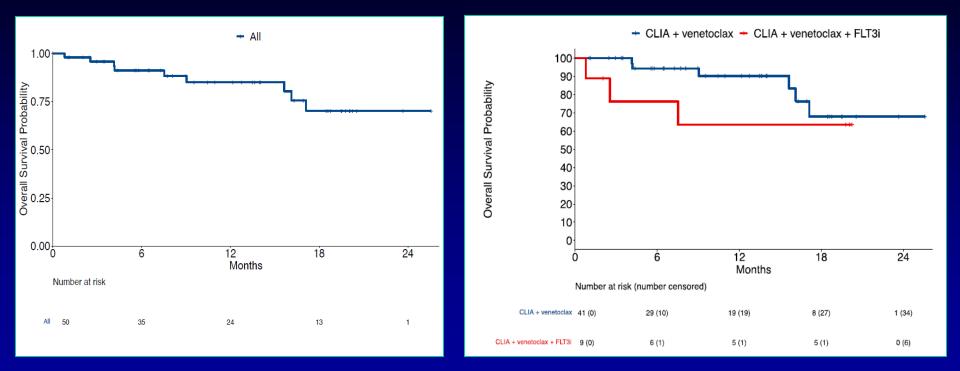
Venetoclax Dosing (PO daily on days 2–8 ± 1 day)									
Dose Level	Patients on posaconazole	Patients on <u>strong</u> CYP3A inhibitor	Patients on <u>moderate</u> CYP3A inhibitor	Patients <u>not</u> on CYP3A inhibitor					
-1	50 mg	50 mg	100 mg	200 mg					
1	70 mg	100 mg	200 mg	400 mg					


Induction

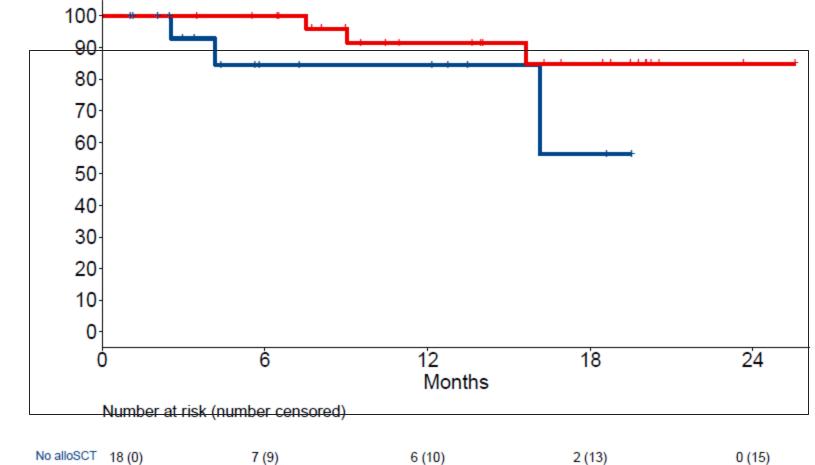

Consolidation

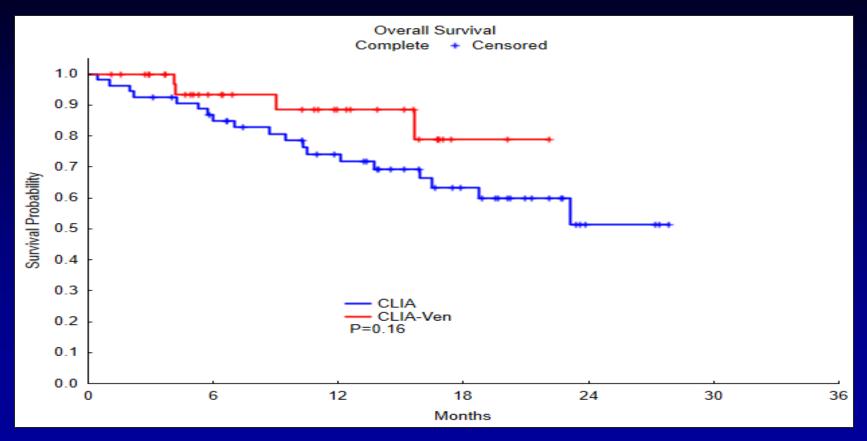
Treatment	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Treatment	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8
Cladribine 5 mg/m ²	x	х	х	х	x				Cladribine 5 mg/m ²	x	X	x					
Cytarabine 1500 mg/m ²	х	х	х	х	х				Cytarabine 1000 mg/m ²	х	Х	х					
Idarubicin 10 mg/m²	х	х	х						Idarubicin 8 mg/m ²	х	х						
Venetoclax		Х	Х	Х	Х	Х	Х	Х	Venetoclax		Х	Х	Х	Х	Х	Х	Х

CLIA + Venetoclax in Newly Dx AML

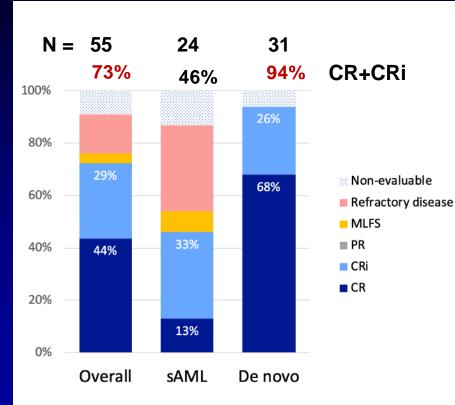

- 31 pts Rx with CLIA-VEN; median age 48 yrs (18–64)
- CR+CRi 28/31 = 90%; early 4/8-wk mortality 3/3; 12-mo OS 81%

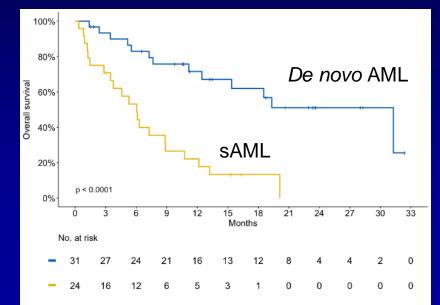
Kadia T, et al. Lancet Hematol. 2021;8(8):e552-e561.


Overall Survival

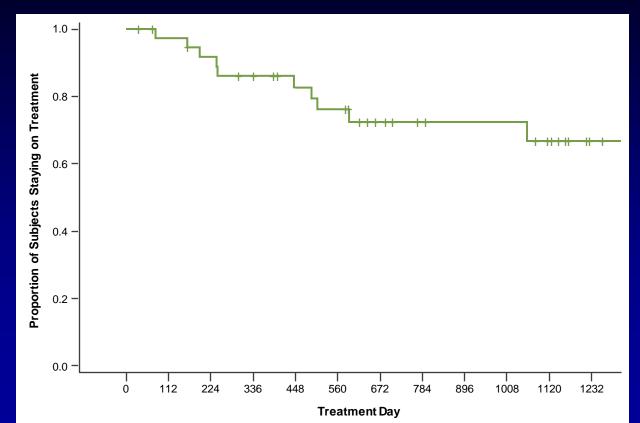

Median follow up of 13+ months

Kadia T, et al. Lancet Hematol. 2021;8(8):e552-e561.


No alloSCT + Received alloSCT


Overall Survival of CLIA-Ven vs CLIA

2+5 + Venetoclax in Older AML (median age 72 yrs; range 63–82) Frontline Rx


Median follow	ths	
	OS at 12m	OS at 18m
Overall	50%	40%
De novo AML	72%	62%
sAML	22%	13%

Chua CC, et al. J Clin Oncol. 2020;38(30):3506-3517.

Phase I 3+7 With Gilteritinib in Newly Dx AML

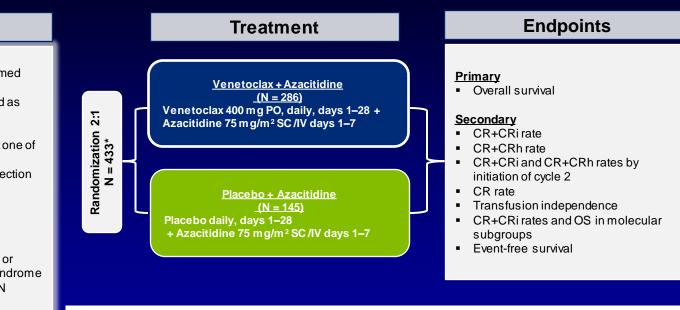
- 79 pts Rx with 3+7 and gilteritinib 120 mg daily × 14; *FLT3*mut 56%
- Marrow CR 62/76 = 82%; same in FLT3wt
- 4-wk mortality 0%
- Estimated 2-yr survival 70%

Older AML. Low Intensity Regimens

	Clo-araC- DAC	CDA-araC- DAC	AZA/DAC+VEN	LD araC + VEN
No Rx	118	118	145	71
% CR	60	58	-	26
% CR + CRi/p	68	68	67	62
Median OS (mos)	11	13.8	17.5 (14.7 in randomized)	11.4
% 2-yr OS	25	28	45	25-30
% 4-wk death	3	1	-	3

Kadia. Cancer. 2015;121:2375; Kadia. November 2017. DiNardo. ASH 2017; Wei. ASH 2017. Abstract 890.

Azacitidine ± Venetoclax (VIALE-A) Study Design

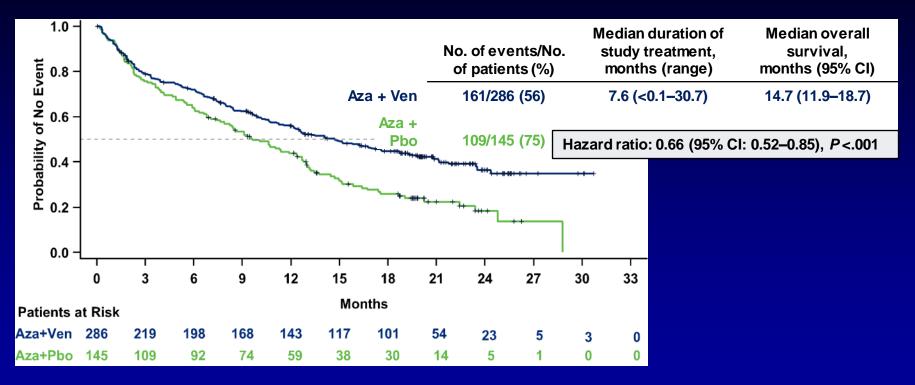

Eligibility

Inclusion

- Patients with newly diagnosed confirmed AML
- Ineligible for induction therapy defined as <u>either</u>
 - ≥75 years of age
 - 18 to 74 years of age with at least one of the co-morbidities
 - CHF requiring treatment or ejection fraction ≤50%
 - Chronic stable angina
 - − DLCO \leq 65% or FEV1 \leq 65%
 - ECOG 2 or 3

Exclusion

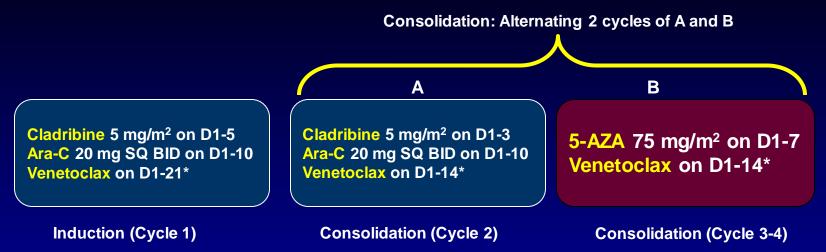
- Prior receipt of any HMA, venetoclax, or chemotherapy for myelodysplastic syndrome
- Favorable risk cytogenetics per NCCN
- Active CNS involvement


Random ization Stratification Factors

rs Age (<75 vs ≥75 years); cytogenetic risk (intermediate, poor); region

Venetoclax dosing ramp-up

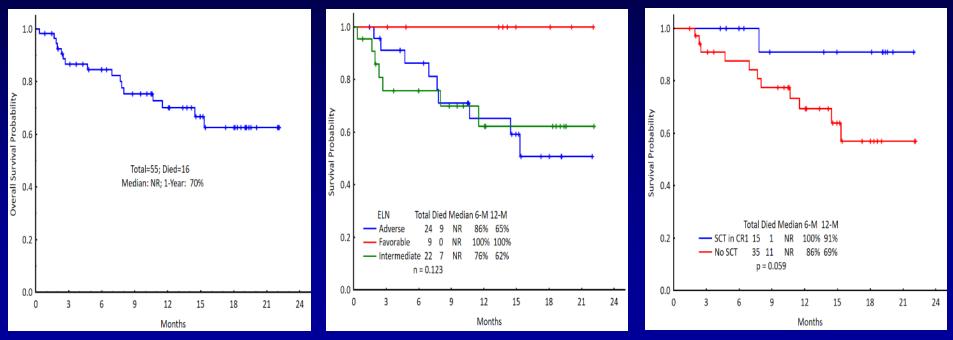
<u>Cycle 1 ramp-up</u> Day 1: 100 mg, Day 2: 200 mg, Day 3–28: 400 mg <u>Cycle 2</u> → Day 1–28: 400 mg


AZA +/- VEN in AML – Overall Survival

Median follow-up time: 20.5 months (range: <0.1 – 30.7)

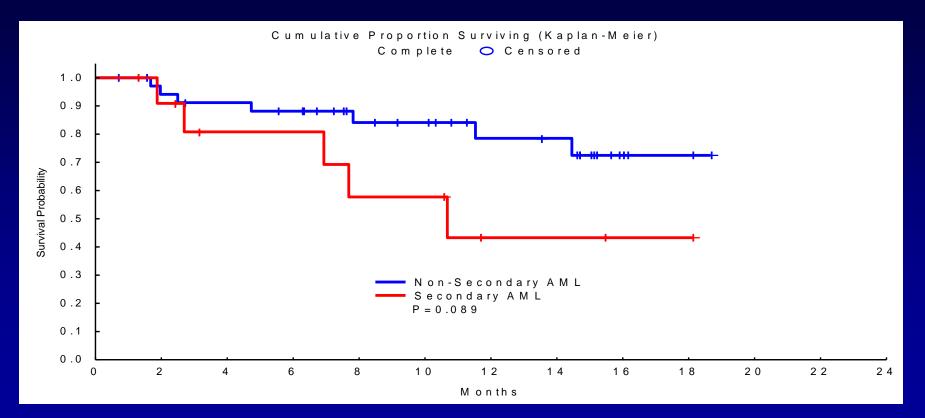
DiNardo C, et al. N Engl J M ed. 2020;383:617-629.

Venetoclax Added to Cladribine/LDAC Alternating With 5-AZA



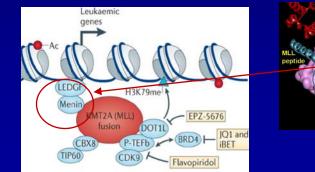
Venetoclax Dosing (PO Daily on Days 1–21)				
Dose Level	Patients on strong CYP3A inhibitor	Patients on moderate CYP3A inhibitor	Patients not on CYP3A inhibitor	
-1	50 mg	100 mg	200 mg	
1	100 mg	200 mg	400 mg	

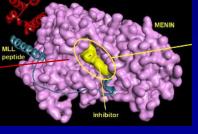
Kadia T, et al. Blood. 2020;136: abstract 25.


CDA-LD Ara-C-VEN/AZA-VEN in Older Newly Dx AML

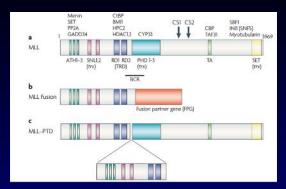
- 55 pts; median age 68 yrs (57–84)
- CR 42/55 = 78%. CR + CRi 50/54 = 93%. MRD negativity 42/50 = 84%
- 4/8-wk mortality 2/4%; 18-mo OS 60%

Kadia T, et al. Blood. 2020;136: abstract 25.


CDA-araC-VEN/AZA-VEN – Survival



MLLr Leukemias


MLLr is a therapeutic challenge

- Resistance to therapy
- Pediatric and adult leukemia problem
- Unique set of leukemias (ALL, AML, MPAL) (5%-10%)
- Increased understanding of clinical features and biology. No specific Rxs approved

Menin inhibitors target the high affinity binding site of MLL1(aa 9-13) on Menin

SNDX-5613 in R/R AML (mostly MLL)

- 43 pts Rx: 34 AML, 8 ALL, 1MPAL. 26(61%) MLL; 9(21%) NPM1
- SNDX-5613 113-339 mg orally BID
- ORR 15/31 = 48% -- CR/CRh 5,CRi/MLFS 5
- MRD negative 10/15 responders = 67%
- ORR in MLL 13/24 = 54%; ORR NPM1 2/7 (29%)
- Adverse events: QTc prologation 14%

Immune Strategies to Kill AML

- Recruiting CD3 T cell BiTEs linking to CD3 and targeting CD33/123; CAR Ts with modified CD3 killer cells
- Recruiting macrophages targeting CD47 on AML (magrolimab. ALX) or SIRP alpha on macrophages (Trillium, CC95251)
- Recruiting NK cells allo NK-CAR Ts; NK engineered cells/repeated infusions
- Targets other than CD33/123, eg, CLL1

Anti-CLL1 CAR Ts in Children With R/R AML

- Second-generation CLL1 CAR Ts 0.3-1 million/kg single dose post lymphodepletion with Flu-CTX
- 11 children with R/R AML treated
- 9 responses = 82% 5 CR MRD–, 3 CR MRD+, 1 PR

FT 516/FT 516 (NK cells) in R/R AML

- Induced pluripotent stem cells (iPSC) derived NK cells: off the shelf; large volumes 90 million-1.5 billion; repeat infusions (3-6)
- FT538 no need for IL-2 cytokine support
- 12 pts Rx: 5 responses (42%) 4 CRi, 1 MLFS
- Remission >6 mos in 2

Thank You

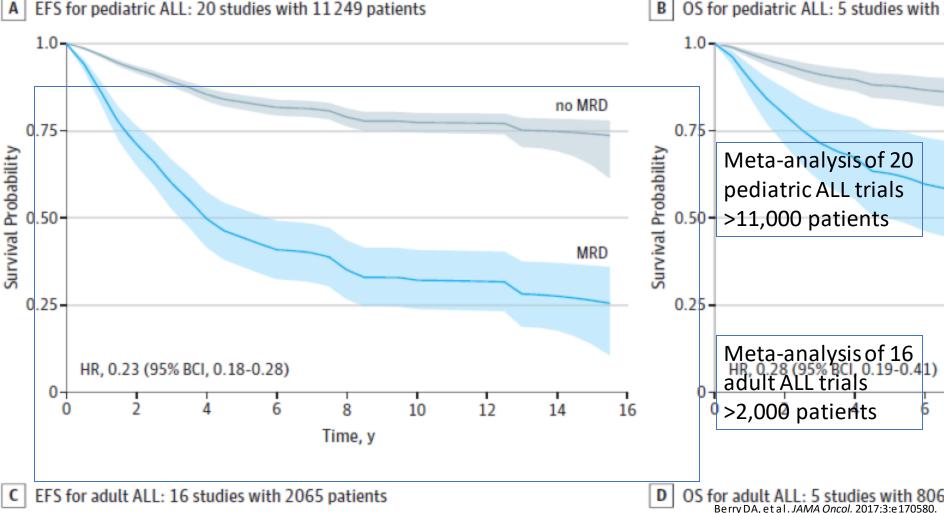
Elias Jabbour MD Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX Email: ejabbour @mdanderson.org Cell: 001.713.498.2929

Q&A session

Review of prognostic value of MRD in acute leukemias

Josep-Maria Ribera

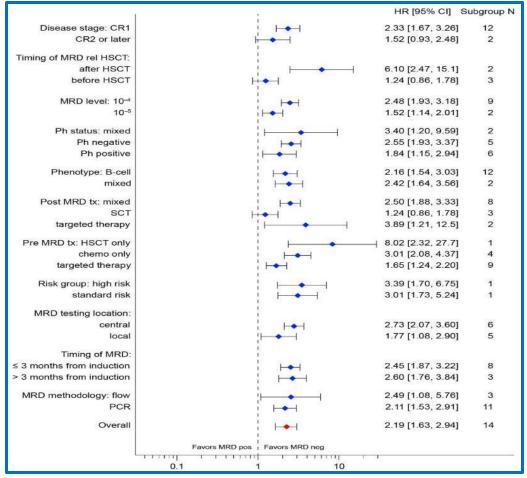
Global Leukemia Academy EU Meeting October 27–28, 2021


Review of the Prognostic Value of MRD in Acute Leukemias

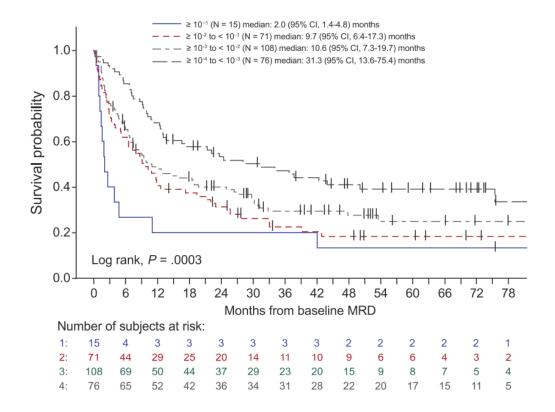
J.M. Ribera Servicio de Hematologia Clinica ICO-Hospital Germans Trias i Pujol Institut de Recerca contra la Leucemia Josep Carreras Badalona

Disclosures

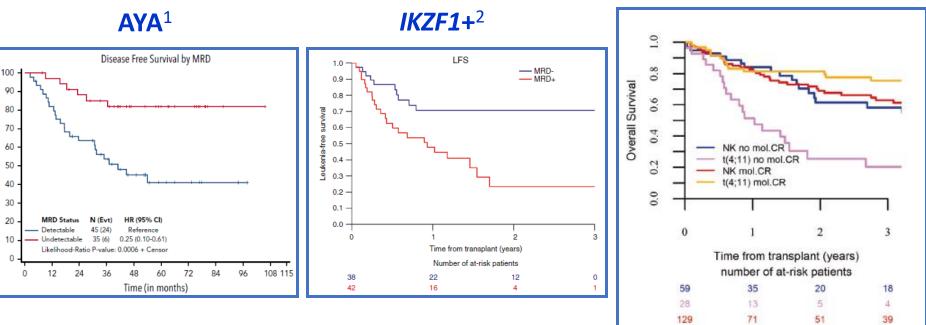
- Pfizer: speaker and advisory boards honoraria, clinical trials
- AMGEN: speaker and advisory boards honoraria, research support, clinical trials
- Shire: speaker and advisory boards honoraria
- Ariad: speaker and advisory boards honoraria, clinical trials
- Takeda: speaker and advisory boards honoraria, clinical trials
- Novartis: speaker and advisory boards honoraria


Acute Lymphoblastic Leukemia

EFS for pediatric ALL: 20 studies with 11249 patients А


OS for pediatric ALL: 5 studies with

Prognostic Value of MRD in All Situations

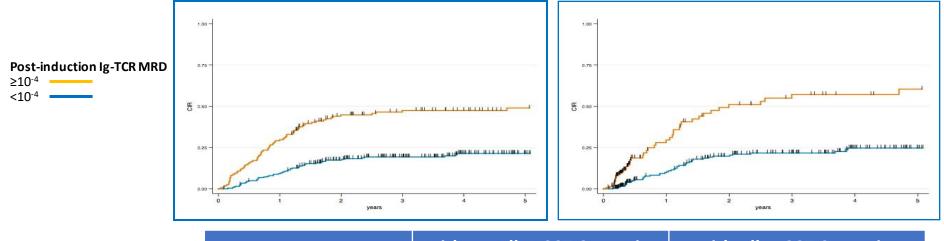

Joint EU Survey on High MRD Survey From 7 EU Cooperative Groups

- N = 270 patients with measurable MRD during first remission
 - 80% molecular failure
 - 19% molecular relapse
- Median DOR, 18.5 months (95% CI: 11.9, 27.2)
- Median RFS, 12.4 months (95% CI: 10.0, 19.0)
- Median OS, 32.5 months (95% CI: 23.6, 48.0)

Impact of MRD in Some ALL Subtypes

% event free

KMT2A+³


82

46

42

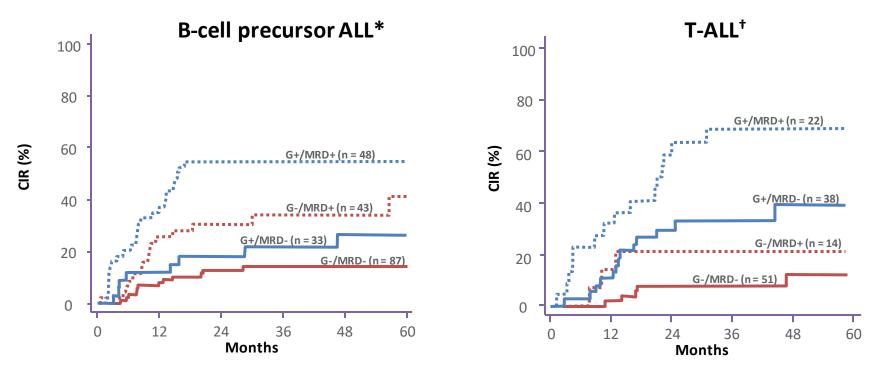
1. Stock W, et al. Blood. 2019;133:1548-1559; 2. Giebel S, et al. Bone Marrow Transplant. 2020. doi: 10.1038/s41409-020-01139-z; 3. Esteve J, et al. Leukemia. 2021. doi: 10.1038/s41375-021-01135-2.

MRD Is Not a Perfect Predictive Factor in Adult Ph– ALL

	Without AlloHSCT Censoring	With AlloHSCT Censoring
5-yr CCR in MRD+ pts	51.2%	39.6%
5-yr CIR in MRD– pts	21.2%	24.7%
Harrel's C-index	0.63	0.64

Courtesy of H. Dombret.

Beldjord K, et al. *Blood*. 2014;123:3739-3749; GRAALL data on file.

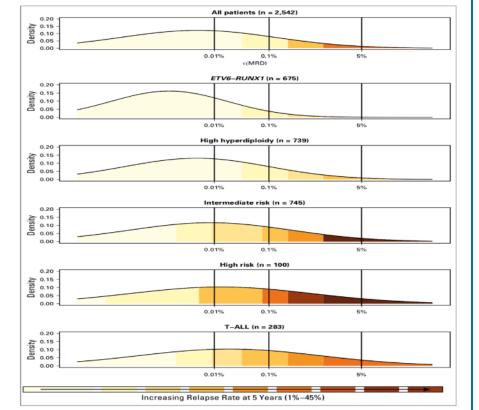

Cumulative Incidence of Relapse by Treatment Allocation (ITT analysis)

Bassan R, et al. Blood Cancer J. 2020;10(11):119.

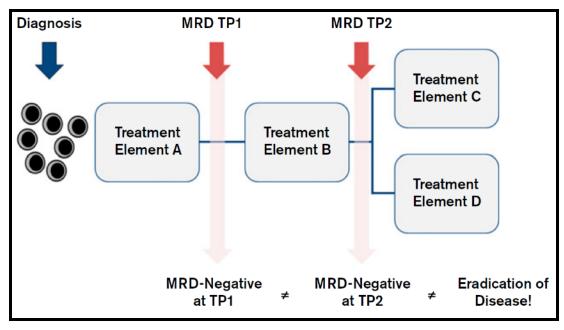
Ribera JM, et al. *Blood*. 2021;137:1879-1894.

Independent Prognostic Impact of MRD and Oncogenetic Pattern on Relapse: GRAALL Data

GENETIC RISK: *B-cell precursor ALL – MLL and/or *IKZF1* mutation; +T-ALL – no *NOTCH* and/or *RAS/PTEN* mutation


Adapted from Beldjord K, et al. *Blood*. 2014;123:3739-3749.

Value of MRD According to Genetic Subgroups


- The value of MRD may depend on
 -Response kinetics
 -Existence of resistant subclones
- Pediatric UKALL2003 study

 The risk of relapse was proportional to the MRD level within each genetic risk group
 However, absolute relapse rate that was associated with a specific MRD value varied significantly by genetic subtype

Integration of genetic subtype/subclone-specific MRD could allow a more refined risk stratification

Importance of <u>Time Points</u> in MRD Assessment

- Negative MRD at TP1: useful for recognizing patients with low risk of relapse
- **Positive** MRD at **TP2**: useful for recognizing patients with **high risk** of relapse

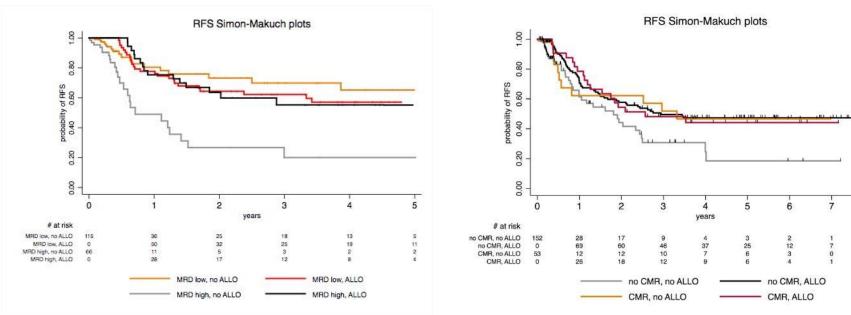
Use of MRD for Therapeutic Decisions

1. Intensification

• Allogeneic HSCT in first hematologic remission

2. Antibody-based immunotherapy

- Blinatumomab
- Inotuzumab ozogamicin
- CAR T cells


3. Targeted therapy

- TKI switch in Ph+ ALL
- Targeted therapy and immunotherapy

Allogeneic HSCT Benefits MRD+ Patients Only

Ph– ALL

Ph+ ALL

Test for interaction, *P* = .001

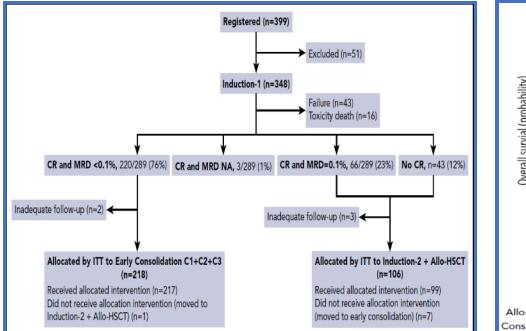
Dhedin N, et al. Blood. 2015;125(16):2486-2496.

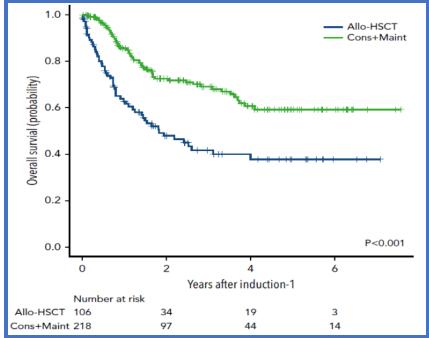
Test for interaction, P = .18

8

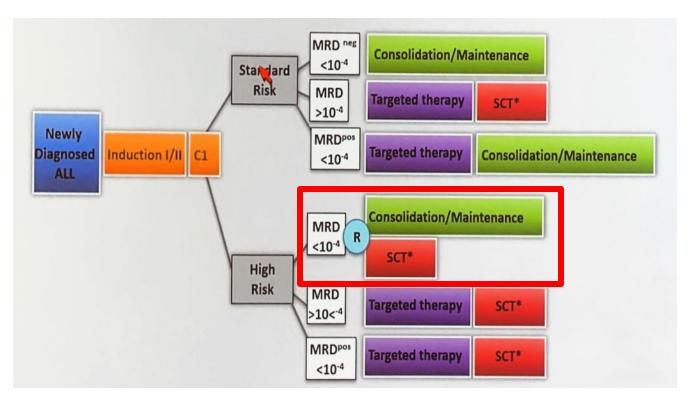
0

0

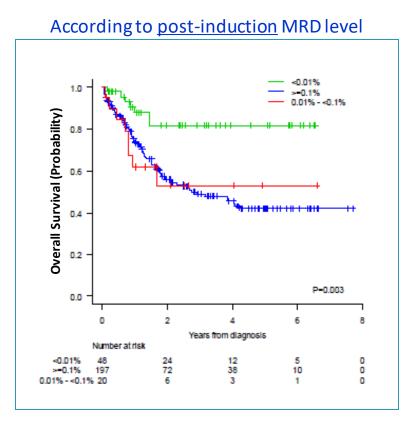

n


Chalandon Y, et al. *Blood*. 2015;125(24):3711-3719.

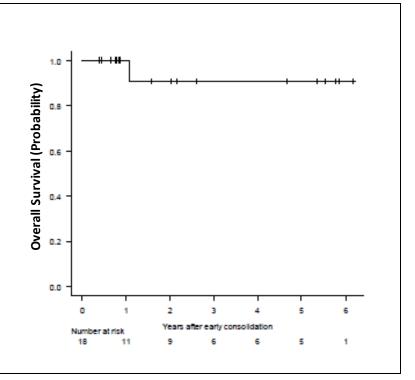
<u>Prospective</u> Studies With Indication for HSCT on the Basis of MRD Data (adult Ph– ALL)


Trial	Risk Groups	MRD Assessment	Randomization Assignment	References
NILG	SR & HR	PCR	NoAllo(auto)HSCT in MRD+ pts	Bassan R. <i>Blood.</i> 2009;113:4153-4162
PETHEMA HR03	HR	4-color flow	 No AlloHSCT in poor early cytologic responders or MRD+ pts 	Ribera JM. <i>J Clin Oncol.</i> 2014;32:1595-1604
NILG 10/07	SR & HR	PCR	NoAllo(auto)HSCT in MRD+ pts	Bassan R. <i>Blood Cancer J.</i> 2020;10:119
PETHEMA HR11	HR	8-color flow	NoAlloHSCT in MRD+ pts	Ribera JM, et al. <i>Blood</i> . 2021;137:1879-1894
GMALL 08/2013	SR & HR	PCR	 Yes. AlloHSCT vs chemo in MRD– HR pts AlloHSCT in MRD+ pts 	Ongoing; NCT02881086

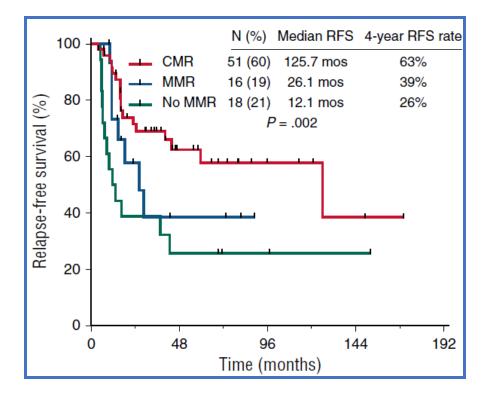
PETHEMA ALL HR11

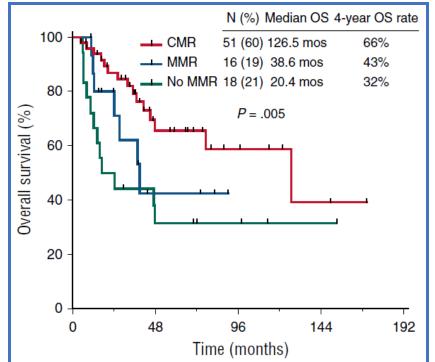


Current GMALL Strategy De Novo <55 Years: GMALL Trial 08/2013 – Ph– ALL



*Dose-reduced conditioning >45 yr. Courtesy of N. Gokbuget. NILG 10/07 Ph- ALL: Clinical Trials.gov NCT-00795756.


Prognostic Importance of Early MRD Response in Ph-ALL



Patients with MRD < 0.01% from d14

<u>CMR at 3 Months</u>: The Best Prognostic Factor in <u>Ph+ ALL</u>

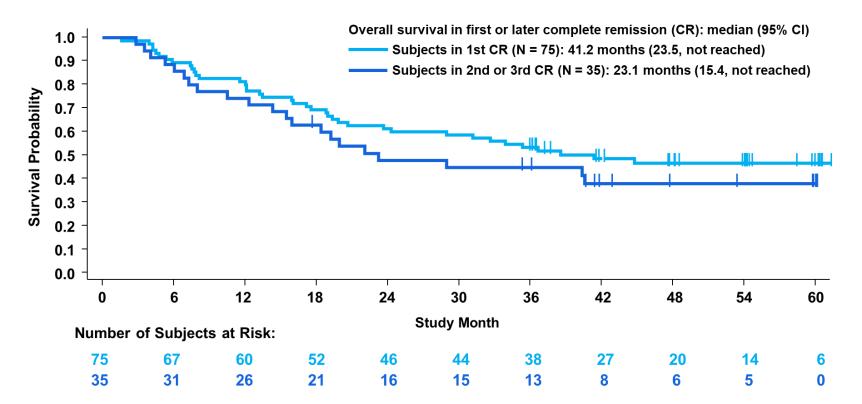
Short NJ, et al. *Blood*. 2016;128:504-507.

Use of MRD for Therapeutic Decisions

1. Intensification

• Allogeneic HSCT in first hematologic remission

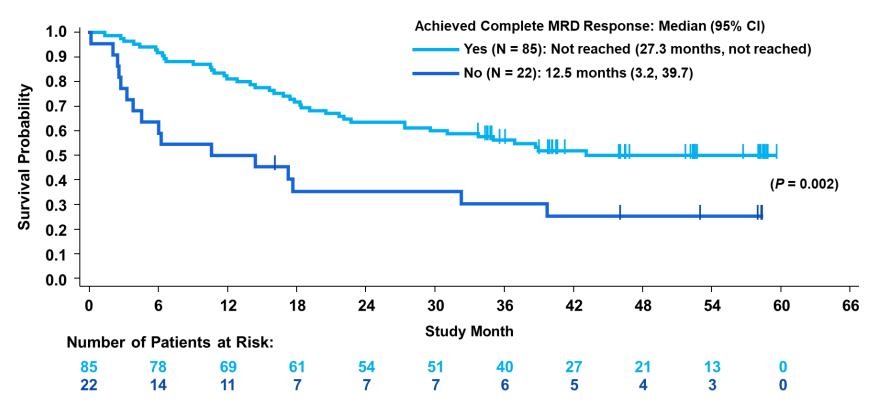
2. Antibody-based immunotherapy


- Blinatumomab
- Inotuzumab ozogamicin
- CAR T cells

3. Targeted therapy

- TKI switch in Ph+ ALL
- Targeted therapy and immunotherapy

Overall Survival By CR1 or CR2+



CR1, first complete remission; CR2+, second or later complete remission. Gökbuget N, et al. ASH 2018. Presentation 554.

Overall Survival by Complete MRD Response *All Patients Analyzed*

MRD, minimal residual disease.

 $Landmark\,a\,nalysis\,from\,day\,45; complete\,MRD\,response\,was\,defined\,as\,no\,ta\,rget\,amplification,\,with\,a\,minimum\,sensitivity\,of\,10^4.$

Gökbuget N, et al. ASH 2018. Presentation 554.

Use of MRD for Therapeutic Decisions

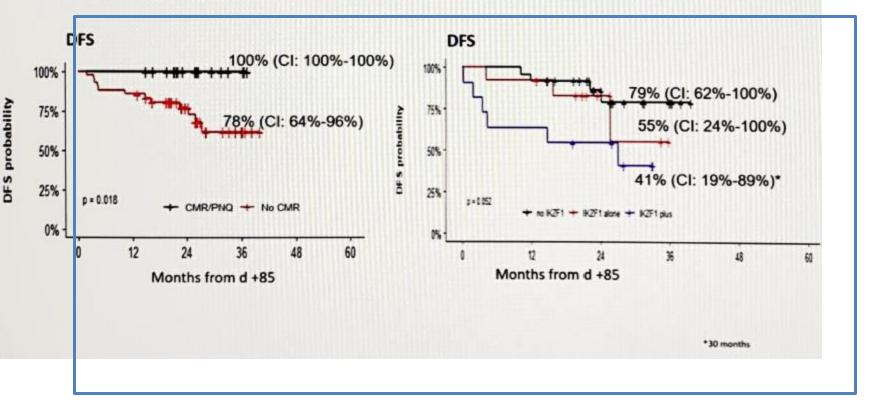
1. Intensification

• Allogeneic HSCT in first hematologic remission

2. Antibody-based immunotherapy

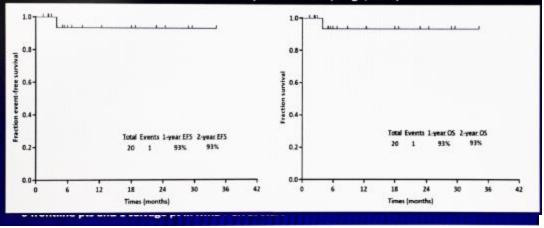
- Blinatumomab
- Inotuzumab ozogamicin
- CAR T cells

3. Targeted therapy


- TKI switch in Ph+ ALL
- Targeted therapy and immunotherapy

D-ALBA: Molecular Responses

	CMR (%)	PNQ (%)	CMR and PNQ (%)
Day +22	3 (5.2)	7 (12.1)	10 (17.3)
Day +45	9 (15)	8 (13.3)	17 (28.3)
Day +57	11 (20.0)	7 (12.7)	18 (32.7)
Day +85	6 (10.3)	11 (19.0)	17 (29.3)
Post-cycle 1	19 (35.2)	16 (29.6)	35 (64.8)
Post-cycle 2	22 (41.5)	10 (18.9)	32 (60.4)
Post-cycle 3	19 (48.7)	8 (20.5)	21 (69.2)
Post-cycle 4	15 (44.1)	12 (35.3)	20 (79.4)
Post-cycle 5	12 (55.6)	5 (16.7)	17 (68.3)


Primary endpoint: 60.3% (95% CI: 46, 73.5)

Updated D-ALBA: estimated 36 ms DFS according to molecular responses and CNAs

Pepatinit + Blinature matin Pho Allab in Newly Diagnosed Ph+ ALL Survival Outcomes for Frontline Cohort

Median follow-up: 12 months (range, 1-37)

Conclusions (ALL)

- MRD is the best prognostic factor in children and adults with ALL
- Prognostic significance at any time point (after induction, consolidation, before and after HSCT)
- Limited predictive value. Possible additional influence of oncogenetic factors
- MRD must de assessed within specific trials
- Possible early interventions to decrease the MRD level
 - Immunotherapy with mAb (blinatumomab, inotuzumab)
 - CAR T cells
- Combination with targeted therapy feasible (eg, Ph+ ALL) with promising preliminary results

Acute Myeloid Leukemia

MRD in AML: Techniques

Technique	Advantages	Disadvantages
Multiparameter flow cytometry	 Most commonly used method Applicable to >90% of patients Sensitivity 1 × 10⁻⁴ to 1 × 10⁻⁵ Identification of leukemia- associated immunophenotypes (LAIP) and/or different from normal approach 	 High level of expertise needed Selection of right antibody panel Standardization of analyses Extensive knowledge about normal and regenerative BM expression of CD
Molecular measurable MRD	 Higher sensitivity of RT-qPCR Novel developments of higher- sensitivity techniques Digital droplet PCR NGS (under investigation) 	 Limited to specific stable genes during disease progression NPM1 RUNX1-RUNX1 CBF-MY11

Where to Measure MRD in AML?

- Standard approach: bone marrow
- Peripheral blood
 - MFC: probably 1 log less sensitive
 - RT-qPCR: similar sensitivity?

(Potential) Use of MRD in the Clinic

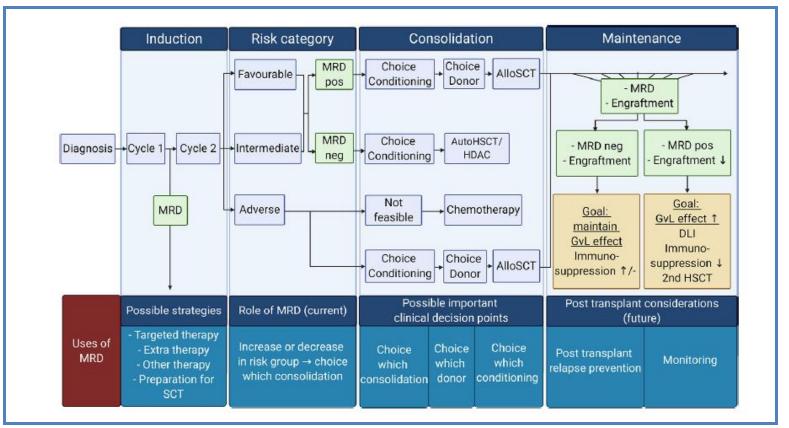
Potential Use **Comment Refine the CR status** MRD not officially recognized as surrogate endpoint Under research **Choose targeted therapy at induction** • Intensifying induction therapy in MRD+ pts Several trials with new drugs and targeted therapies • Choice of consolidation therapy Incorporation of new drugs in this phase • Potentially useful for selecting allo/auto in intermediate-risk group Defining the need and type of HSCT ٠

Pre-emptive therapy before HSCT

Post-transplant interventions

۰

٠


- Intensification of consolidation vs new drugs before HSCT
- Hypomethylating agents, DLI, immunotherapy, targeted therapy . . .

Prognostic and Predictive Value of MRD in AML

• Growing evidence on the prognostic value of MRD in

- Post-remission
- After consolidation
- Before HSCT
- Poor predictive value (as in ALL)
 - 30% of MRD- patients relapse

Possible MRD Tailored Therapy in Different AML Phases

Conclusions (AML)

- MRD has prognostic value in AML
- Techniques for MRD assessment less standardized than in ALL
- MRD still not officially recognized as surrogate endpoint
- MRD actively investigated as a decision tool for incorporation of new therapies and for selection of HSCT
- As in ALL, MRD has poor predictive value

Question #1

The best moment of MRD assessment for prognosis in Ph– ALL is:

- A. At diagnosis
- B. After induction (1 month from diagnosis)
- C. After consolidation (3 months from diagnosis)
- D. After autologous HSCT
- E. After allogeneic HSCT

Question #2 [repeated question]

In AML, MRD assessment by RT-qPCR is especially useful in:

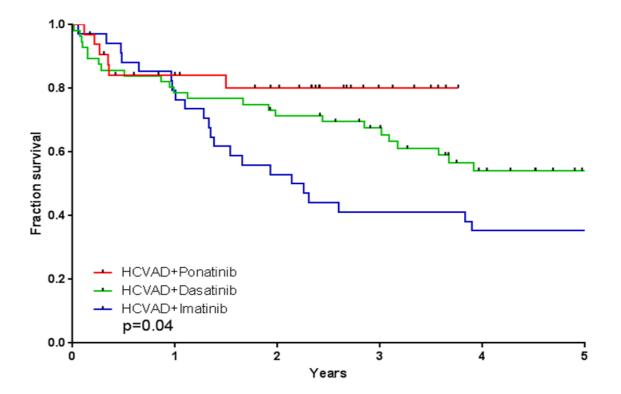
- A. FLT3-ITD
- B. NPM1 mutation
- C. Biallelic CEBPA mutation
- D. SF3B1 mutation
- E. ASXL1 mutation

Q&A session

Genetic variants in ALL – Ph+ and Ph-like

Philippe Rousselot

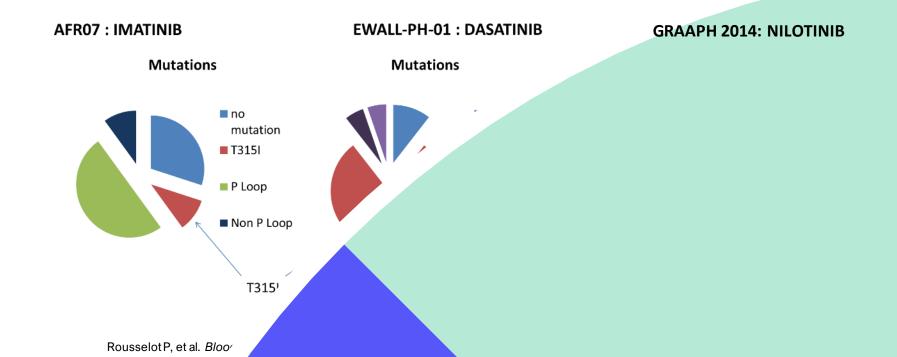
- > Research grants: Pfizer, Incyte
- > Advisory boards: Amgen, Pfizer
- > Travel grant: Pfizer

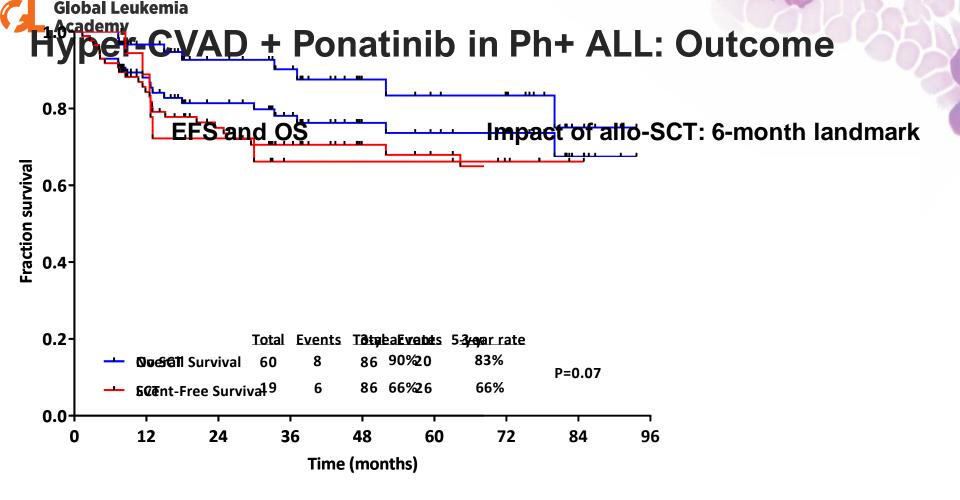

Global Leukemia Philadelphia-Positive ALL

- >Ph+ ALL are best treated with the combination of chemotherapy and tyrosine kinase inhibitor
- > Ph+ ALL develop BCR-ABL TK domain mutations in case of relapse
- > Ponatinib is efficient on most TK domain mutations except compound mutations
- > Allogenic stem cell transplantation can be avoided in case of a DMR
- > Chemo-free regimens are associated with a better OS compared with the combination of chemotherapy and TKI
- > Ph-like ALL are of better prognostic as compared with other B-cell ALL

Clinical Trial (year [†])		wly diagnosed pa yge, median [Range]	tients with Ph+ ALL: Che TKIS: SIM Chemotherapy	TKI, mg/day	h CR Rates
Imatinib		(
Yanada (2006)54	80	48 [15-63]	JALSG ALL202	IM 600	96
Wassmann (2006) ⁸	45	41 [19-63]	GMALL	IM 400	96
Fielding (2014) ⁹	175	42 [16-64]	UKALLXII/ECOG2993	IM 400 - 600	92
Chalandan (2015) ¹²	135	49 [18-59]	Low int. induction	IM 800	98
Chalandon (2015) ¹²	133	45 [21-59]	High int. induction	IM 800	⁹ Imatinib: 94% CR
Bassan (2010)55	59	45 [20-66]	NILG	IM 600	92
Daver (2015) ¹⁰	54	51 [17-84]	HyperCVAD	IM 400 - 800	93
De Labarthe (2007)56	45	45 [16-59]	GRAAPH 2003	IM 600 - 800	96
Lim (2015) ¹¹	87	41 [16-71]	Multiagent Chemo	IM 600	9Nilotinib: 91% CR
Nilotinib					
Kim (2015) ²²	90	47 [17-71]	Multiagent Chemo	NIL 800	9Dasatinib: 92% CR
Dasatinib					
Foa (2011) ²⁹	53	54 [24-76]	Prednisone	DAS 100-140	93 Ponatinib: 100% CR
Ravandi (2015)57	72	55 [21-80]	HyperCVAD	DAS 100	96
Ravandi (2015)58	94	44 [20-60]	HyperCVAD	DAS 70-100	88
Ponatinib					
Jabbour (2015) ^{34,35}	64 esy of M Yilr	48 [21-80]	HyperCVAD	PON 30-45	100

Ph+ ALL, Philadelphia hazomeeanchin Asivine mate on the patie 392 hereize TKI, tyrosine kinase inhibitor; N, number of patients; m,

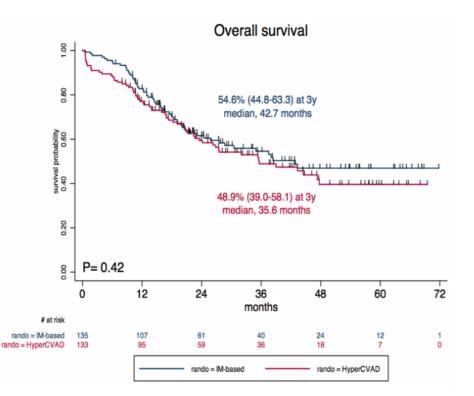

Relapse-free Survival and OS Summary From MDACC: HCVAD + TKIs



Courtesy of E Jabbour.

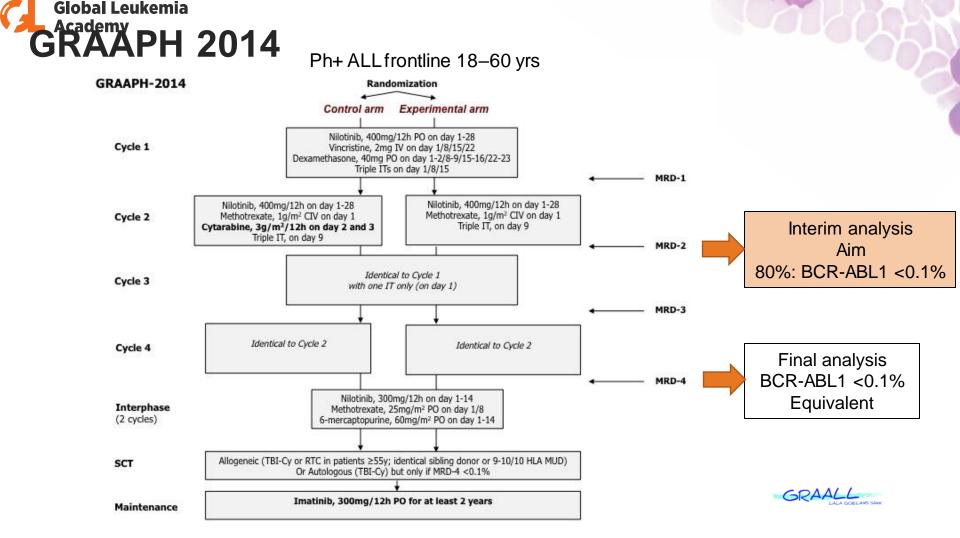
Mutations analysis in relapse

Academy Two Ongoing Randomized Trials

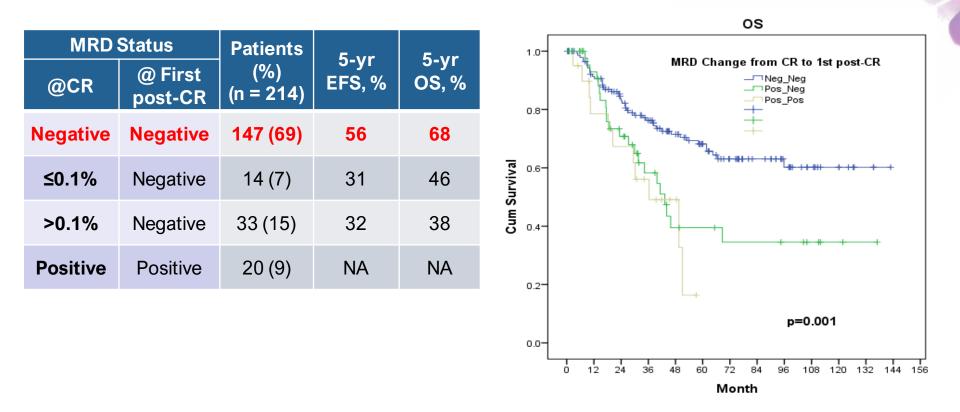

- > PONATINIB 3001 (Takeda)
 - EudraCT: 2018-000397-30
 - Imatinib 600 mg vs ponatinib 30 mg
 - Ph+ ALL 18y and older
 - Primary endpoint: molecular response (end of induction)

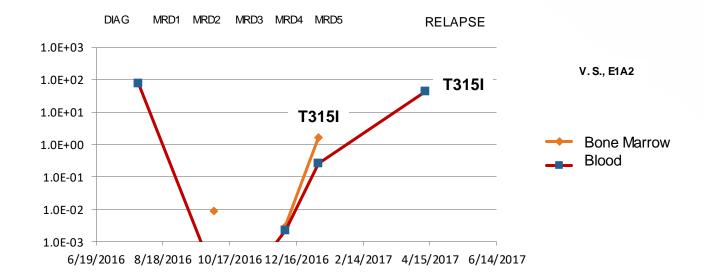
> EWALL-PH-03 (Cardiff University)

- EudraCT : 2018-0003350-25
- Imatinib 600 mg vs ponatinib 30 mg
- Ph+ ALL 55y and older
- Primary endpoint: molecular response (during consolidation)


Global Leukemia Academy High-Intensity vs Low-Intensity Chemotherapy for Induction – GRAAPH 2005

	IM-based (n= 135)	IM-HyperCVAD (n=133)	р	Total (n=268)
CR	133 (98.5%)	121 (91.7%)	0.006	254 (94.8%)
Courses to CR				
one	132 (97.8%)	118 (88.7%)	0.003	250 (93.2%)
two	1 (0.7%)	3 (2.2%)	-	4 (1.5%)
Resistance after 2 cycles	1 (0.7%)	3 (2.2%)	0.35	3 (1%)
D60 mortality	1 (0.7%)	9 (6.7%)	0.01	10 (3.7%)


Chalandon Y, et al. *Blood.* 2015;125:3711.



GRAAPH 2014 Final Analysis of the 156 Randomized Patients ASH 2021

T315I 25% at MRD5

- Relapse 3 months later with T315l at 100%
- No mutation detected at diagnosis

Courtesy of JM Cayuela.

47% of patients show persistence of BCR-ABL1 along with Ig/TCR decrease (disassociated kinetics)¹

- Suggests the existence of BCR-ABL1 clonal hematopoiesis in a subtype of adult Ph+ ALL
- > This resembles a "CML-like" entity, as previously described,^{2,3} in a fraction of patients with Ph+ ALL

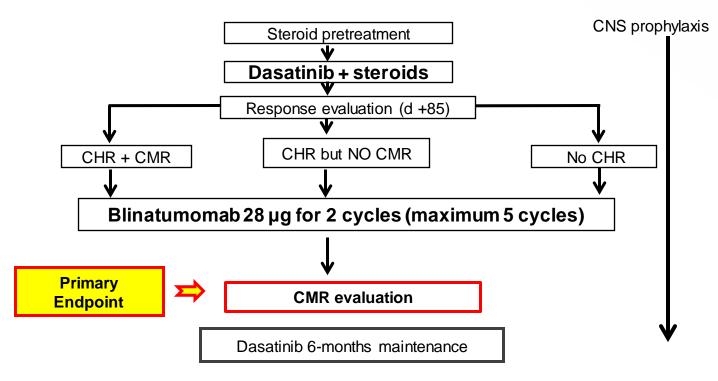
100% 1 **lo**a 10% 1% 0.1% 77 patients 0.01% n=433 samples $r_{p} = 0.47$ 0.001% Neg =101 n=12 lg/TCR 10⁻³ 10⁻² 10⁻¹ 100 10-5 10-4 Neg Png

 $Ig/TCR, immunoglobulin/T-cell receptor; neg, negative; pnq, positive not quantifiable; r_p, Pearson linear.$

1. Clappier E, et al. EHA 2018. Abstract S1568; 2. Hovorkova L, et al. Blood. 2017;129:2771-2781;

3. Nagel I, et al. Lymphoid Neoplasia. 2007;130:2027-2031.

> Next ASH 2021!


Parameter	Hyper-CVAD + ponatinib	TKIs with reduced chemo
% CR	90–100	90–100
% CMR	80	60
Allo-SCT required	Only if no CMR	In all
% 3-yr survival/DFS	80	80

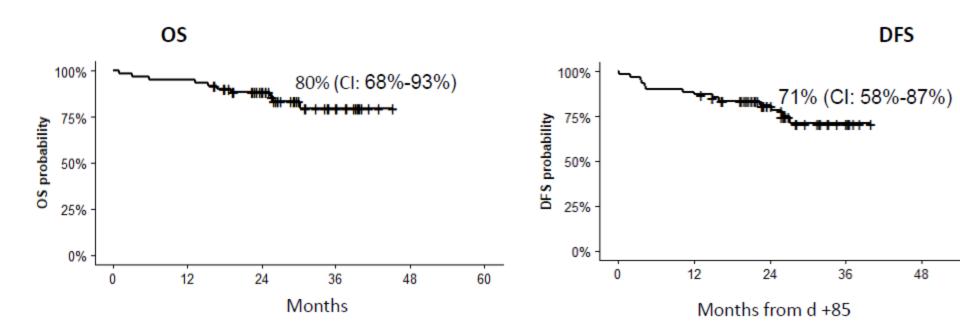
A third strategy: Chemo free?

Jabbour E, et al. Lancet Oncol. 2015;16:1547; Chiaretti S, et al. Blood. 2015;126:abstract 81.

Dasation b + Blinatumomab for First-line Treatment of Ph+ ALL: Preliminary Results of the GIMEMA LAL2116 D-ALBA trial

D-ALBA: treatment scheme

Global Leukemia Academy Dasatinib-Blinatumomab in Ph+ ALL

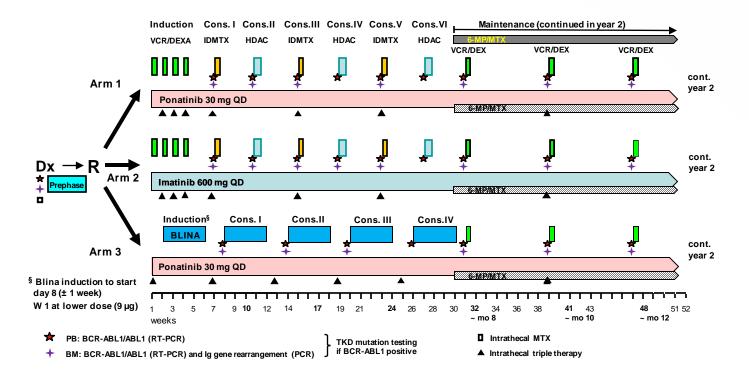

> 63 pts, median age 54 yr (24-82)

> CR: 98%

 Table 2. Molecular Responses during Induction Therapy, at the End of Induction Therapy (Day 85), and after Each Blinatumomab Cycle.

Assessment	No Molecular Response	Complete Molecular Response	Positive Nonquantifiable Response	Overall Molecular Response
	number of patients/total number (percent)			
Induction period				
Day 22	48/58 (83)	3/58 (5)	7/58 (12)	10/58 (17)
Day 45	43/60 (72)	9/60 (15)	8/60 (13)	17/60 (28)
Day 57	38/56 (68)	11/56 (20)	7/56 (12)	18/56 (32)
Day 85	42/59 (71)	6/59 (10)	11/59 (19)	17/59 (29)
Blinatumomab cycle				
After cycle 1	20/55 (36)	1 9/55 (3 5)	16/55 (29)	35/55 (64)
After cycle 2	22/55 (40)	23/55 (42)	10/55 (18)	33/55 (60)
After cycle 3	12/40 (30)	20/40 (50)	8/40 (20)	28/40 (70)
After cycle 4	7/36 (19)	17/36 (47)	12/36 (33)	29/36 (81)
After cycle 5	8/29 (28)	16/29 (55)	5/29 (17)	21/29 (72)

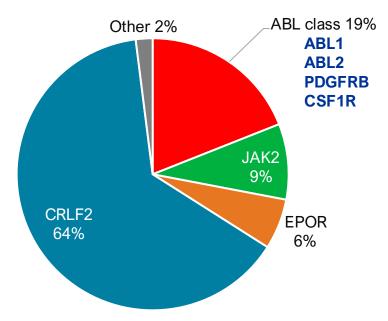
Updated D-ALBA: estimated 36 ms OS and DFS



Median follow-up: 28.81 ms (0.9-45.16)

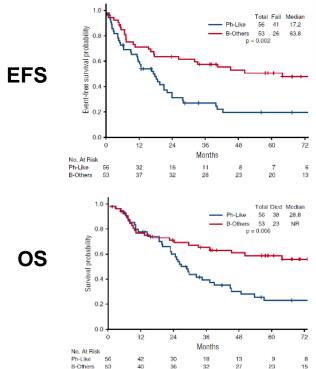
Foa R, et al. N Engl J Med. 2020;383:1613-1623; Chiaretti S, et al. EHA 2021.

Patients aged 55 yrs or older (ongoing, 7 patients included)

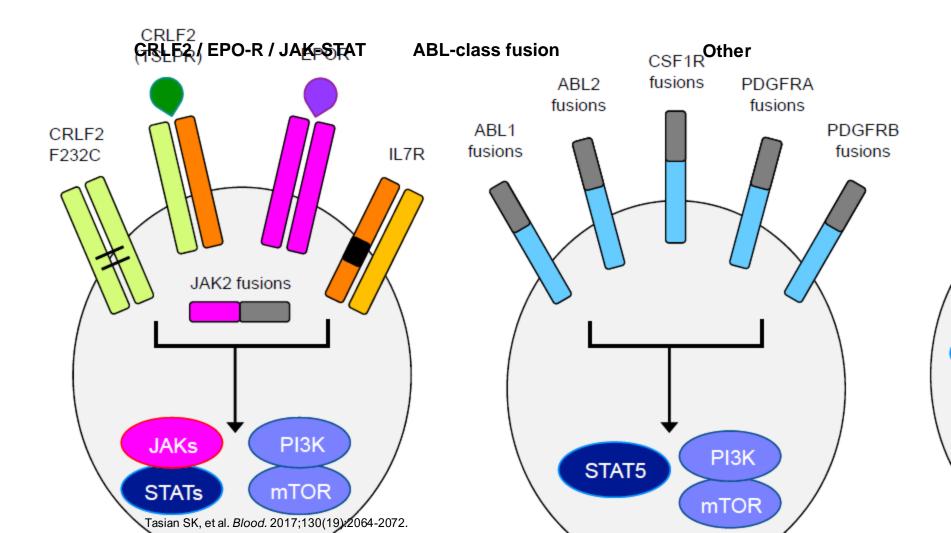


BCR-ABL+-like ALL

Relative frequency of Ph-like ALL alterations in children, adolescents, and adults

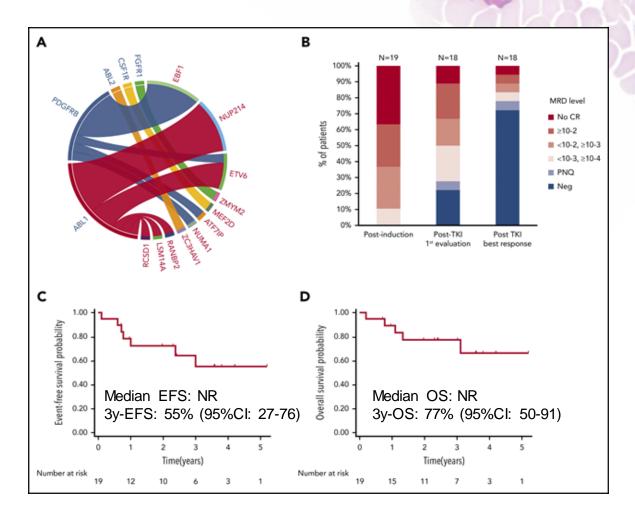

Summary data from 5 recent clinical studies (n = 2506 cases) depict the most common ABL class and CRLF2/JAK pathway-associated translocations occurring in children and adults with Ph-like ALL.

Adapted from Harvey RC, Tasian SK. *Blood Adv.* 2020. Hunger SP, Mullighan CG. *Blood.* 2015;125(26):3977-3987; Harvey RC, Tasian SK. *Blood Adv.* 2020;4(1):218-228.



GMALL: 06/99 & 07/031 + Censored Remaining BCP-0.8 ALL (n=40) 0.6 **EFS** DFS P<0.001 0.0 Ph-like (n=19) 0 No. At Risk 10 Ph-Like 56 B-Others 53 + Censored Remaining BCP-1.0 0.8 ALL (n=40) 0.8 al probability 0.6 OS 0.6 OS P=0.006 0.4 0.4 Survi 0.2 0.2 Ph-like (n=19) 0.0 0 0.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 No. At Risk Ph-Like

MDACC: HyperCVAD/A-BFM²



1. Herold T, et al. Haematologica. 2017;102:130-138; 2. Jain N, et al. Blood. 2017;129:572-581.

Global Leukemia Academy Ph-like ALL With Targetable ABL-family Gene

French TKI experience

- > Induction therapy: low-intensity chemotherapy + TKI
- > Best TKI: no direct comparison, ponatinib 45 mg if possible
- > Consolidation therapy: conventional chemotherapy + TKI
- > Allogeneic HSCT: still recommended, may be avoided in MRD-neg patients
- > Autologous HSCT: not recommended
- > MRD: evaluated by BCR-ABL1 quantification, discrepancies with IgH/TCR (CML-like Ph+ ALL)
- > Maintenance: indefinitely outside allo-HSCT
- > Relapse: no efficient therapy, mutation driven, ponatinib + blina may be the best option
- > CAR T-cell positioning: unknown
- > Chemo-free regimens: the future but CNS prophylaxis mandatory for BCR-ABL-like
 - Not so few patients
 - Personalized therapy?

Global Leukemia Philadelphia-positive ALL

- >Ph+ ALL are best treated with the combination of chemotherapy and tyrosine kinase inhibitor
- > Ph+ ALL develop BCR-ABL TK domain mutations in case of relapse
- > Ponatinib is efficient on most TK domain mutations except compound mutations
- > Allogenic stem cell transplantation can be avoided in case of a DMR
- > Chemo-free regimens are associated with a better OS as compared to the combination of chemotherapy and TKI
- > Ph like ALL are of better prognostic as compared to other B-cell ALL

> Molecular Biology (France)

- JM Cayuela, S Hayette, MM Coudé
- E Clappier

> All the GRAALL PIs

- Hervé Dombret and investigators from the GRAALL, France
- Yves Chalandon, co-PI of the GRAAPH trials

> EWALL PIs

- Oliver G Ottmann, A. Giagounidis, Nicola Gökbuget, Dieter Hoelzer, GMALL, Germany
- Andre Delannoy GRAALL, Belgium
- Renato Bassan, Allessandra Crescimanno, Maurizio Musso, Carlo Gambacorti, Italy
- Josep Ribera PETHEMA, Spain
- Jerzy Holowiecki, Sebastian Giebel PALG, Poland
- Michael Doubek, Cyril Salek, Jiri Mayer, Czech Republic
- Andreea Delia Moicean, RWGALS, Romania
- Hervé Dombret and investigators from the GRAALL, France

UFR Simone Veil - Santé campus de saint-quentin-en-yvelines

Q&A session

AYA ALL patients – what is the current treatment approach for this diverse patient population?

Rob Pieters

Adolescents/young adults (AYA) with ALL

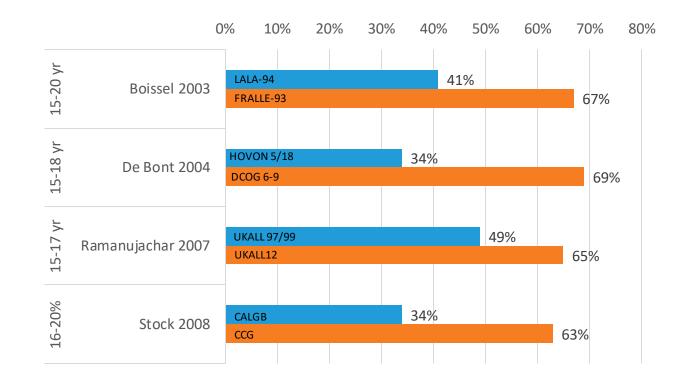
Rob Pieters Chief Medical Officer

Question 1: Which assertion is NOT correct for adolescent and young adult ALL patients?

- a) Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- b) Osteonecrosis and anaphylactic reactions to asparaginase are more often seen in adults than in children and teenagers
- c) AYA patients experience more liver toxicity and thrombosis than children <10 years old
- *d)* BCR-ABL1-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

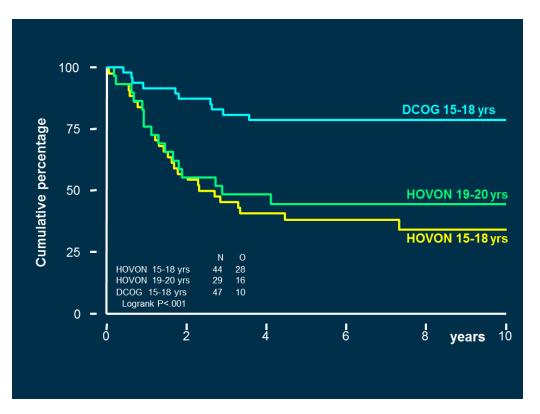
Inferior outcome for AYA patients: Why?

- Role of "pediatric-" vs "adult-inspired" treatment protocols
- Site of treatment
- Trial enrollment
- Toxicity profile
- Biology/genetics of the leukemia
- Adherence


Pediatric vs adult treatment protocols

Princess máxima center pediatric oncology

- More intensive use of
 - Glucocorticoids
 - Vincristine
 - Asparaginase
 - Methotrexate
 - 6-mercaptopurine
- Less intensive use of
 - Anthracyclines
 - Cyclophosphamide
- Less frequent use of alloSCT
- Prolonged maintenance, delayed intensification, CNS-directed therapy

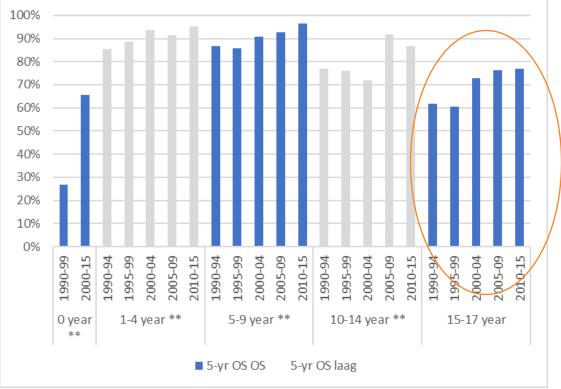

Comparison of 5-year EFS in adolescent and young adult (AYA) patients treated on pediatric and adult protocols

Boissel N, et al. J Clin Oncol. 2003;21(5):774-780; De Bont JM, et al. Leukemia. 2004;18(12):2032-2035; Ramanujachar R, et al. Pediatr Blood Cancer. 2007;48(3):254-261; Stock W, et al. Blood. 2008;112(5):1646-1654.

Adolescent ALL on pediatric DCOG vs adult HOVON protocol in the Netherlands

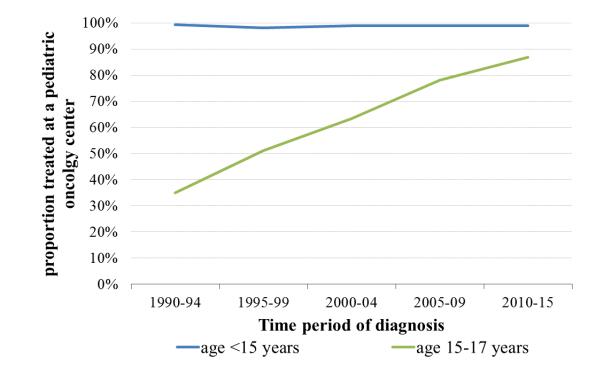
Princess

pediatric oncology


5 yrs actuarial probabilities

	CR	OS (sd)	EFS (sd)	DFS (sd)	pREL (sd)	TRM (sd)
DCOG 15-18 yrs (n=47)	98%	79% (±6)	69% (±7)	71% (±7)	27% (±7)	4% (±3)
HOVON 15-18 yrs (n=44)	91%	38% (±7)	34% (±7)	37% (±8)	55% (±8)	25% (±7)
HOVON 19-20 yrs (n=29)	90%	44% (±9)	34% (±9)	38% (±10)	50% (±10)	21% (±8)
p-value	0.24	0.0001	<0.0001	0.0002		

5-year overall survival by age group over time in the Netherlands



Princess

Proportion of patients with ALL treated at a pediatric oncology center in the Netherlands

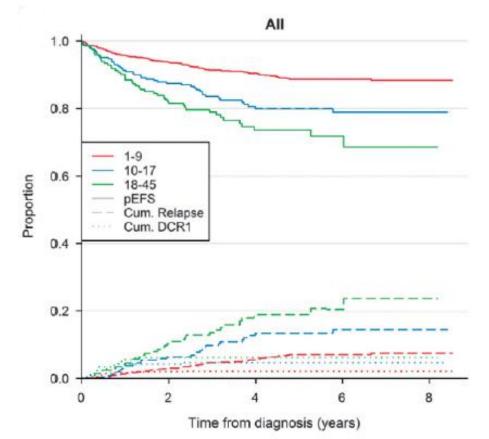
Multivariate analysis of risk of death: Patients 15–17 years old with ALL in the Netherlands between 1990 and 2015

		Hazard risk	95% CI	95% Cl	P value
	1990-94	Reference			
	1995-99	0.97	0.50	1.91	.94
Period	2000-04	0.67	0.32	1.42	.30
	2005-09	0.64	0.30	1.37	.25
	2010-15	0.80	0.38	1.68	.56
Sex	Male	Reference			
Sex	Female	1.45	0.89	2.37	.14
Immunophenotype	Precursor B cell	Reference			
immunophenotype	Precursor T cell	1.59	0.97	2.62	.07
Site of treatment	Outside pediatric oncology center	Reference			
Site of treatment	Pediatric oncology center	0.32	0.20	0.53	<.01

Outcomes of older adolescents treated on recent pediatric trials

Trial	No. of patients	Age range,	Early	Death in		EFS		OS	
		yr	death, %	CR, %	HSCT, %	Y	%	Y	%
CCG 1961	262	16-21	2	3	4	5	72	5	78
DFCI 9101/9501	51	15-18	4	2	NR	5	78	5	81
Total Therapy XV	45	15-18	0	7	11	5	86	5	88
UKALL 2003	229	16-24	NR	6	6.1	5	72	5	76
FRALLE 2000	186	15-19	2	2	12	5	74	5	80
DCOG ALL-10	57	15-18	3.5	3.5	12	5	79	5	82

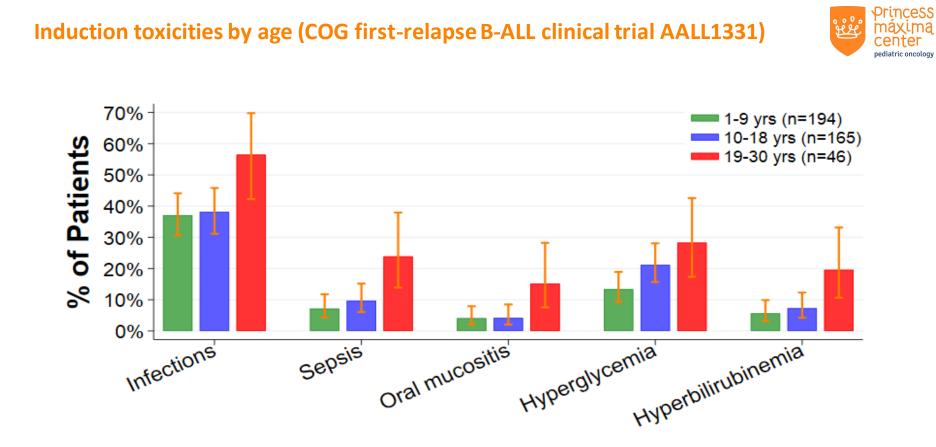
Outcomes of young adults on recent pediatric-inspired protocol (HOVON)



Trial	No. of	Age range, yr	Early death, %	Death in CR, %	HSCT, %	EFS		OS	
	pts					Y	%	Y	%
CCG 1961	262	16-21	2	3	4	5	72	5	78
DFCI 9101/9501	51	15-18	4	2	NR	5	78	5	81
Total Therapy XV	45	15-18	0	7	11	5	86	5	88
UKALL 2003	229	16-24	NR	6	6.1	5	72	5	76
FRALLE 2000	186	15-19	2	2	12	5	74	5	80
DCOG ALL-10	57	15-18	2.5	2.5	12	5	79	5	82
HOVON 100	77	18-25			44%	5	59	5	77
HOVON 100	82	26-40			41%	5	61	5	72

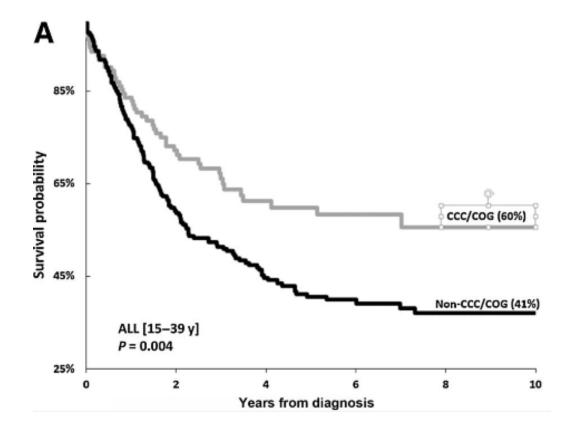
Courtesy of Anita Rijneveld and Lotte van der Wagen (HOVON study group)

EFS, relapse, and death in first remission by age



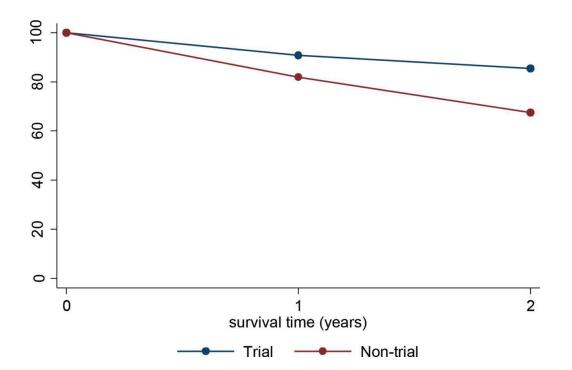
Toxicity by age

	Y/N (%)	OR (95% CI)	P
	e care w/wo assi		
1-9	145 / 864 (14.49		12/2/1
10-17			0.14
18-45			0.68
Anaphy	latic reaction to a		
1-9	146 / 863 (14.59		
	25 / 237 (9.5%)		0.016
18-45	11/201 (5.2%)	0.3 (0.1-0.5)	< 0.001
Invasive	e Fungal infection	n	
1-9	98/911 (9.7%)	1.0 (1.0-1.0)	
10-17	32 / 230 (12.2%)	0.9 (0.6-1.4)	0.68
18-45	28 / 184 (13.2%)	0.9 (0.5-1.4)	0.54
Periphe	ral paralysis	 Second a second second 	
1-9	100 / 909 (9.9%) 1.0 (1.0- 1.0)	
	30 / 232 (11.5%)		0.21
18-45			0.61
Pancrea			
1-9	60 / 949 (5.9%)	1.0 (1.0-1.0)	
10-17			0.001
18-45			0.001
Hyperlip		,	0.001
1-9		1.0 (1.0-1.0)	
10-17			0.027
18-45	15/197 (7.1%)		0.37
1040	101 101 (1.170)	1.5 (0.1-2.5)	0.57

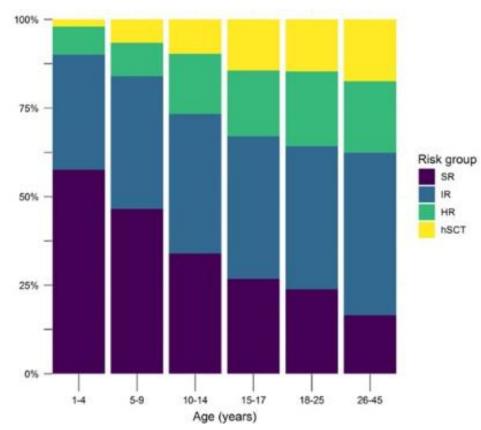

Thrombo	osis	a	8	ð.		
1-9 10-17 18-45	36 / 973 40 / 222 37 / 175	(15.3	%) 5.	0 (1.0- 0 (3.1- 0 (3.6-	8.2)	<0.001 <0.001
Osteone		10.00				
1-9 10-17 18-45	23 / 986 35 / 227 18 / 194	(13.4	%) 8.	0 (1.0- 0 (4.6- 3 (2.7-	14.1)	<0.001 <0.001
Seizures						
1-9 10-17 18-45	38 / 971 16 / 246 5 / 207 ((6.1%	6) 1.	0 (1.0- 7 (0.9- 7 (0.2-	3.1)	0.086 0.39
PCP 1-9 10-17 18-45	29 / 980 11 / 251 13 / 199	(4.29	6) 1.	0 (1.0- 3 (0.6- 8 (0.9-	2.6)	0.48 0.089
PRES 1-9 10-17 18-45	37 / 972 9 / 253 (5 / 207 (3.4%) 0.	0 (1.0- 8 (0.4- 5 (0.2-	1.7)	0.60 0.18

Hogan et al. Blood 2018; 132:1382 (courtesy of Mignon Loh)

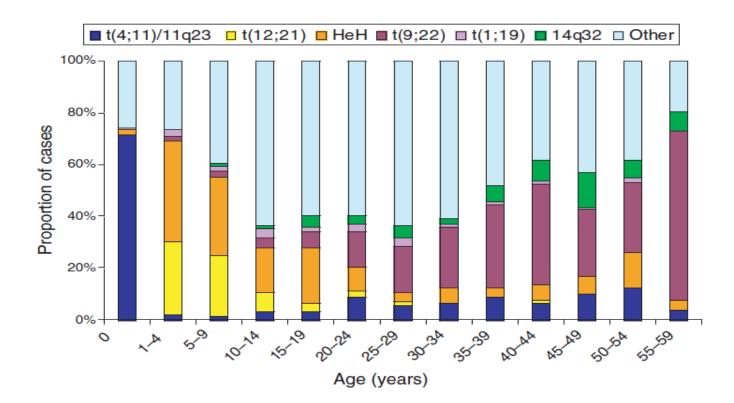
Survival in AYA with ALL by treatment site in North America



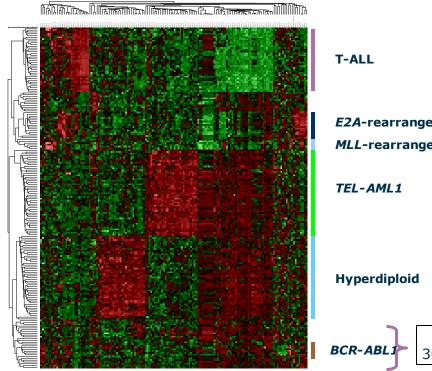
Wolfson J, 2017

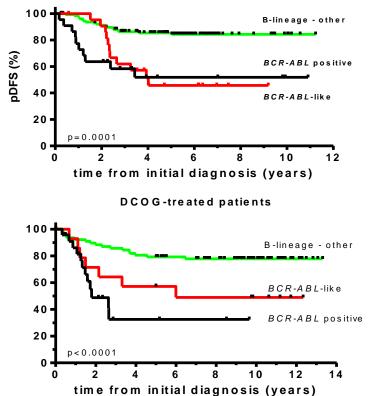

Survival in 15- to 24-year-old ALL patients (n = 503) by trial status

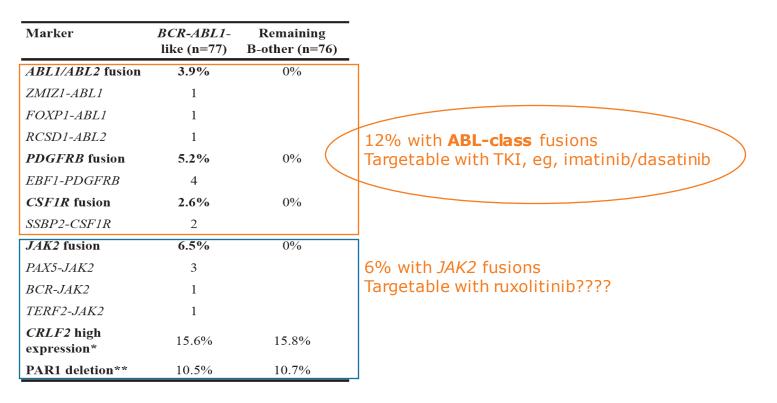
Risk group distribution (MRD based) by age



Toft N, 2018


Distribution of cytogenetic subtypes of ALL by age


Discovery of BCR-ABL1–like ALL in 2009

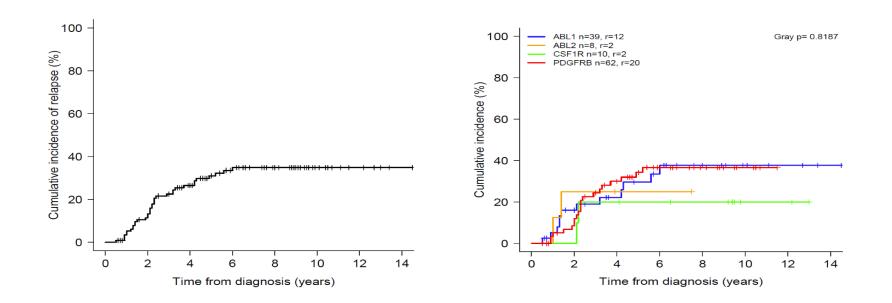

E2A-rearranged MLL-rearranged

COALL-treated patients

Frequency of identified tyrosine kinase fusion genes in *BCR-ABL1*–like ALL and remaining B-other ALL

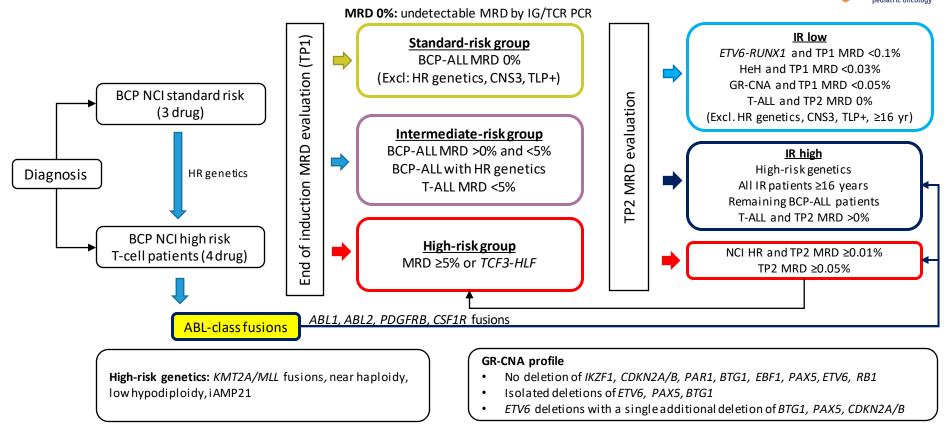
Princess

maxima

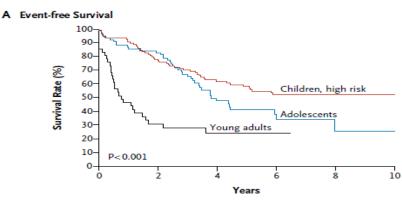

pediatric oncology

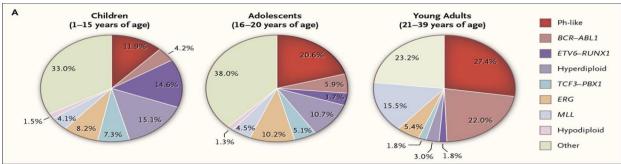
rente

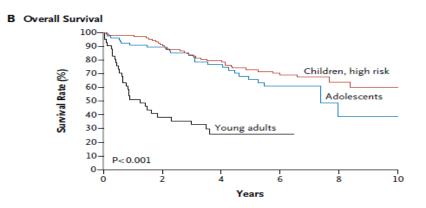
9CH

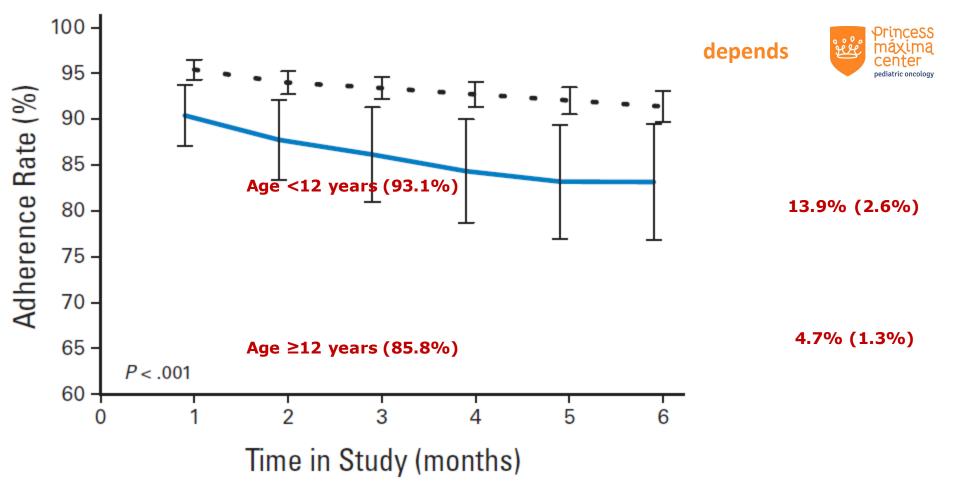

Cumulative incidence of relapse in ABL-class patients

Risk-stratification algorithm






Ph-like ALL: Prevalence and outcomes


- 154 cases Ph-like ALL analyzed by NGS
- Kinase activating alterations in 91%
- Prevalence increased with age
- Inferior outcomes among all age groups

Roberts KG et al. N Engl J Med 2014;371:1005-1015; Graubert TA. N Engl J Med 2014;371:1064-1066 (courtesy of Mignon Loh)

AYA conclusions

- Outcomes improved but still inferior to those in younger children
- Pediatric-inspired protocols better than adult-inspired protocols
- Treatment within trials better outcomes
- Higher toxicity in AYA than in younger children, but manageable
- Higher incidence of unfavorable biology/genetics
- Lower adherence to medication

[repeated question] Question 1: Which assertion is NOT correct for adolescent and young adult ALL patients?

- a) Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- b) Osteonecrosis and anaphylactic reactions to asparaginase are more often seen in adults than in children and teenagers
- c) AYA patients experience more liver toxicity and thrombosis than children <10 years old
- d) BCR-ABL1-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

Thank you

Q&A session

Break

Bispecifics as post-reinduction therapy improve survival in high-risk first-relapse pediatric and AYA B-ALL

Patrick Brown

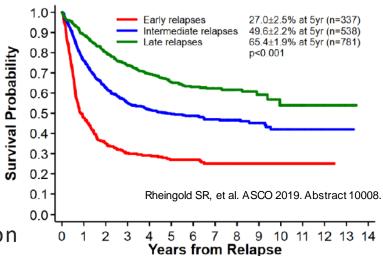
THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER

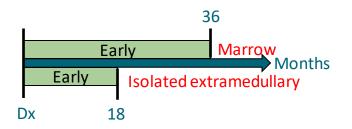
National Comprehensive Cancer Network®

Bispecific T-Cell Engagers as Post-reinduction Therapy Improves Survival in Pediatric and AYA B-ALL

Patrick Brown, MD

Professor of Oncology, Johns Hopkins University Director, Pediatric Leukemia Program, Sidney Kimmel Comprehensive Cancer Center Vice Chair for Relapse, COG ALL Committee Chair, NCCN ALL Guidelines Panel


Relapsed Pediatric/AYA ALL


- Poor survival for first-relapse B-ALL in children, adolescents, and young adults (AYA), especially early relapses
- Standard treatment approach
 - Reinduction chemotherapy → second remission
 - Consolidation
 - <u>Early relapse</u>: intensive chemo → HSCT
 - Goal: MRD negativity prior to HSCT
 - Late relapse

CHILDREN'S

ONCOLOGY GROUP

- "MRD high": same as early
 - "MRD low": intensive chemo → maintenance therapy

How can we improve on this "standard"?

Blinatumomab (CD19 BiTE)

- In multiply relapsed/refractory setting (pediatrics)
 - CR 35%-40%
 - MRD–CR 20%–25%

von Stackelberg A, et al. J Clin Oncol. 2016;34:4381-4389.

- In MRD+setting (adults)
 - 80% MRD clearance
 - 60% subsequent DFS (bridge to HSCT)

Gokbuget N, et al. Blood. 2018;131:1522-1531.

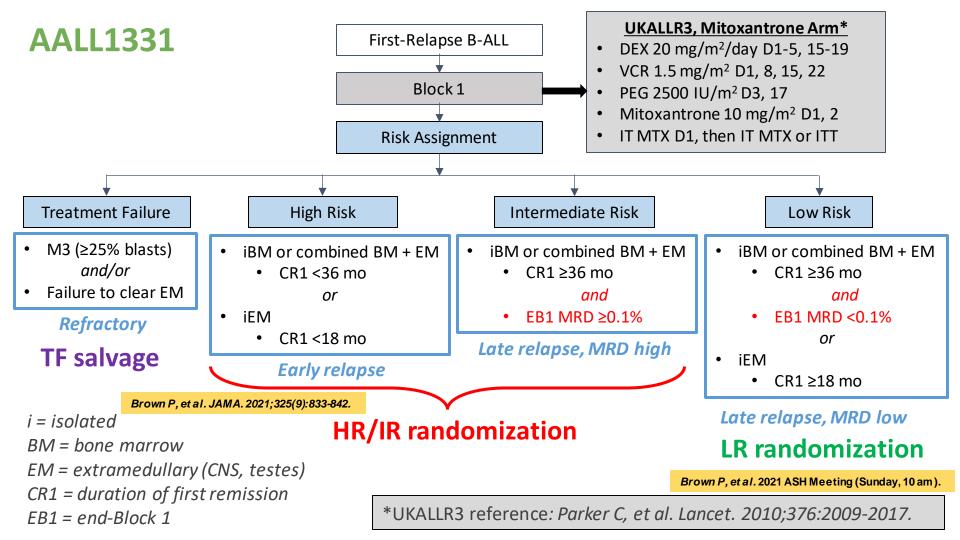
Activated: 12/08/14 Closed: 09/30/19 Version Date: Amendment 12/19/2019 #10A

CHILDREN'S ONCOLOGY GROUP

AALL1331

Risk-Stratified Randomized Phase III Testing of Blinatumomab (IND# 117467, NSC# 765986) in First Relapse of Childhood B-Lymphoblastic Leukemia (B-ALL)

IND Sponsor for Blinatumomab: DCTD, NCI


STUDY CHAIR

Patrick Brown, MD 1650 Orleans Street, CRB1 RM 2M49 Baltimore, MD. 21231 Phone: (410) 614-4915 Fax: (410) 955-8897 E-mail: pbrown2@jhmi.edu

Overall objective of COG AALL1331:

CHILDREN'S ONCOLOGY GROUP To determine if substituting blinatumomab for intensive consolidation chemotherapy improves survival in first relapse of childhood/AYA B-ALL

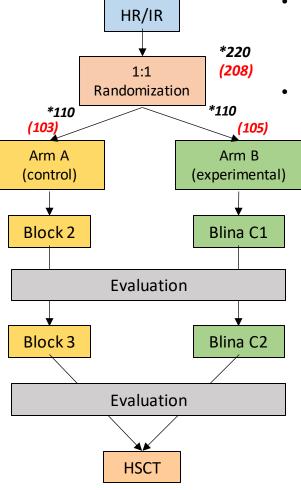
AALL1331

Stratifications

- Risk group (HR vs IR)
- For HR
 - Site (BM vs iEM)
 - For BM: CR1 duration (<18 vs 18-36 mo)

UKALLR3, Block 2*

- VCR, DEX week 1
- ID MTX, PEG week 2
- CPM/ETOP week 3
- IT MTX or ITT


UKALLR3, Block 3*

- VCR, DEX week 1
- HD ARAC, Erwinia weeks 1-2

*UKALLR3 reference: Parker C, et

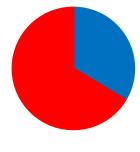
al. Lancet. 2010:376:2009-2017.

- ID MTX, Erwinia week 4
- IT MTX or ITT

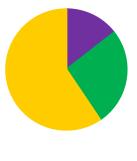
- <u>Endpoints</u>
 - Primary: DFS
 - Other: OS, MRD response, ability to proceed to HSCT
- <u>Sample size n = 220 (110 per arm)</u>
 - Power 85% to detect HR 0.58 with 1-sided α = 0.025
 - Increase 2-yr DFS from 45% to 63%

Blina C1 and Blina C2

- Blinatumomab 15 μg/m²/day × 28 days, then 7 days off
- Dex 5 mg/m²/dose × 1 premed (C1 only)
- First patient randomized Jan 2015
- Randomization halted Sep 2019 (95% projected accrual)

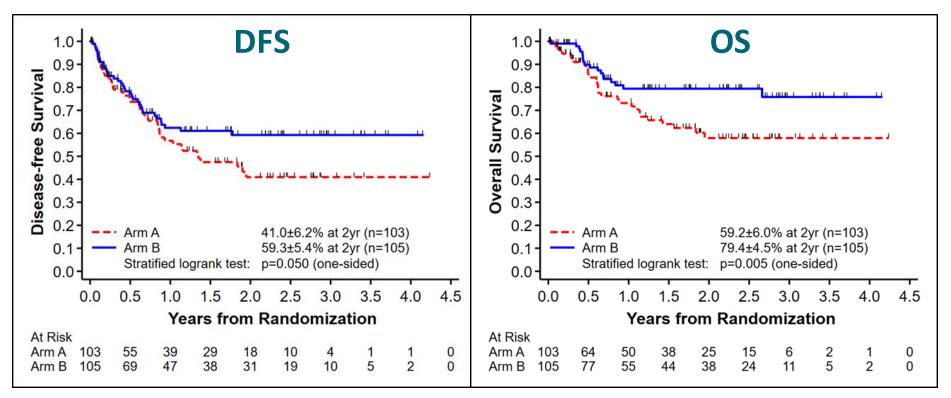

Early Closure Recommended by DSMC

- Scheduled review by DSMC Sep 2019 using data cutoff 6/30/2019 (~60% of projected events)
- <u>Despite the monitoring threshold for DFS not being crossed</u>, the DSMC recommended
 - Permanent closure of accrual to HR/IR randomization
 - Immediate crossover to experimental Arm B for patients still receiving therapy
- DSMC recommendation was based on
 - The difference in <u>DFS and OS</u> between arms
 - The profound difference in <u>toxicity</u> between arms
 - The highly significant difference in <u>MRD</u> clearance rates between arms


Baseline		Arm A	Arm B	
Characteristics		(n = 103)	(n = 105)	
Characteristics	Age at enrollment (years)			
	Median (range)	9 (1-27)	9 (1-25)	
	1-9	55 (53%)	55 (52%)	
	10-17	30 (29%)	35 (33%)	
16% AYA	18-30	18 (18%)	15 (14%)	
	Sex			
	Female	49 (48%)	48 (46%)	
	Male	54 (52%)	57 (54%)	
	NCI risk group at diagnosis			
	High risk	60 (58%)	59 (56%)	
-	Standard risk	43 (42%)	46 (44%)	
	Cytogenetic groups at diagnosis			
-	Favorable (Tri 4/10, ETV6-RUNX1)	16 (18%)	21 (23%)	
	KMT2A-rearranged	9 (10%)	7 (8%)	
	Hypodiploidy	1 (1%)	0	
	Other	65 (71%)	63 (69%)	
CHILDREN'S Oncology	None	12	14	

Randomization Stratification Factors

Stratification Factors	Arm A (n = 103)	Arm B (n = 105)	
Risk group assignment after Block 1			
Intermediate risk (late BM relapse, MRD high)	34 (33%)	36 (34%)	
High risk (early relapse)	69 (67%)	69 (66%)	
High-risk subsets			
 Marrow, CR1 <18 months (very early) 	18 (26%)	18 (26%)	
Marrow, CR1 18-36 months (early)	41 (59%)	41 (59%)	
IEM, CR1 < 18 months	10 (14%)	10 (14%)	

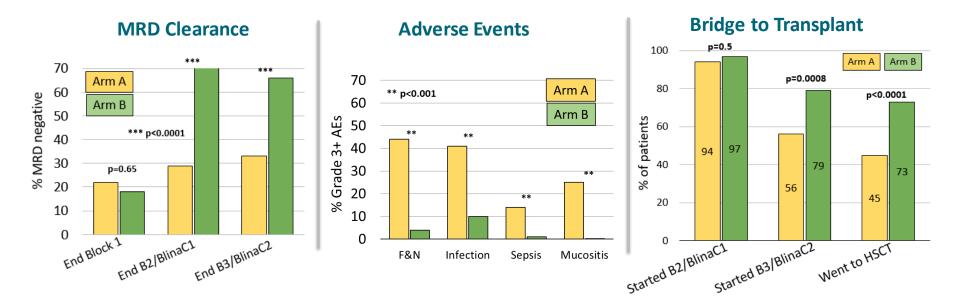


IR HR

IEM
 BM <18 mo
 BM 18-36 mo

Survival: Arm A (chemotherapy) vs Arm B (blinatumomab)

CHILDREN'S ONCOLOGY GROUP

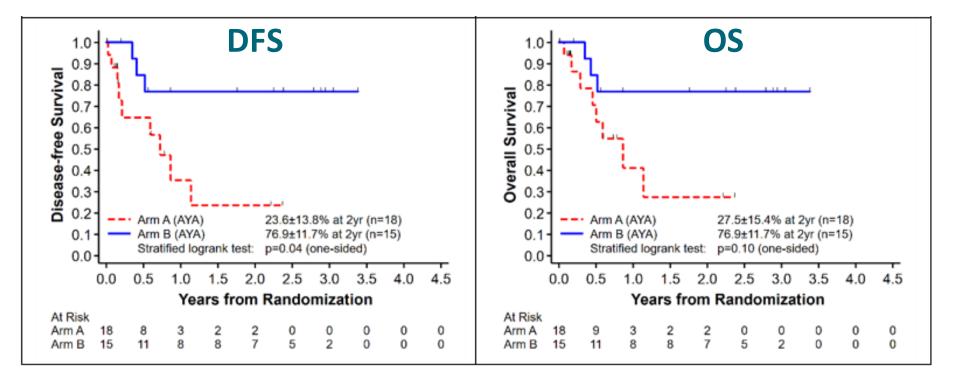

Median follow up 2.9 years

Brown P, et al. JAMA. 2021;325(9):833-842.

Other Endpoints: MRD, AEs, HSCT Bridging

CHILDREN'S

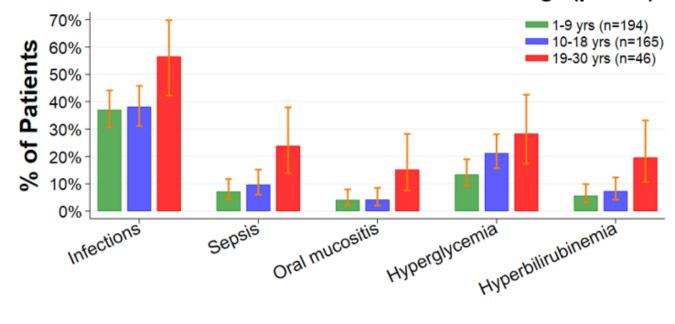
GROUP


Significant contributors to the improved outcomes for Arm B (blina) vs Arm A (chemo) in HR/IR relapses may include better **MRD clearance, less toxicity, and greater ability to successfully bridge to HSCT**

Brown P, et al. JAMA. 2021;325(9):833-842.

Blinatumomab-Related AEs on Arm B

	Blina (n =		Blina C2 (n = 83)		
Blinatumomab-related AEs	Any grade (%)	Grade 3-4 (%)	Any grade (%)	Grade 3-4 (%)	
Cytokine release syndrome (CRS)	22%	1%	1%	0%	
Neurotoxicity	18%	3%	11%	2%	
Seizure	4%	1%	0%	0%	
Other (encephalopathic)	14%	2%	11%	2%	


Results AYA Patients (ages 18–30 at relapse; N = 33/16%)

CHILDREN'S ONCOLOGY GROUP

Median follow-up 2.9 years

Results AYA Patients (ages 18–30 at relapse)

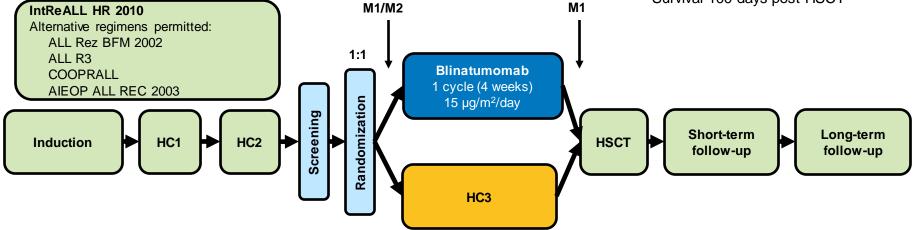
Grade 3-5 Adverse Events Associated with age (p<0.05)

CHILDREN'S ONCOLOGY GROUP

Hogan LB, et al. Blood. 2018;132(suppl 1): abstract 1382.

Amgen 20120215: Open-Label, Randomized, Phase III Trial: 47 Centers, 13 Countries

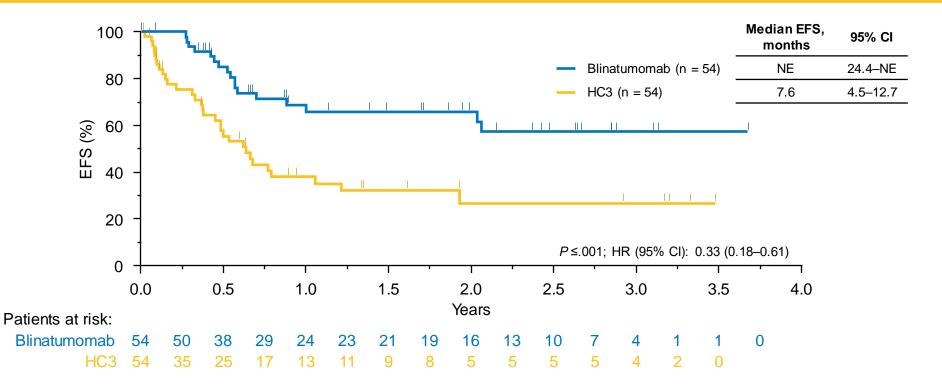
Key eligibility criteria


- Age >28 days <18 years
- HR first relapse Ph- BCP-ALL
- M1 or M2 marrow at randomization
- No CNS disease, unless treated before enrollment
- No clinically relevant CNS pathology

Stratification

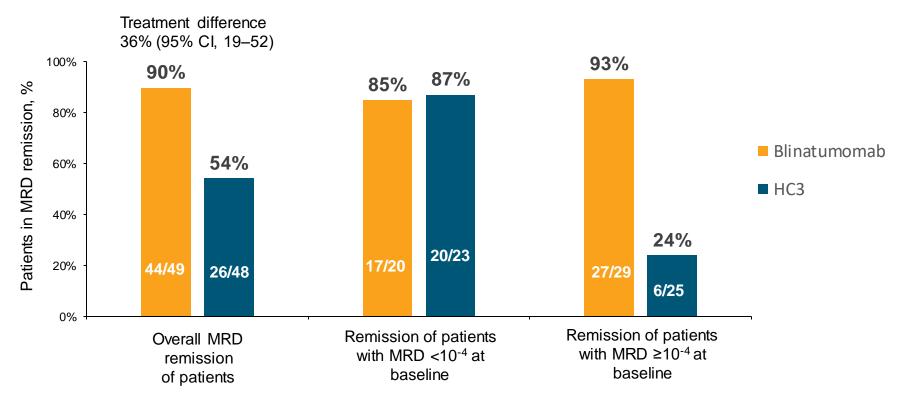
- Age: <1 year, 1 to 9 years, >9 years
- BM status at end of HC2
 - M1 with MRD >10⁻³
 - M1 with MRD $< 10^{-3}$
 - M2

Endpoints


- Primary: EFS
- Secondary
 - OS
 - MRD response (end of blinatumomab or HC3)
 - Cumulative incidence of relapse
 - Incidence of AEs
 - Survival 100 days post-HSCT

Locatelli F, et al. JAM A. 2021;325(9):843-854.

BCP, B-cell precursor; EFS, event-free survival; HC, high-risk consolidation.


Superior EFS in the Blinatumomab Arm

Locatelli F, et al. JAM A. 2021;325(9):843-854.

P, stratified log rank P value; HR, hazard ratio from stratified Cox regression.

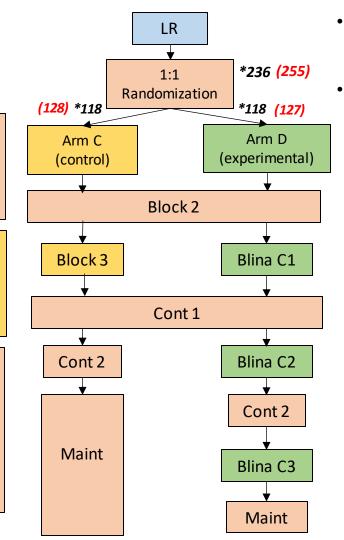
Superior MRD Remission by PCR in the Blinatumomab Arm (overall and by baseline^{*} MRD status)

Locatelli F, et al. JAM A. 2021;325(9):843-854.

Stratifications

- Site (BM vs iEM)
- End-Block 1 MRD (<0.01% vs 0.01%-0.099%)

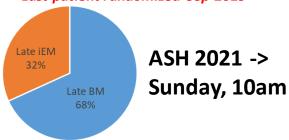
UKALLR3, Block 2*

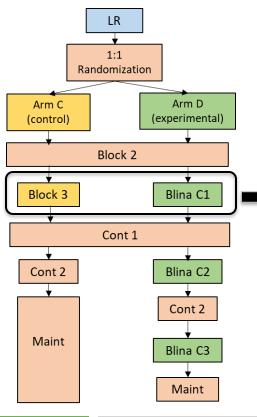

- VCR, DEX week 1
- ID MTX, PEG week 2
- CPM/ETOP week 3
- IT MTX or ITT

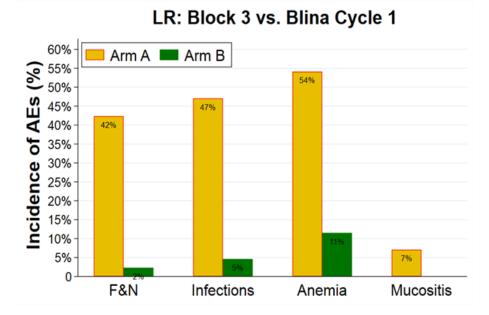
UKALLR3, Block 3*

- VCR, DEX week 1
- HD ARAC, Erwinia weeks 1-2
- ID MTX, Erwinia week 4
- IT MTX or ITT

UKALLR3, Continuation 1/2*


- VCR, DEX week 1
- 6MP week 1-6
- PO MTX week 2, 3, 5, 6
- ddMTX (CNS1/2) or ID MTX (CNS3) week 4
- CPM/ETOP/TG/ARAC week 7, 8
- IT MTX or ITT

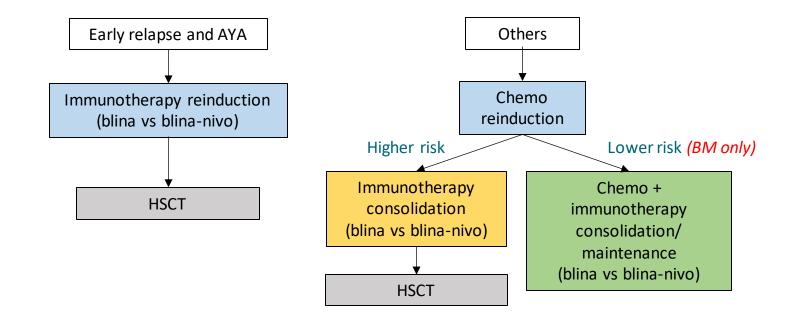

- <u>Endpoints</u>
 - Primary: DFS
 - Secondary: OS
- <u>Sample size n = 236 (118 per arm)</u>
 - Power 83% to detect HR 0.55 with 1-sided α = 0.05
 - Increase 3-yr DFS from 73% to 84%


Blina C1, C2, C3

- Blinatumomab 15 μg/m²/day × 28 days, then 7 days off
- Dex 5 mg/m²/dose × 1 premed (C1 only)
- First patient randomized Jan 2015
 Last patient randomized Sep 2019

Adverse Events

There was a striking difference in the toxicity profile (grade 3+ AEs) between the arms, with blina cycle 1 far less toxic than Block 3.


CHILDREN'S ONCOLOGY GROUP

Unpublished data.

Conclusions for AALL1331 (so far . . .)

- For children and AYA patients with HR/IR first relapse of B-ALL, blinatumomab is superior to standard chemotherapy as post-reinduction consolidation prior to HSCT, resulting in
 - Fewer and less-severe toxicities (especially AYA)
 - Higher rates of MRD response
 - Greater likelihood of proceeding to HSCT
 - Improved disease-free and overall survival
- Blinatumomab constitutes a new standard of care in this setting
- Future
 - Finalize/publish results of LR randomization
 - Overcoming early failures associated with reinduction chemotherapy
 - Enhancing the efficacy of immunotherapy

AALL1821: Blinatumomab + Nivolumab

Which of the following is NOT true of blinatumomab relative to chemotherapy as post-reinduction therapy for HR/IR first relapse of pediatric ALL?

- a) Lower rate of clearance of residual disease
- b) Lower rate of serious adverse events
- c) Lower rate of relapse
- d) Higher rate of proceeding to HSCT

AALL1331 Study Committee

- Chair: Pat Brown
- Vice Chair: Jim Whitlock
- Stats: Lingyun Ji, Mini Devidas
- Heme/Onc
 - Lia Gore
 - Laura Hogan
 - Terzah Horton
 - Stevie "Nix" Hunger
 - Kala Kamdar
 - Mignon Loh
 - Jen McNeer
 - Maureen O'Brien
 - Mike Pulsipher
 - Sue Rheingold
 - Teena Bhatla
 - Sarah Tasian
 - Richard Tower

• Lab/Path

- Mike Borowitz
- Andrew Carroll
- Fady Mikhail
- Julie Gastier-Foster
- Rad Onc: Stephanie Terezakis
- Pharmacy
 - Brooke Bernhardt
 - Olga Militano
- CRA: Christopher Henchen
- Nursing
 - Deb Schissel
 - Susan Zupanec
- Research Coordinator: Susan Conway, Don Sortillon, Naira Setrakian
- Protocol Coordinator: Rachel Vasquez

CHILDREN'S ONCOLOGY GROUP

Funding

- NCTN Operations Center Grant U10CA180886
- NCTN Statistics & Data Center Grant U10CA180899
- St. Baldrick's Foundation
- Blinatumomab provided by Amgen via Collaborative Research and Development Agreement (CRADA) with NCI/CTEP
- LLS TRP (Brown lab) correlative biology

THANK YOU: Patients, families, caregivers, and collaborators!

Questions?

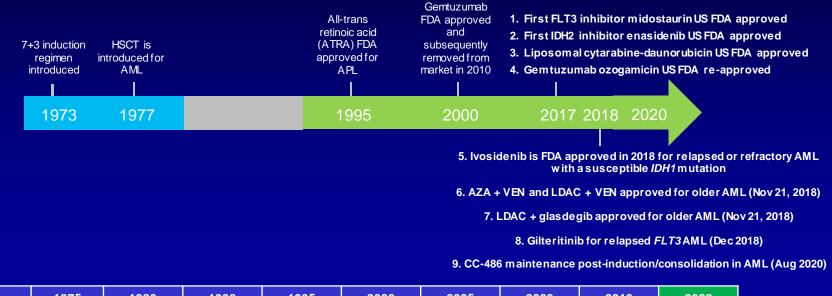
CHILDREN'S ONCOLOGY GROUP

Q&A session

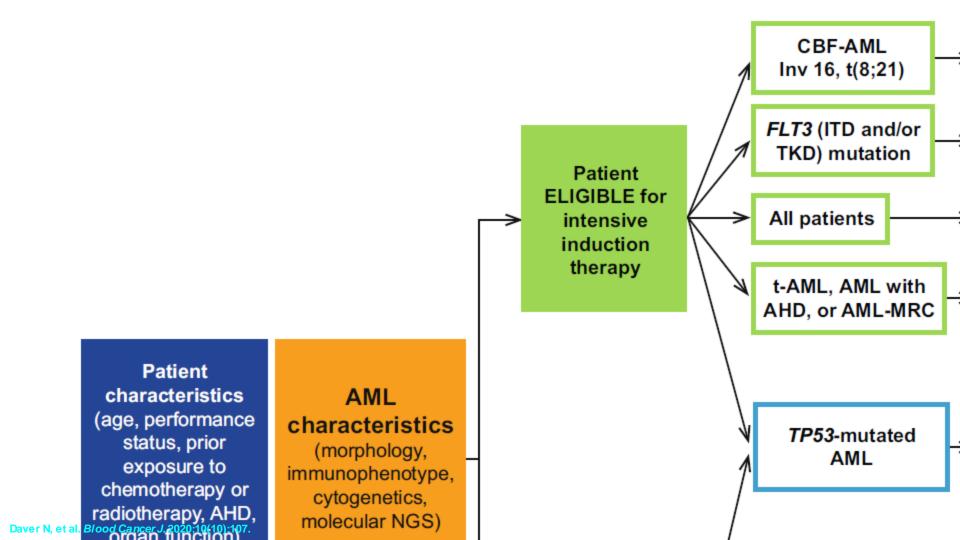
Therapeutic approaches in high-risk and older AML patients

Naval Daver

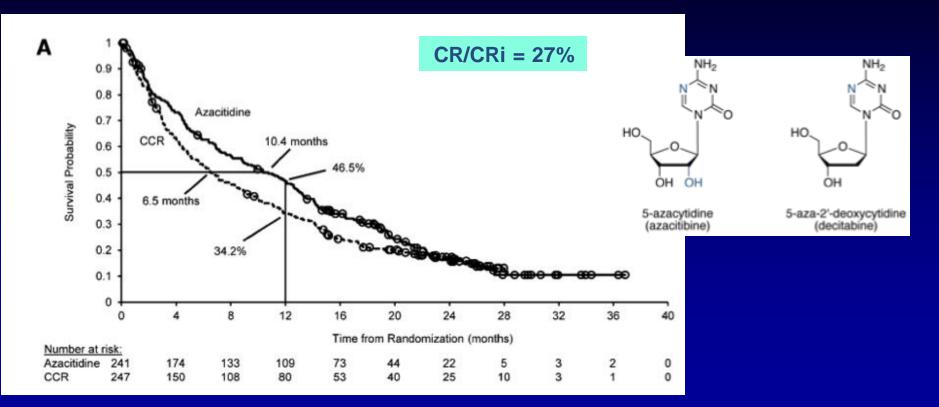
Therapeutic Approaches in High-Risk and Older AML Patients


Global Leukemia Academy

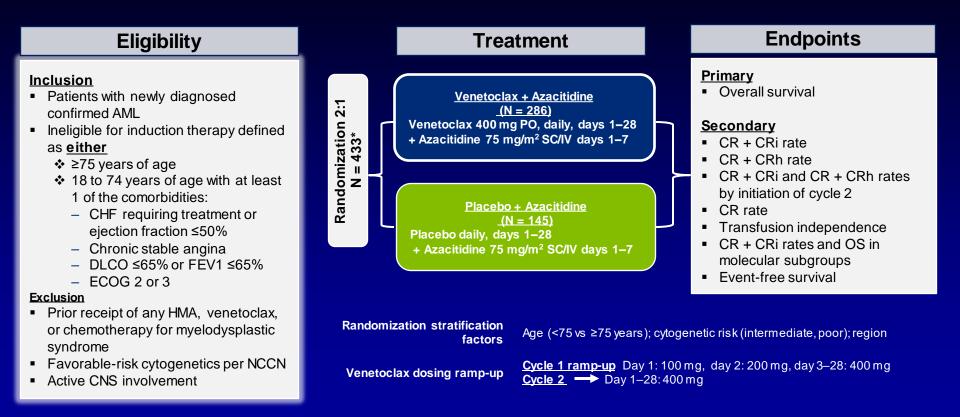
Naval Daver, MD Director, Leukemia Research Alliance Program, Associate Professor Department of Leukemia MD Anderson Cancer Center


Treatment of AML (accelerated progress 2017–2020): History

Since its introduction in the early 1970s, 7+3 therapy (cytarabine for 7 days + anthracycline for 3 days) has been the standard of care for AML


US FDA approvals

Year	1975	1980	1990	1995	2000	2005	2009	2013	2022
5-year survival	6.3%	6.8%	11.4%	17.3%	16.8%	25.7%	28.1%	27%	??

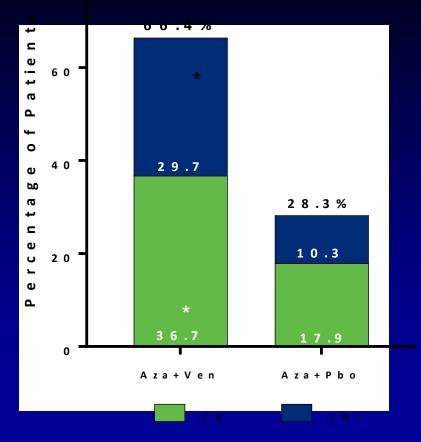


HMA-Based Therapies for Older AML: Hypomethylating Agents Are Well Tolerated and Safe in Older Patients, but Modest Single-Agent CR/CRi

Dom bret H, et al. Blood. 2015;36126(3):291-299.

Azacitidine +/- Venetoclax (VIALE-A) Study Design

Patient Baseline Characteristics

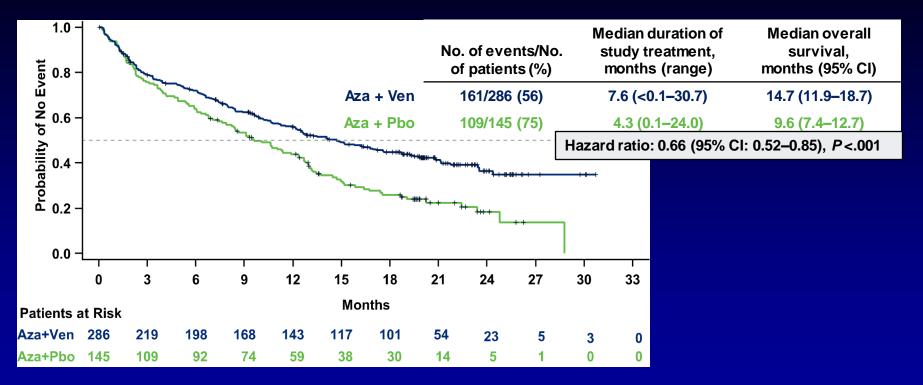

Characteristics	Ven + Aza (n = 286)	Pbo + Aza (n = 145)
Age Median (range) years ≥75 years, n (%)	76 (49–91) 174 (61)	76 (60–90) 87 (60)
Male, n (%)	172 (60)	87 (60)
AML type, n (%) De novo Secondary	214 (75) 72 (25)	110 (76) 35 (24)
Secondary AML Post-MDS, CMML* Therapy-related AML	46 (64) 26 (36)	26 (74) 9 (26)
ECOG PS, n (%) 0–1 2–3	157 (55) 129 (45)	81 (56) 64 (44)
BM blast count, n (%) 20 to <30% ≥30 to <50% ≥50%	85 (30) 61 (21) 140 (49)	41 (28) 33 (23) 71 (49)

Characteristics	Ven + Aza (n = 286)	Pbo + Aza (n = 145)
AML with myelodysplasia-related changes, n (%)	92 (32)	49 (34)
Cytogenetic risk, n (%) Intermediate Poor	182 (64) 104 (36)	89 (61) 56 (39)
Somatic mutation, n/N (%) IDH1/2 FLT3 NPM1 TP53	61/245 (25) 29/206 (14) 27/163 (17) 38/163 (23)	28/127 (22) 22/108 (20) 17/86 (20) 14/86 (16)
Baseline hematologic status, n (%) Grade 3–4 neutropenia Grade 3–4 anemia Grade 3–4 thrombocytopenia	206 (72) 88 (31) 145 (51)	90 (63) 52 (36) 73 (50)
Transfusion dependent at baseline,† n(%)	155 (54)	81 (56)

*n = 7 patients in the Ven + Aza arm and n = 1 patient in the Pbo + Aza arm had antecedent CMML; *Red blood cell or platelet transfusion within 8 weeks prior to the first dose of study drug or randomization.

DiNardo CD, et al. EHA 2020. Abstract LB2601.

Aza +/- Ven in AML: Composite Response Rate (CR + CRi)



	No. of treatment cycles, median (range)	Median time to CR/CRi, Months (range)	*CR + CRi by initiation of Cycle 2, n (%)	
Aza + Ven (n = 286)	7.0 (1.0–30.0)	1.3 (0.6–9.9)	124 (43.4)	
Aza + Pbo (n = 145)	4.5 (1.0–26.0)	2.8 (0.8–13.2)	11 (7.6)	

*CR + CRi rate, CR rate, and CR + CRi by initiation of cycle 2 are statistically significant with P < .001 by CMH test.

DiNardo CD, et al. EHA 2020. Abstract LB2601.

AZA +/- VEN in AML: Overall Survival

Median follow-up time: 20.5 months (range: <0.1 – 30.7)

Low-Dose Cytarabine ± Venetoclax in AML: Results

	Response Rate	Median Mo. (959		Transfus Independ			uality Life
Venetoclax + LDAC	48%	8.4 (5.9	-10.1)	37%			
Placebo + LDAC	13%	4.1 (3.1	-8.1)	16%			_
Overall Survival		Primary Endpoint	Overall S	urvival			+6 mo. Follow-up
100 90 80 70 60 50 50 40 30 20	Hazard Ratio 0.75 (95% Cl 0.52		100 90 80 70 60 50 40 30 20	Contraction of the second seco	Hazard (0.70 (95	% CI 0.50–0.9	Ven + LDAC
Ven + LDAC 143 102 6	5 9 12 1 49 24 6 18 8	15 18 6 Months	10- 0 Ven+LDAC 143 Pbo+LDAC 68	3 6 103 78	9 12 64 35	Pbo + 15 18 30 14 12 6	21 24 3 Months

Wei AH, et al. Blood. 2020;135:2137-2145.

Pratz <u>1944</u>: Cytopenia Management in Patients With Newly Diagnosed Acute Myeloid Leukemia Treated With Venetoclax Plus Azacitidine in the VIALE-A Study

Protocol (VIALE-A – NCT02993523)

- Phase 3, double-blind, placebo controlled, 2:1 randomization of Ven + Aza vs Pbo + Aza
- Analysis of frequency and management of cytopenia in patients with CR or CRh

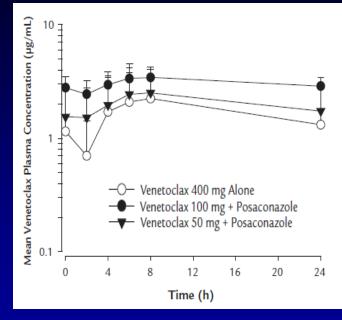
Population

 Patients with newly diagnosed AML ineligible for intensive chemotherapy due to age ≥75 years or comorbidities

Authors' conclusions

- Majority of Ven + Aza responders required dosing modifications to manage cytopenia, particularly delays between cycles or within-cycle reductions of Ven dosing days
- Post-remission cytopenia and dosing modifications were more frequent with Ven + Aza vs Pbo + Aza

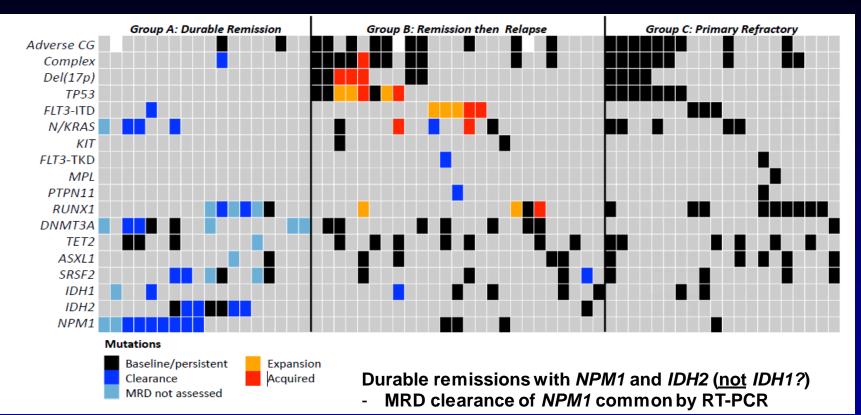
CR/CRh rate: 66% (Ven + Aza) vs 23% (Pbo + Aza)		
Cytopenia and dose adjustments in responders (CR/CRh)	Ven + Aza (n = 186)	Pbo + Aza (n = 33)
Post-remission grade 4 cytopenia lasting ≥1 week, % 1 episode ≥2 episodes	87 19 68	45 24 21
In-cycle dose interruptions for any reason, % Median duration per cycle (range), days	26 2.0 (1–20)	24 1.0 (1–13)
Post-remission cycle delays due to cytopenia, % Median duration per cycle delay (range), days	77 14.0 (1–129)	30 11.0 (3–63)
Post-remission reduction of Ven/Pbo dosing days and/or cycle delay totaling ≥7 days due to neutropenia, % Median number of cycles (range)	75 2.0 (0–15)	27 0 (0–7)
Post-remission Ven/Pbo dosing ≤21-day cycles, % Median time from remission to first ≤21-day cycle (range), days	69 92.0 (1–480)	30 74.0 (6–405)


MDACC-Recommended Dosing Schema

- Ven D1–21 in cycle 1
- Bone marrow EOC1 (D21–D28) for all patients: if BM blasts <5% or <10% cellularity/acellular (majority of patients) – hold VEN 10–14 days for count recovery
- If needed, use G-CSF (usually if no spontaneous recovery after 14 days of Ven interruption)
- Cycle 2 onward: Ven D1–21 (or Ven D1–14) for most (subsequently may be further reduced to 7–10 days if cumulative myelosuppression observed)
- Cycles every 4–6 weeks on the basis of count recovery
- Continue second-generation azole prophylaxis, antibiotic, and antiviral until ANC >1.0 without fluctuations (usually after 4–5 cycles)

KEY: Reducing Ven duration does not seem to impact efficacy, but significantly improves neutropenia; more CR/CRh

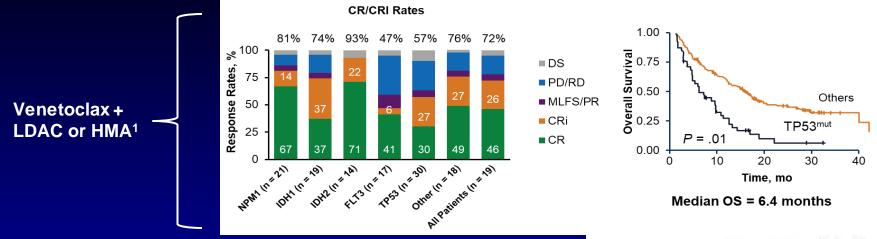
Venetoclax and Azole Interaction Analysis


	Ven + Posa	Ven 400 mg	Comparison to Reference Point Estimate (90% CI)				
Ven 100 mg + posaconazole (n = 6)							
C _{max} (µg/mL)	3.321	1.721	1.931 (1.201-3.104)				
AUC ₀₋₂₄ (µg/mL)	67.739	26.545	2.552 (1.486-4.383)				
Ven 50 mg + posaconazole (n = 5)							
C _{max} (µg/mL)	2.634	1.721	1.531 (0.927-2.528)				
AUC ₀₋₂₄ (µg/mL)	46.625	26.545	1.756 (0.948-3.253)				

Recommended Venetoclax Dose-Adjustments With Azoles

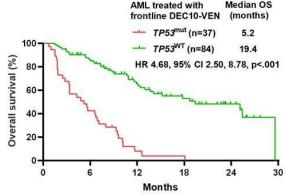
Antifungal	Package Insert Recommendation (Ven mg/d)	MDACC Dose Adjustment (Ven mg/d)
Posaconazole	70	50-100
Voriconazole	100	100
Isavuconazole	200	200
Caspofungin, echinocandins	400	400

Molecular Determinants of Outcome With Venetoclax Combos



Patients treated at MDACC and The Alfred (n = 81)

Resistance commonly associated with expansion or acquisition of *TP53* or signaling mutations including *K/NRAS* and *FLT3*-ITD


DiNardo CD, et al. Blood. 2020;135(11):791-803.

1. Poor Outcomes in <u>TP53-Mutant AML</u>, Even With Venetoclax-Based Treatment

N = 121 patients with newly diagnosed AML receiving decitabine + venetoclax²

- Those with TP53^{mut} had a lower rate of CR at 35% vs 57% in pts with TP53^{WT} (P = .026)
- Lower rate of CR/CRi (54% vs 76%; P.015)

1. Chyla BJ, et al. ASH 2019. Abstract 546; 2. Kim K, et al. ASH 2020. Abstract 693.

CD47 Is a Major Macrophage Immune Checkpoint and "Do Not Eat Me" Signal in Myeloid Malignancies, Including AML

- CD47 is a "do not eat me" signal in cancers that enables macrophage immune evasion
- Increased CD47 expression predicts worse prognosis in AML patients

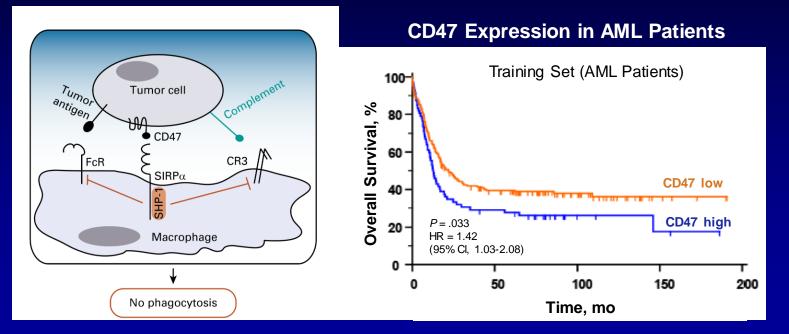
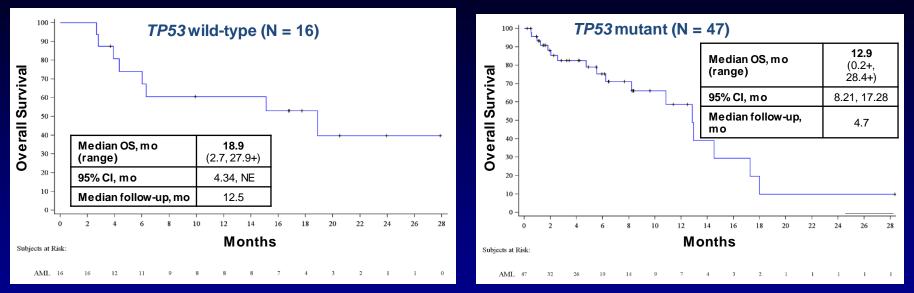


Figure at left adapted from Veillette A, Tang Z. *J Clin Oncol.* 2019;37:1012-1014 and Chao MP, et al. *Curr Opin Immunol.* 2012;24:225-232. Figure at right adapted from Majeti R, et al. *Cell.* 2009;138:286-299.

Magrolimab + Aza Induces High Response Rates in AML

			Je	-		duction
Best Overall Response	All AML (N = 43)	TP53-mutant AML (29)	Baseline (%)	E	Blast Re	auction
<u>ORR</u>	<u>27 (63%)</u>	<u>20 (69%)</u>	om E ast (
<u>CR</u>	<u>18 (42%)</u>	<u>13 (45%)</u>	e Fro v Blå			
CRi	5 (12%)	4 (14%)	ange arrov			
PR	1 (2%)	1 (3%)	ц З С			
MLFS	3 (7%)	2 (7%)	tive one			
SD	14 (33%)	8 (28%)	<u>n a</u>			
PD	2 (5%)	1 (3%)				
			3est			


Patient*

- Magrolimab + Aza induces a 63% ORR and 42% CR rate in AML, including similar responses in TP53-mutant patients
- Median time to response is 1.95 months (range 0.95 to 5.6 mo), more rapid than Aza monotherapy
- 9.6% of patients proceeded to bone marrow stem cell transplantation
- Magrolimab + Aza efficacy compares favorably with Aza monotherapy (CR rate 18%-20%)^{1,2}

Response assessments per 2017 AML ELN criteria. Patients with at least 1 post-treatment response assessment are shown. *Three patients not shown due to missing values; <5% blasts imputed as 2.5%.

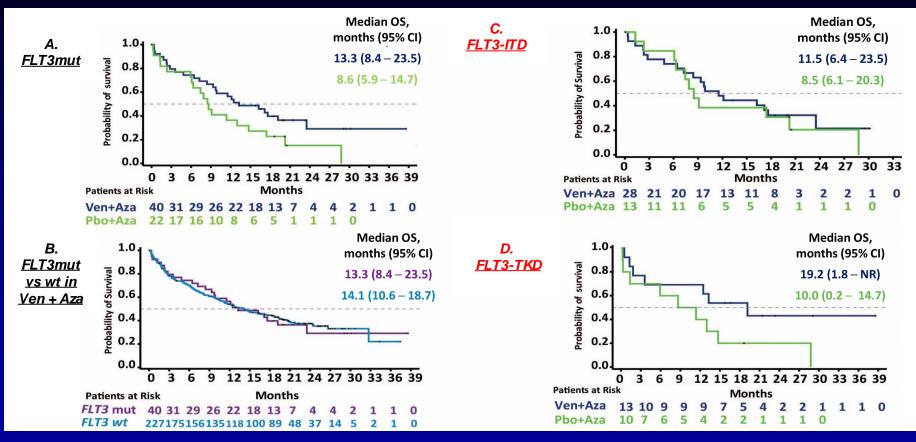
1. Fenaux P, et al. *J Clin Oncol.* 2010;28(4):562-569; 2. Dombret H, et al. *Blood.* 2015;126(3):291-299. Sallman DA, et al. ASH 2020. Abstract 330.

Preliminary Median Overall Survival Is Encouraging in Both TP53 Wild-Type and Mutant Patients

- Median OS is 18.9 months in TP53 wild-type patients and 12.9 months in TP53-mutant patients
- This initial median OS data may compare favorably with venetoclax + hypomethylating agent combinations (14.7–17.5 mo in all-comers,^{1,3} 5.2–7.2 mo in patients who are *TP53* mutant^{2,3})
- · Additional patients and longer follow-up are needed to further characterize the survival benefit

NE, not evaluable.

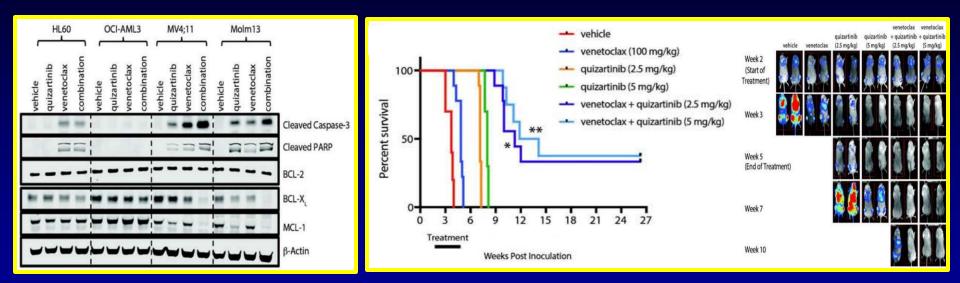
1. DiNardo CD, et al. *N Engl J Med.* 2020;383(7):617-629; 2. Kim K, et al. Poster presented at: 62nd ASH Annual Meeting; December 5-8, 2020 (virtual); 3. DiNardo CD, et al. *Blood.* 2019;133(1):7-17.


Sallm an DA, et al. ASH 2020. Abstract 330.

2. Older Adults With <u>FLT3m AML</u>: Poor Outcomes

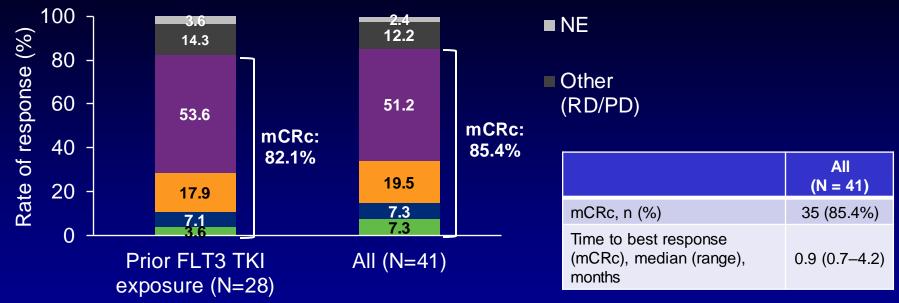
Frontline Therapy		Age, median	CRc (or CR/CRi)	OS, median	Ref.
Midostaurin + Aza	16	74 [59-85]	31%	8.7 mo	Gallogly, ASH 2017
Sorafenib + Aza	27	74 [61-86]	70%*	8.3 mo	Ohanian, Am J Hem 2018
Gilteritinib + Aza	15	75 [65-86]	67%	n/a	Esteve, ASH 2018
Quizartinib + Aza/LDAC	16	74 [62-83]	83%*	17.0 mo	Swaminathan, ASH 2017
Venetoclax + Aza (<i>FLT3</i> -ITD/TKD)	40		70%	13.3 mo	
Venetoclax + Aza (<i>FLT3</i> -ITD only)	28	75 [49-91]	68%	<u>11.5 mo</u>	Konopleva, ASH 2020

*CRc includes CR, CRi, and MLFS. Yilmaz M, et al. ASH 2020. Abstract 26.


Overall Survival in Patients With FLT3 Mutation (Aza + Ven pooled analysis – FLT3)

Konopleva M, et al. Blood. 2020;136:abstract 1904.

Overall survival (OS) was defined as the time from randomization to the date of death from any cause.


Venetoclax Combines Synergistically With Quizartinib

Cell lines were treated with combination – \downarrow MCL-1, \downarrow BCL-X_L

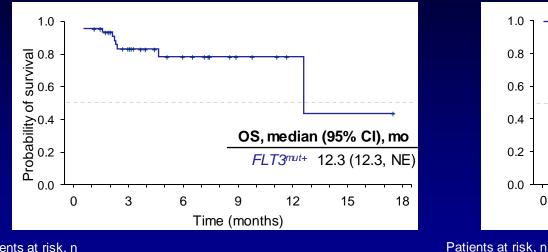
Venetoclax combined with quizartinib prolonged survival and reduced tumor burden in *FLT3*-ITD+ xenograft models

Venetoclax + Gilteritinib in R/R FLT3 AML: Summary of Best Responses

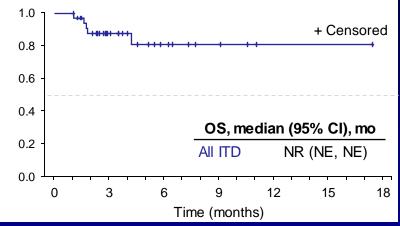
The 85% mCRc rate compares favorably with the 52% CRc rate (using the same response parameters), with singleagent Gilt in the ADMIRAL phase 3 study¹

Data cutoff: April 15, 2020. Analyses were conducted using data from all treated ITD and/or TKD patients irrespective of the availability of postbaseline disease assessment data prior to data cutoff date (ITT analysis), including patients who received non-RP2D dose during dose-expansion phase. Two on-treatment patients did not have their first disease assessment at the cutoff date and were not included in the efficacy analyses. No patients achieved partial remission. One patient (TKD only) discontinued with no response data.

AML, acute myeloid leukemia; CI, confidence interval; CR, complete remission; CRi, CR with incomplete blood count recovery; CRp, CR with incomplete platelet recovery;


FLT3, FMS-like tyrosine kinase 3; Gilt, gilteritinib; ITD, internal tandem duplications; ITT, intention to treat; mCRc, modified composite complete remission; MLFS, morphologic leukemia free state; NE, not estimable; PD, progressive disease; RD, resistant disease; TKI, tyrosine kinase inhibitor; TKD, tyrosine kinase domain.

1. Perl AE, et al. N Engl J Med. 2019;381(18):1728-1740.


Daver N, et al. ASH 2020. Abstract 333.

Venetoclax + Gilteritinib in R/R FLT3 AML: **OS in All FLT3^{mut+} Patients and ITD Patients**

OS in all $FLT3^{mut+}$ patients (N = 41)

OS in all ITD patients (N = 36)

Patients at risk, n

FLT3^{mut+} 41 40 30 20 15 13 10 7 5 5 4 3 2 1 0 ITD ± TKD 36 36 28 18 13 11 8 6 4 4

3 2

Median (range) duration of follow-up: 3.5 months (0.8–17.4)

Data cut off: April 15, 2020.

FLT3^{mut+}, FLT3 mutation; ITD, internal tandem duplications; mCRc, modified composite complete remission; MLFS, morphologic leukemia free state; NE, not estimable; NR, not reached; OS, overall survival; RP2D, recommended phase 2 dose; TKD, tyrosine kinase domain; TKI, tyrosine kinase inhibitor.

Daver N, et al. ASH 2020. Abstract 333.

Q&A session

Current and future role of transplantation in acute leukemias

Charles Craddock

Current and future role of transplantation in acute leukemias

Charlie Craddock FRCP, FRCPath, FMedSCI

Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham University of Birmingham

Company Name	Research Support	Employee	Consultant	Stockholder	Speaker Bureau	Advisory Capacity	Other
Abbvie	No	No	Yes	No	Yes	Yes	No
Janssen	No	No	Yes	No	Yes	Yes	No
KITE	Yes	No	Yes	No	No	No	No
Novartis	No	No	Yes	No	Yes	Yes	No
Roche	No	No	Yes	No	Yes	No	No
Jazz	Yes	No	Yes	No	No	No	No
BMS	No	No	Yes	No	Yes	Yes	No
Pfizer	No	No	Yes	No	Yes	Yes	No
Astellas	No	No	Yes	No	Yes	Yes	No
Daiichi Sankyo	No	No	Yes	No	Yes	Yes	No
Eurocept	No	No	Yes	No	Yes	Yes	No

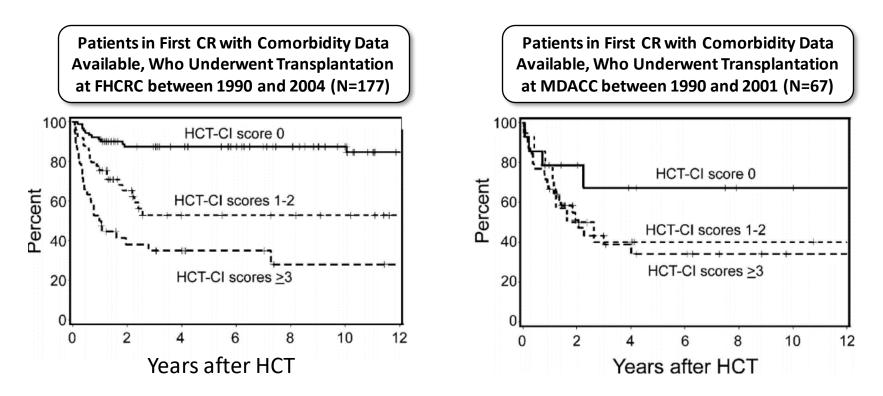
Central role of allografting in the management of high-risk AML

- Allografting delivers maximal anti-leukaemic activity in AML a potent and manipulable anti-tumour effect across all cytogenetic groups
- The toxicity of allogeneic stem cell transplantation (allo-SCT) has steadily declined estimated 15%-20% 1 year TRM in fit adults with a well matched donor
- Increased donor availability and decreased transplant toxicity have resulted in allo-SCT becoming a centrally important treatment modality in most fit adults with AML in CR1
- Allografting exerts a potent and broadly equivalent anti-tumour effect across all cytogenetic groups.

Allo-SCT reduces relapse risk in AML-independent of karyotype

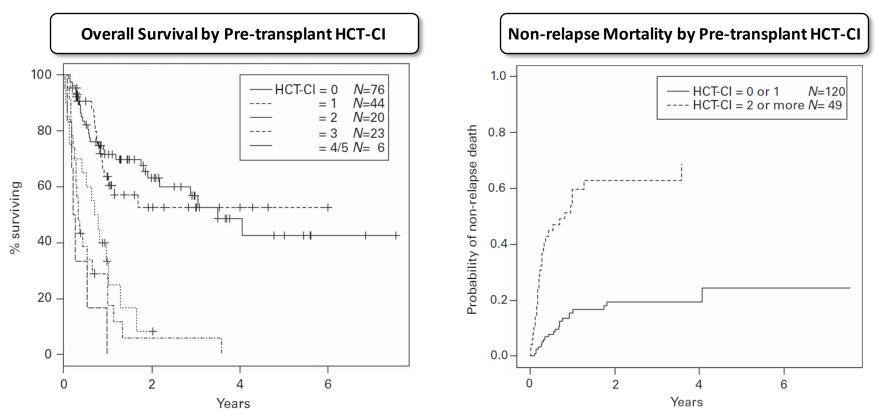
Cytogenic group					
	CT/ASCT	AlloSCT	HR and 95% CI (CT/ASCT : alloSCT)	Reduction SD	P value
OVERALL SURVIN	VAL				
CN	389/688	129/306			
CA	111/168	34/87			
CA unfav	84/115	63/117			
СА МК	58/62	36/45			
Total	642/1033 (62%)	262/555 (47%)	Ť	35% (5%) reduction	2P<0.001
RELAPSE-FREE S	SURVIVAL		—		
CN	448/688	136/306			
CA	119/168	38/87			
CA unfav	99/115	68/117			
CA MK	59/62	36/45	*		
Total	725/1033 (70%)	278/555 (50%)		48% (4%) reduction	2P<0.001
RELAPSE			— •		
CN	412/688	73/306			
СА	115/168	21/87			
CA unfav	95/115	49/117			
СА МК	57/62	28/45	÷		
Total	679/1033 (66%)	117/555 (31%)		67% (3%) reduction	2P<0.001

The identification of patients with AML CR1 who will benefit from allo-SCT is based on a dynamic risk assessment


- All decisions concerning allo-SCT are patient specific, and survival benefit is dependent on the reduction in relapse risk outweighing TRM
- Relapse risk can be predicted by:

Molecular stratification

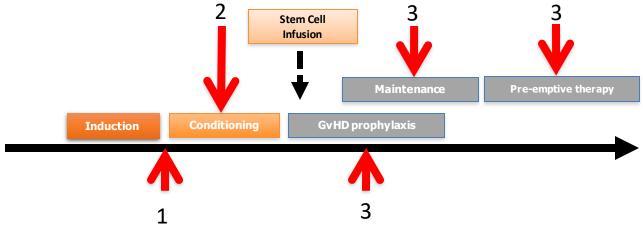
MRD status after IC

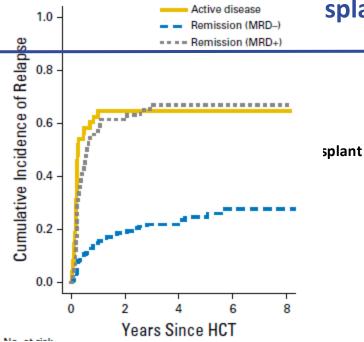

• TRM is determined by:

Age and co-morbidity

HCT-Cl: he matopoietic cell transplant comorbidity index; CR: complete response; FHCRC, Fred Hutchinson Cancer Research Center; MDACC, M. D. Anderson Cancer Center.

Outcome in patients ≥ 60 years-old transplanted using an alemtuzumab-based RIC regimen

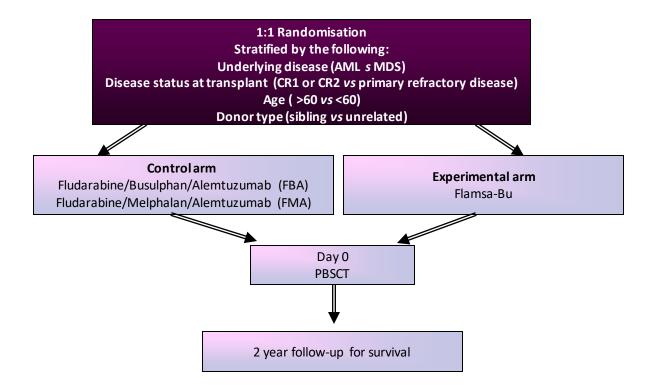

RIC: reduced-intensity conditioning; HCT-CI: hematopoietic cell transplant comorbidity index


Transplant indications in 2021

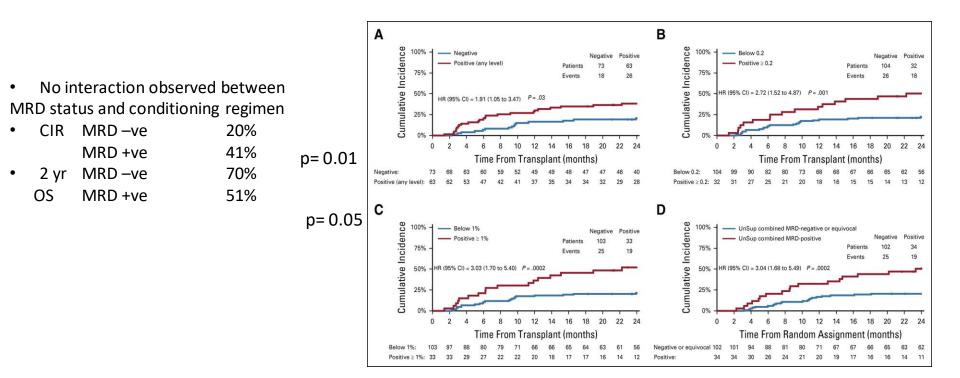
2017 ELN Risk stratification by genetics	MRD after cycle 2 chemotherapy	Estimated risk of r consolidat	•		erated NRM es for allo-SCT to neficial
		Chemotherapy alone (%)	Allo-SCT (%)	HCT-CI score	NRM risk (%)
Favourable	Negative	25-35	15-20	N/A (<1)	5
	Positive	70-80	30-40	≤3-4	<30
Intermediate	Negative	50-60	25-30	≤2	<20
	Positive	70-80	30-40	≤3-4	<30
Adverse	N/A	>90	45-55	<5	<35

Strategies to reduce relapse risk in patients allografted for AML- the impact of conditioning regimen intensity

- 1) Minimise pre-transplant disease burden
- 2) Optimise cytotoxic properties of the conditioning regimen
- 3) Maintenance drug or cellular therapies which:
 - Target residual leukaemic stem/progenitors
 - Optimise a GvL effect


Summary of Published Data with MRD testing across genetic subtypes

Relapse Incidences for transplant cohorts


- Large EBMT study/CTN 0901 Retrospective Randomised (NGS MRD)
 - 2 yr CIR ~ 25% MRD negative vs ~40% MRD+
- Other Retrospective studies by Flow or NGS
 - 2 yr CIR ~30% to 60%

Seattle (Flow)> Heuser (NGS) > MD Andersen (Flow)

Pre-transplant and post-transplant flow MRD prospectively evaluated in all FIGARO patients

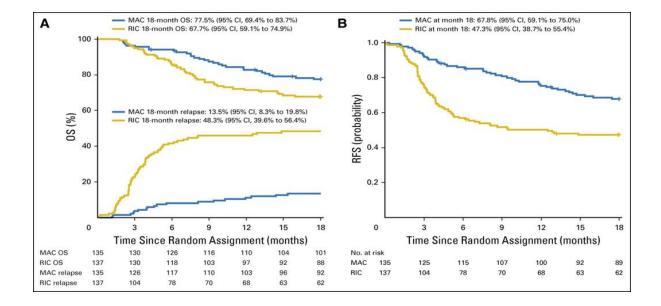
Impact of pre-transplant MRD Measured by Unsupervised Methodology on Cumulative Incidence of Relapse in patients allografted on FIGARO trial

Prospective comparison of RIC and MAC in AML and MDS: US-CTN 0901 study

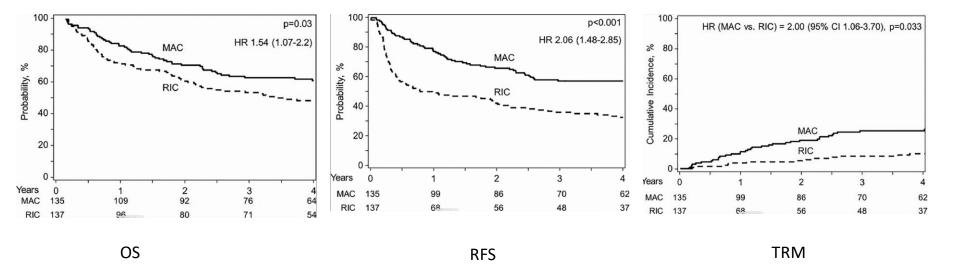
272 patients with AML and MDS (<5% blasts pre-transplant)

Age 18-65

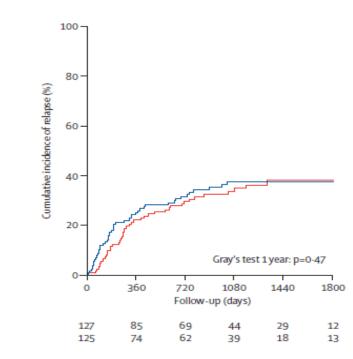
- MAC- Bu/Cy or Cy/TBI
- RIC- Flu/Bu₂ or Flu/Mel

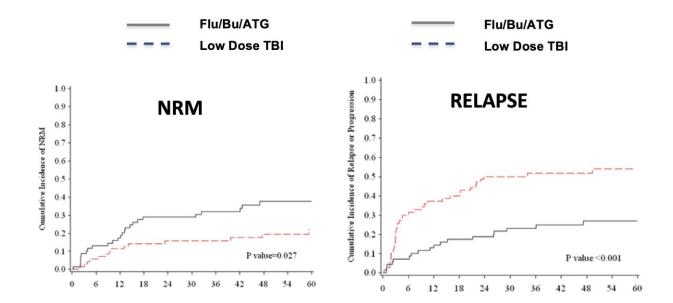

GVHD prophylaxis CsA/MTX. CsA levels and taper not specified

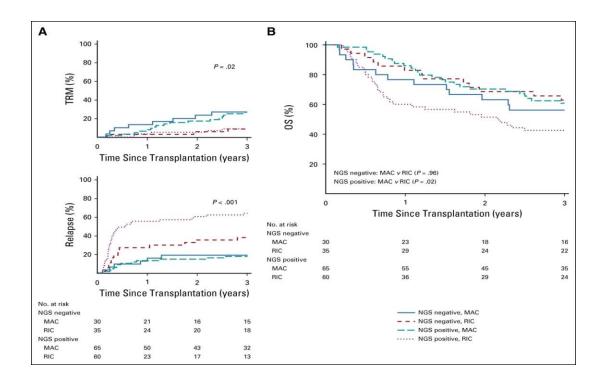
Reduced risk NRM (4% v 16% p=0.002) of Grade 2-4 acute GVHD in RIC arm (31% v 44% p=0.02) and chronic GVHD (47% v 64% p=0.19)


Increased relapse in patients with AML but not MDS

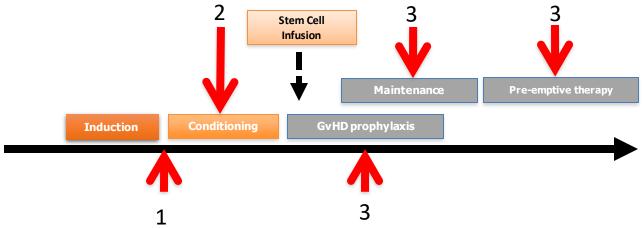
Equivalent OS


US-CTN 0901 Outcome after MAC or RIC allograft: US CTN study

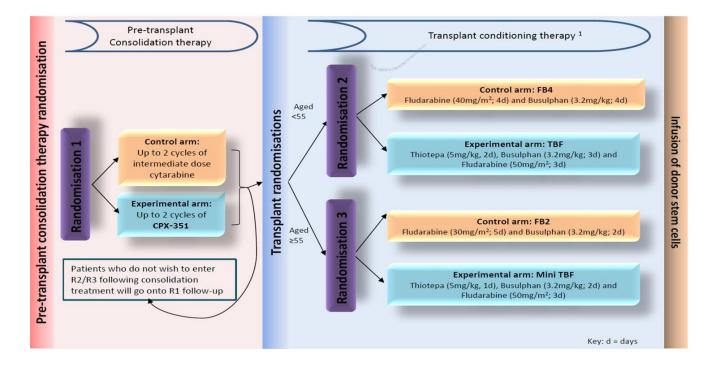

Long term follow up of BMT CTN 0901 Trial


Cumulative incidence of relapse in patients with AML or randomised to receive Bu/Cy FLU/Bu₄

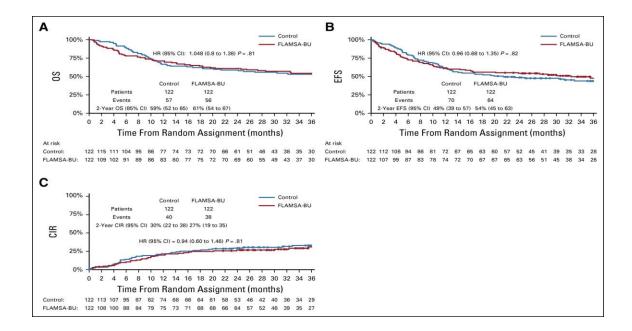
Relapse Rates Previously Reported with Flu/Bu₂ Regimen

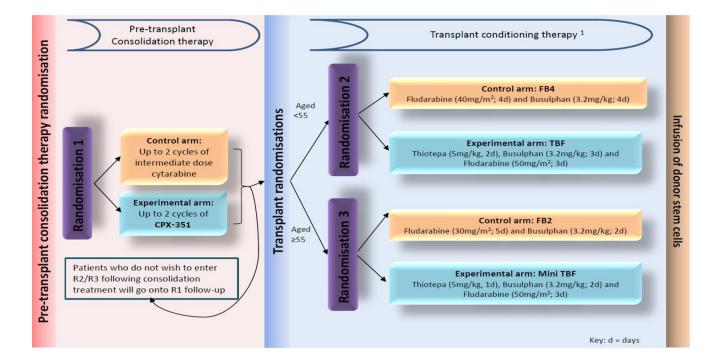


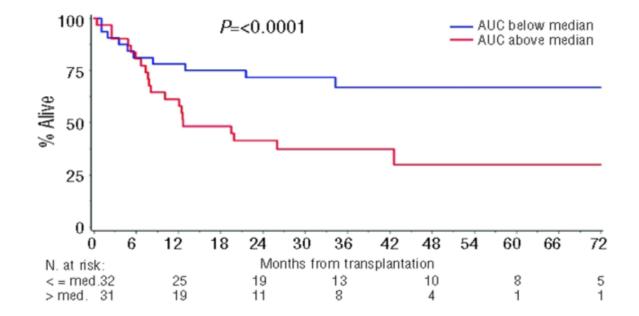
Outcome according to Conditioning Regimen Intensity and Pre-Transplant NGS MRD status

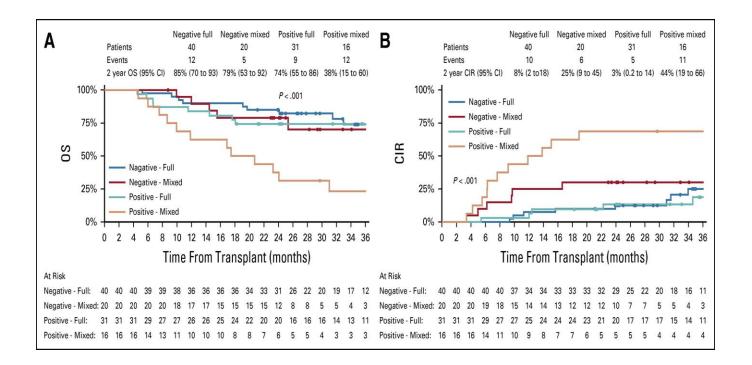


Strategies to reduce relapse risk in patients allografted for AML- the impact of conditioning regimen intensity

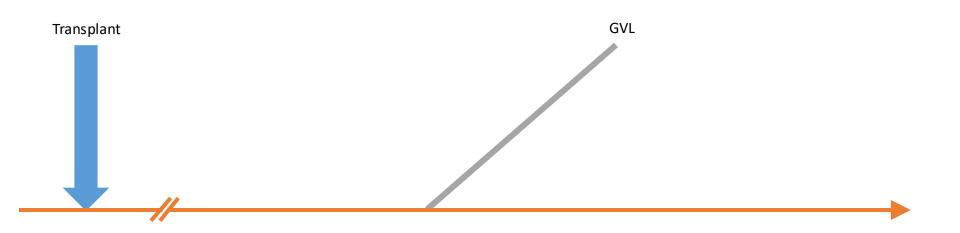

- 1) Minimise pre-transplant disease burden
- 2) Optimise cytotoxic properties of the conditioning regimen
- 3) Maintenance drug or cellular therapies which:
 - Target residual leukaemic stem/progenitors
 - Optimise a GvL effect

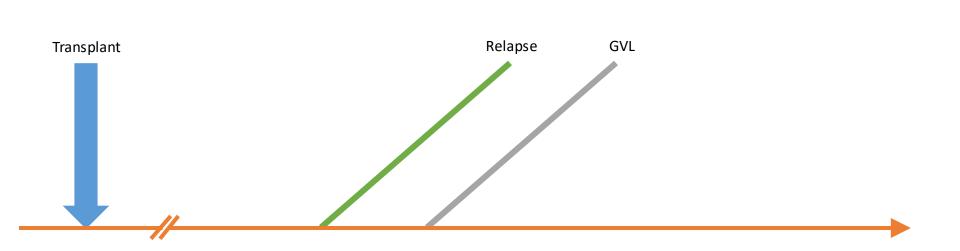

COSI trial schema-randomisation 1

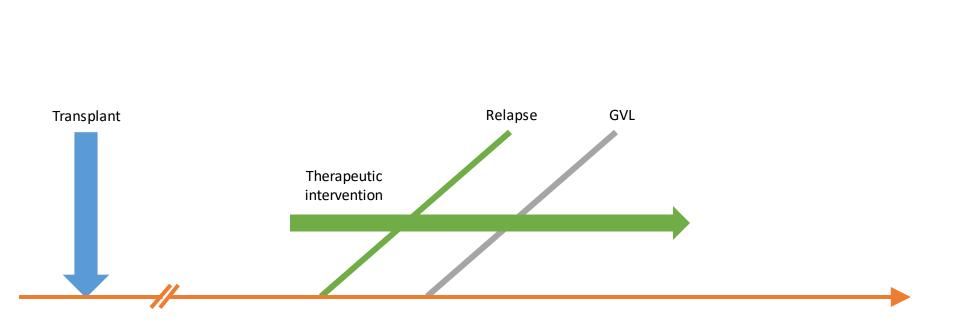

Impact of FLAMSA-Bu Regimen on Transplant Outcome in High Risk AML: FIGARO


COSI trial schema-randomisation 2 and 3

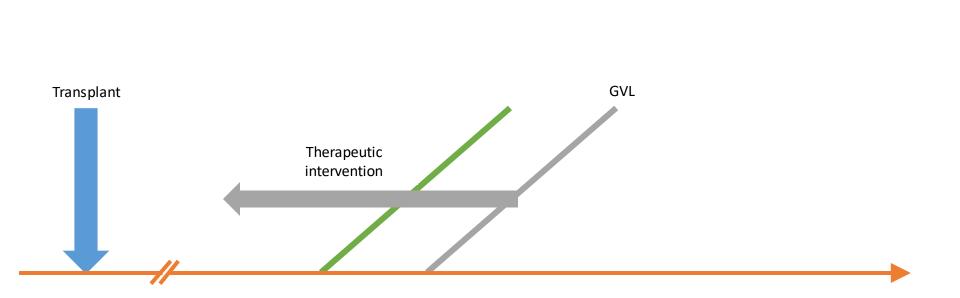
A potent and manipulable GVL effect is exerted after a RIC allograft for AML

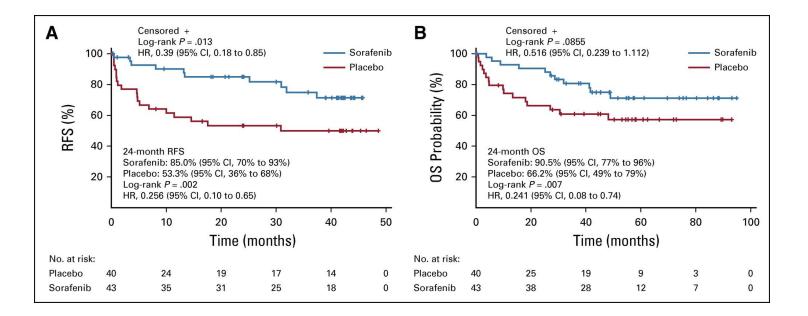



FIGARO: Acquisition of full donor T-cell chimerism overcomes the adverse impact of pre-transplant MRD



Agents under investigation in post-transplant maintenance

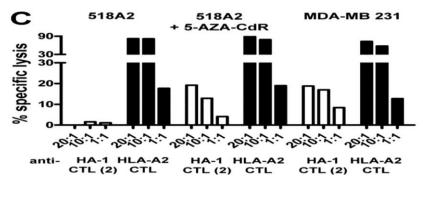

Agent	Study	Population	Reference
Sorafenib	Randomised Prospective Phase II Trials	FLT3-ITD AML who received HCT in first CR	Burchert A, et al. J Clin Oncol 2020: 38:2993-3002
Gilteritinib	Phase 3, multicentre, randomised	FLT3-ITD AML who received HCT in first CR	Clinicaltrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT 02997202 (accessed Sep 2020)
CC486	AMADEUS, Phase 3, randomised	Patients with AML or MDS post allograft	Clinicaltrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT 04173533 (accessed Sep 2020)



GvL: graft vers us leukaemia Speaker opinion

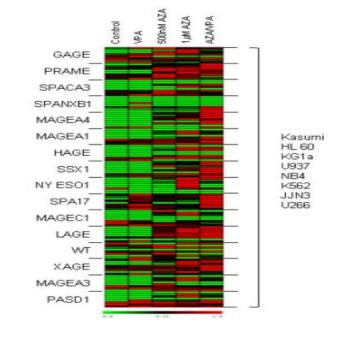
GvL: graft vers us leukaemia Speaker opinion

Post-transplant Sorafenib Maintenance Improves Outcome After Allo-SCT in Patients Allografted for Flt3 ITD+ AML


BMT CTN 1506

A Multi-Center, Randomized, Double-Blind, Placebo-Controlled Phase III trial of the FLT3 Inhibitor Gilteritinib Administered as Maintenance Therapy Following Allogeneic Transplant for Patients with FLT3-ITD AML

Study Chairs: Yi-Bin Chen, MD, Mark Levis, MD, PhD


AZA up-regulates the expression of epigenetically silenced putative GVL targets

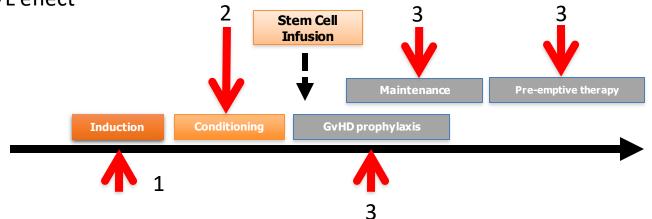
AZA up-regulates mHAg expression on AML blasts

Hambeach, et al. Blood 2009

AZA up-regulates MAGE-A1 expression on AML blasts

AMADEUS: Randomized Trial CC486 Maintenance in Patients Allografted for AML

Between 42 and 84 days post allo-SCT patients randomised


Control Arm Placebo Experimental arm Oral azacitidine 200 m od daily days 1-14

Patients will receive 14 days of either placebo or oral AZA (CC-486) at the beginning of a 28 day cycle.

> 24 months Relapse Free Survival

Strategies to reduce relapse risk in patients allografted for AML

- 1) Minimize pre-transplant disease burden
- 2) Optimize cytotoxic properties of the conditioning regimen
- 3) Maintenance drug or cellular therapies which:
 - Target residual leukemic stem/progenitors
 - Optimize a GVL effect

AML: a cute myeloid leukemia; GvL: graft versus leukaemia; GvHD: graft versus host disease

What is the optimal strategy to allografts adults with allomandatory AML in CR1?

- In fit adults under 55 a MAC regimen is to be preferred especially in patients who are MRD+
- Older adults (55-75) can safely proceed to allograft if they are fit with a low HCT-Ci status
- Older adults who are MRD+ can still achieve good post-transplant outcomes with RIC regimen but novel conditioning/post-transplant strategies are required
- There is no evidence that transplant should be deferred in patients who are in morphological CR but have detectable flow based MRD
- Prospective examination of novel strategies with the potential to improve transplant outcome is required- embedded MRD and genomic studies are key

Q&A session

Debate on sequencing CD19-targeted approaches

Moderator: Franco Locatelli

What is your preferred ALL treatment choice in salvage if all these therapies were available in your country?

- a) CAR T therapies
- b) Monoclonal antibodies or bispecifics

Debate on sequencing CD19targeted approaches: Monoclonal antibodies and bispecifics first

Elias Jabbour

Management of Patients With R/R Acute Lymphocytic Leukemia: Bispecifics and ADC

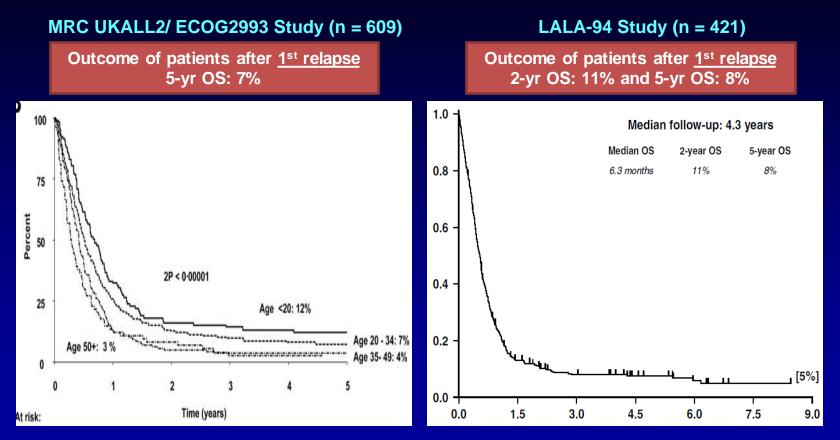
Elias Jabbour, MD Department of Leukemia The University of Texas MD Anderson Cancer Center, Houston, TX

Conflict of Interest Disclosure

- Research grants
 - Pfizer, Takeda, Amgen, AbbVie, Novartis
- Consultancy and advisory roles
 - Pfizer, Takeda, Amgen, AbbVie, BMS

ALL Salvage Standards of Care in 2021

- Refer for investigational therapies MoAb + ChemoRx; CAR T
- Ph+ ALL TKIs + chemoRx; blinatumomab
- Pre-B-ALL
 - Blinatumomab (FDA approval 12/2014)
 - Inotuzumab (FDA approval 8/2017)
 - 2 CAR Ts (FDA approvals 8/2017 and 10/2017)
- T-ALL: nelarabine
- ChemoRx: FLAG IDA, Hyper CVAD, augmented HCVAD, MOAD

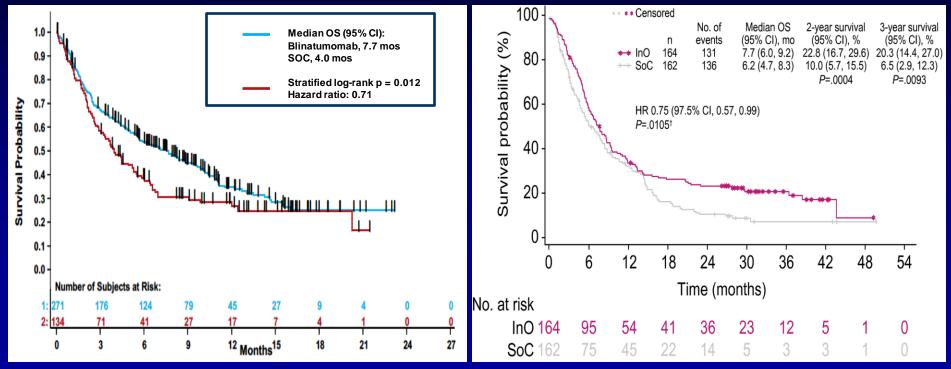

Historical Results in R/R ALL

Poor prognosis in R/R ALL Rx with standard of care (SOC) chemotherapy

Rate (95% CI)	No prior salvage (S1)	One prior salvage (S2)	≥2 prior salvages (S3)
Rate of CR, %	40	21	11
Median OS, months	5.8	3.4	2.9

Gökbuget N, et al. Haematologica. 2016;101:1524-1533.

ALL – Historical Survival Rates After First Relapse

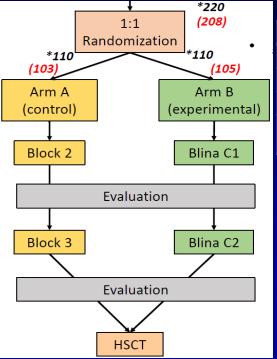


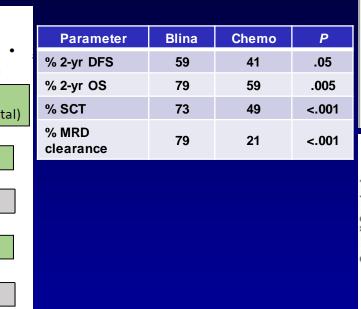
Fielding et al. Blood. 2007;109:944-950; Tavernier E, et al. Leukemia. 2007;21:1907-1914.

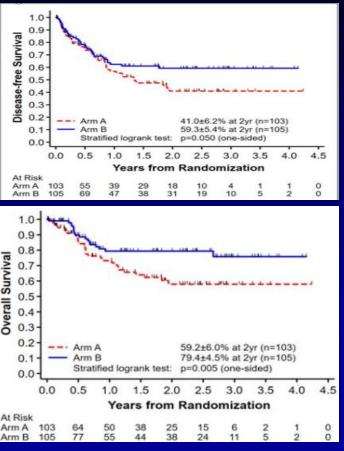
Blinatumomab/Inotuzumab vs ChemoRx in R/R ALL

 Marrow CR Blina vs SOC: 44% vs 25%

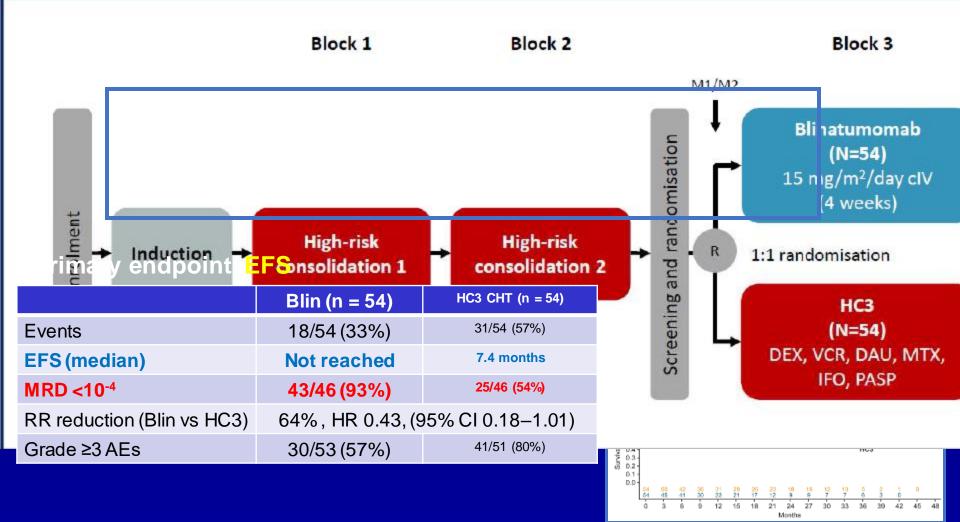
Ino vs SOC: 74% vs 31%




Kantarjian H, et al. N Engl J Med. 2017;376:836-847.

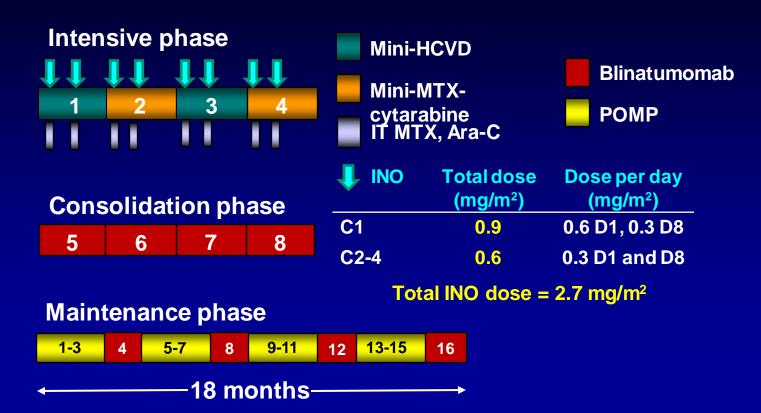

Kantarjian H, et al. N Engl J Med. 2016;375:740; Kantarjian H, et al. Cancer. 2019;125(14):2474-2487.

Phase III Study of Blinatumomab vs ChemoRx in Children-AYA in Salvage 1


 208 pts HR/IR randomized 1:1 to blina (n = 105) vs chemo Rx (n = 103) post Block 1 reinduction

Brown et al. JAMA. 2021:325(9):833-842.

Locatelli F, et al. JAM A. 2021:325(9):843-854.


Phase II Study of Inotuzumab in R/R Pediatric ALL

- 32 pts enrolled, 28 Rx, 27 evaluable
- Median age 7.5 yrs (1.7–17). S2+ 57%. Prior blina 25%; prior ASCT 50%; prior CAR T Rx 11%
- Inotuzumab weekly × 3 up to 6 courses
- ORR = 81.5% (CR 50%); MRD neg 95% (82% after C1)
- 64% proceeded to ASCT and 14% to CAR T Rx
- 12-mos EFS 23%; 12-mos OS 46.5%
- 6 VOD (22%): 1 during InO; 5/14 post ASCT (36%)

Mini-HCVD + INO + Blina in ALL: Design

- Dose reduced HyperCVD for 4–8 courses
 - Cyclophosphamide (150 mg/m² × 6) 50% dose reduction
 - Dexamethasone (20 mg) 50% dose reduction
 - No anthracycline
 - Methotrexate (250 mg/m²) 75% dose reduction
 - Cytarabine (0.5 g/m² \times 4) 83% dose reduction
- Inotuzumab on D3 (first 4 courses)
 - Modified to 0.9 mg/m² C1 (0.6 and 0.3 on D1&8) and 0.6 mg/m² C2-4 (0.3 and 0.3 on D1&8)
- Rituximab D2 and D8 (first 4 courses) for CD20+
- IT chemotherapy days 2 and 8 (first 4 courses)
- Blinatumomab 4 courses and 3 courses during maintenance
- POMP maintenance for 3 years, reduced to 1 year

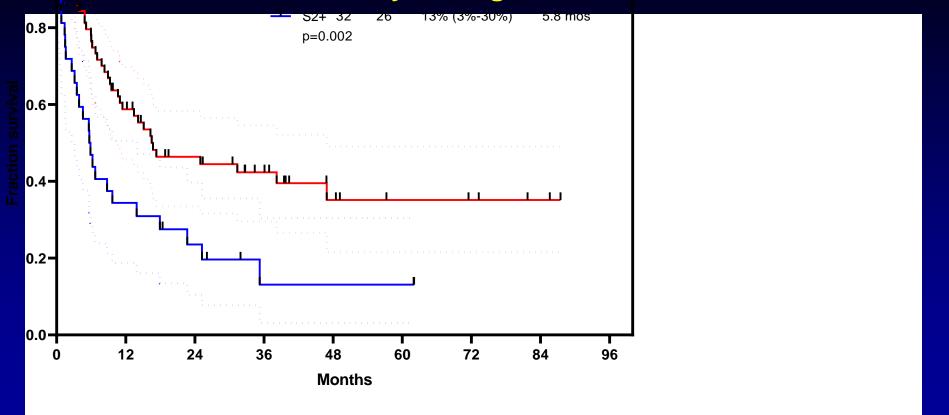
Mini-HCVD + INO ± Blina in R/R ALL: Long-Term Follow-Up

Sasaki et al. *Blood.* 2020;136: abstract 1895.

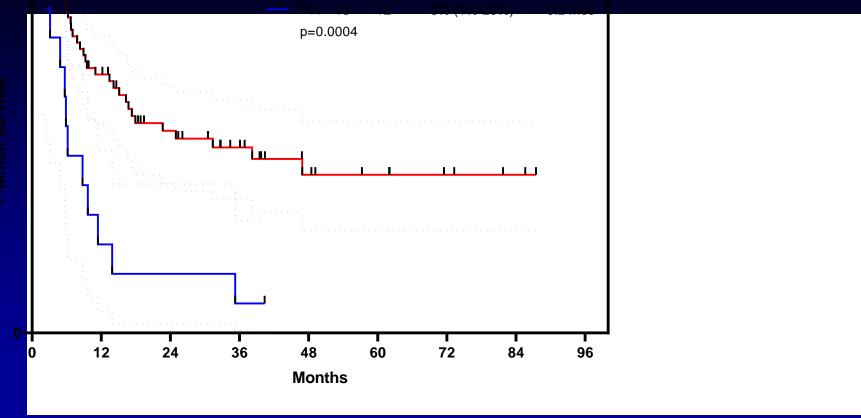
Mini-HCVD + INO ± Blina in R/R ALL (N = 96)

Characteristic	Category	No. (%)	С
Age (year)	Median [range]	37 [17–87]	R
Gender	Male	45 (47)	
ECOG PS	2+	18 (19)	
Salvage Status	S1 S1, Primary Refractory S1, CRD1 <12 months S1, CRD1 ≥12 months S2 ≥S3	64 (67) 8 (8) 25 (26) 31 (32) 18 (19) 14 (15)	
Prior ASCT		19 (20)	С
Karyotype	Diploid T(4;11) Ho-Tr Complex Misc IM/ND	23 (24) 10 (10) 10 (10) 14 (16) 23 (24) 16 (17)	N
CD22	Median [range]	95 [14–100]	
CD20	≥20%	23 (24)	

Characteristic	No. (%)	
Response, No. (%)		
Salvage1	58/64 (91)	
S1, Primary refractory	8/8 (100)	
S1, CRD1 <12 mos	21 (84)	
S1, CRD1 ≥12 mos	29 (94)	
Salvage 2	11 (61)	
≥ Salvage 3	8 (57)	
Overall	77/96 (80)	
MRD negativity	62/75 (83)	
Salvage1	50/56 (89)	
≥ Salvage 2	12/19 (63)	

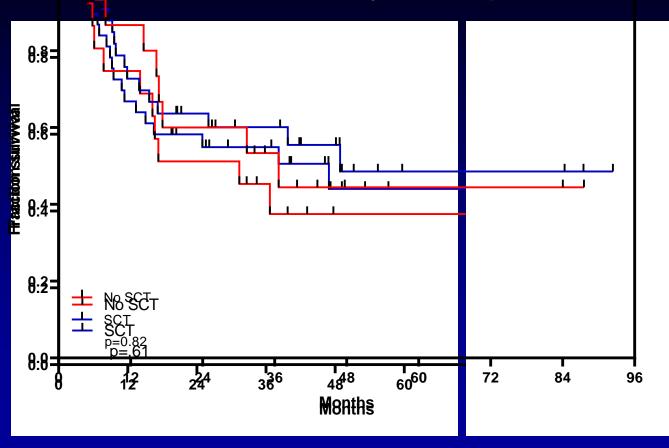

Sasaki et al. *Blood.* 2020;136: abstract 1895.

1.0


	Single dose (n = 67)	Fractionated lower dose followed by blina (n = 29)
VOD (%)	9 (13)	1 (3)

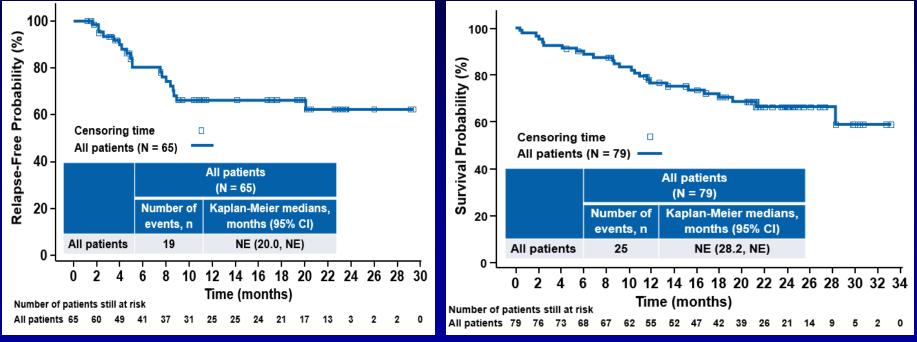
Sasaki et al. Blood. 2020;136: abstract 1895.

Mini-HCVD + INO ± Bilnatumomab in R/R ALL OS by Salvage Status

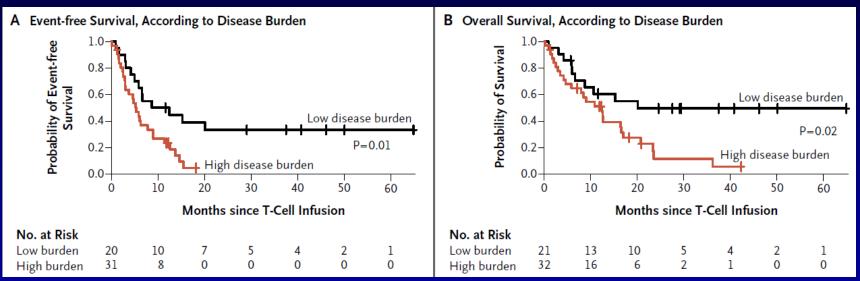


iviini-HCVD + iNO ± Biinatumomab in R/R ALL - OS by MRD Status

Sasaki et al. Blood. 2020;136: abstract 1895.


Wini-HCVD + INO + Blinatumomab in S1 ALL OS by Subsequent ASCT

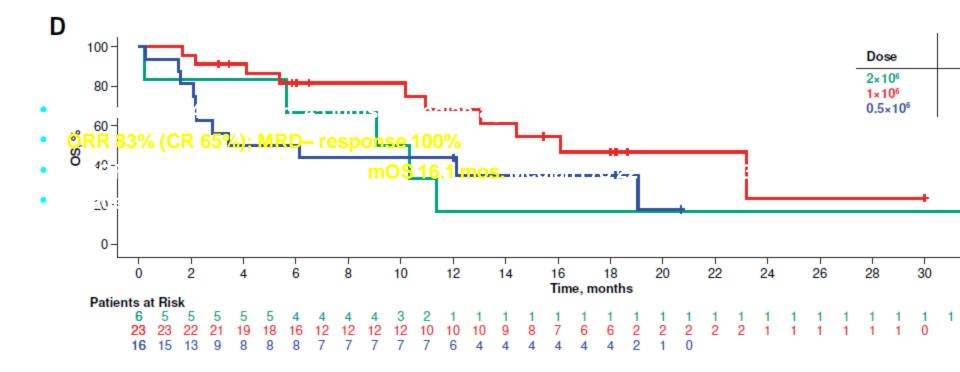
Rafei et al. Blood. 2020;134: abstract 1934.


ELIANA Trial Update

- 113 screened, 97 enrolled, 79 infused
- 3-mo CR 65/79 = 82%, or 65/97 = 67%
- 24-mos OS 66%; RFS 62% Gr 3-4 CRS 49% ICU 48%

CD19-CD28z CAR (MSKCC): Outcome by Tumor Burden

- High tumor burden
 - Bone marrow blasts ≥5% (n = 27)
 - Bone marrow blasts <5% + extramedullary disease (n = 5)
- Low tumor burden (MRD+ disease) (n = 21)

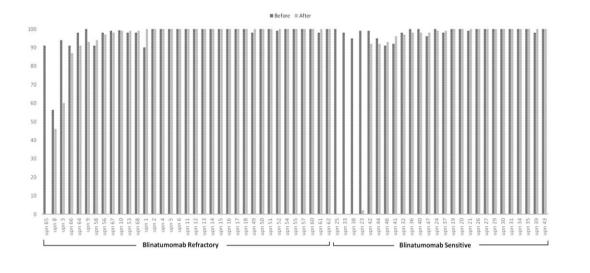


Median EFS Low tumor burden (MRD+): 10.6 mos High tumor burden: 5.3 mos

Median OS Low tumor burden (MRD+): 20.1 mos High tumor burden: 12.4 mos

Park et al. N Engl J Med. 2018;378:449.

MSKCC, Memorial Sloan Kettering Cancer Center

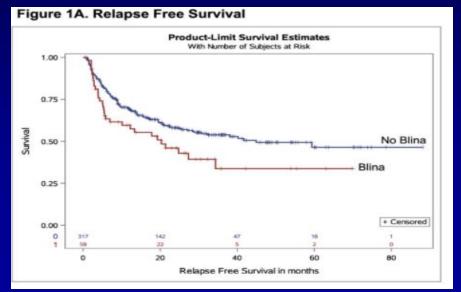

Shah et al. *Blood*. 2021, in press.

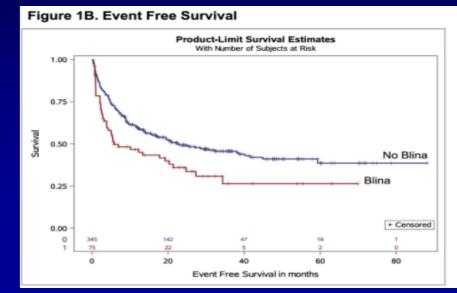
Antibodies vs CAR T in ALL: Comparing Apples to Apples

Age Group	Salvage	Rx	% CR	% OS (× yr)
	S1	Blinatumomab	79	79 (2)
Pedi	S2	Inotuzumab	62	40 (1)
	S2	CAR T	67 (82% of infused)	66 (2)
	S1	Mini-CVD-ino-blina	91	40 (3)
Adult	S2-S3	Mini-CVD-ino-blina	57–61	20–40 (2)
	S2+	CAR T (active ALL)	65	10–20 (2)

CD19 (%) Expression Before and After Blinatumomab Therapy

CD19 (%) Expression Before and After Blinatumomab Therapy


• 61 patients evaluated for immunophenotype, 56 (92%) had CD19-positive disease


- 5 (8%) had ALL recurrence with CD19-negative disease
- 2 patients progressed with lower CD19-positive disease

Jabbour et al. Am J Hematol. 2018;376:836-847.

Pre-CAR Blinatumomab = \uparrow **Relapse and** \downarrow **EFS**

- 412 pts ≤25 yrs (7 centers) Rx with 1 of 3 CAR T
- 375/412 achieved CR = 91%; 363 MRD negative (88%)
- 75 (18%) had prior blina; 57% CR
 - Prior blina KMT2A (15% vs 6%), EM disease (8% vs 4.6%)
- No difference in OS

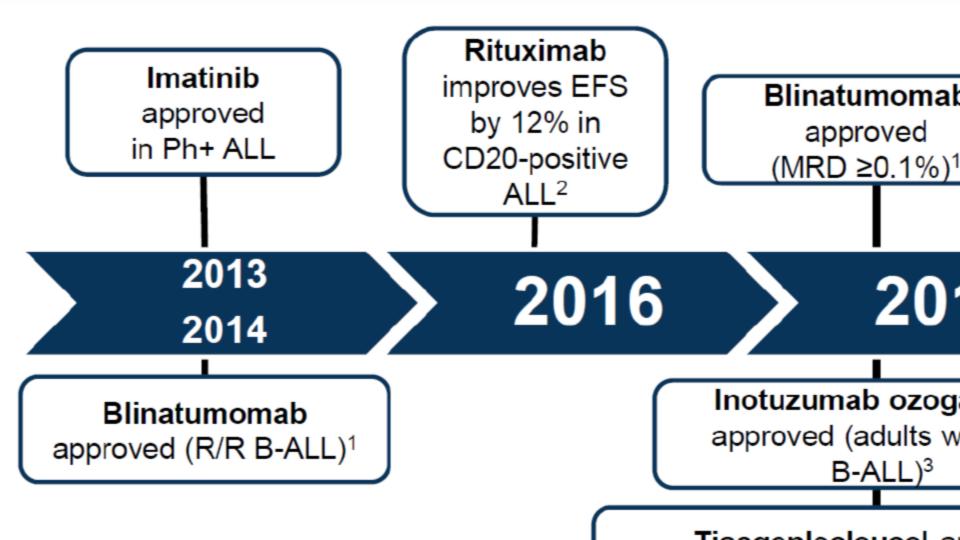
Taraseviciute et al. Blood. 2020;136:abstract 269.

Salvage Therapies in ALL: Conclusions

- Very effective salvage therapy in R/R ALL
 - High MRD-negativity rate
 - Best outcome in Salvage 1
- Combination with low-dose chemotherapy
 - Safe and effective
 - Median survival 14 months
 - Salvage 1, 24 months (2-year OS rate >50%)
- AEs better controlled
 - CRS: debulk with sequential chemotherapy
 - VOD lower doses explored
- CAR T-cell RX offered post blinatumomab and inotuzumab failure
 - Salvage 2 and high-risk Salvage 1 (eg, MLL)
 - Consolidation in high-risk patients (replacing allo-SCT)
- Better "blinatumomab" and "inotuzumab" needed
 - Better "Blina": Long half-life; SQ; no neurotoxicities
 - Better "InO": no VOD

Thank You

Elias Jabbour MD Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX Email: ejabbour @mdanderson.org Cell: 001.713.498.2929



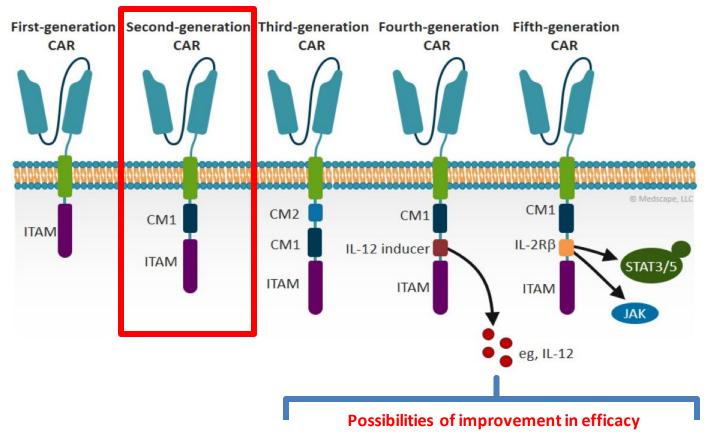
Debate on sequencing CD19targeted approaches: CAR T first

Josep-Maria Ribera

Immunological Therapies for B-cell Precursor ALL

	Blinatumomab		Inotuzumab	Bretxucabtagene autoleucel		Tisa-cel
FDA approval	2014		2017	October 2021		2017
Approved indication	CD19+ BCP R/R adults & children MRD+ BCP CD19+ ALL		R/R CD22+ ALL in adults	Adults R/R BCP ALL (review) BCP children & AYA (≤21 yr)(devel)		BCP children & AYA (≤25 yr)
Clinical trial	BLAST	TOWER	INO-VATE	ZUMA-3	ZUMA-4	ELIANA
N Pts (ITT)	118	405	326	71	31	97
N (evaluable)	113/110	376	326 (OS/PFS) 218 (CR)	55	24	79
CR/CRi (%)	-	43.9 vs. 24.6 (ITT)	80.7 vs. 29.4 (evaluable)	71 (evaluable)	67 (evaluable)	82.3 (evaluable)
RFS/PFS/EFS	mRFS 18.9 m (evaluable)	6m EFS: 31% vs. 12% (ITT)	mPFS: 5.0 vs 1.8 m (ITT)	mRFS 11.6 m (evaluable)	mRFS NR (evaluable)	18m RFS: 66% (evaluable)
OS	mOS 36.5 (evaluable)	mOS 7.7 vs 4.0 (ITT)	mOS 7.7 vs 6.7 (ITT)	mOS 18.2 m (evaluable)	2yr OS 87.5% (evaluable)	18m OS: 70% (evaluable)
G ≥3 AE (%)	60	86.5 vs 91.7	46 vs 43	95	100	-
G ≥3 CRS (%)	1.7	4.9 vs 0.0	-	24	22	48
G ≥3 neurol ev.	13	9.4 vs 8.3	_	25	11	13

Debate on CD19-Targeted Approaches


• There is no debate!

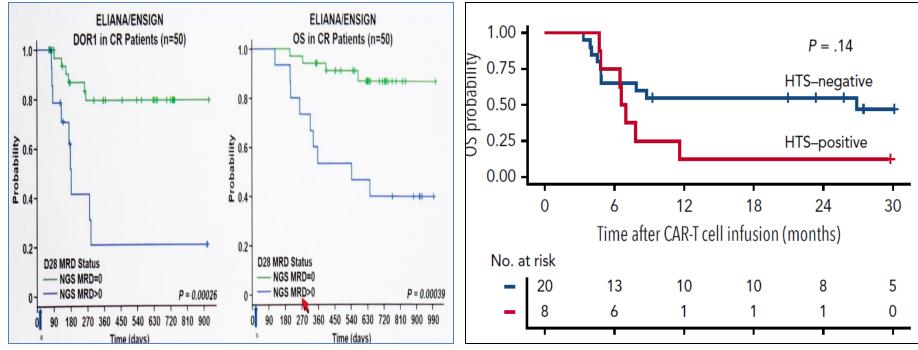
- Immunotherapeutic strategies are not mutually exclusive and can (should?) be used sequentially
- Quick improvement in the results of immunotherapy in ALL
- Immunoconjugates and bispecific MoAb were developed before CAR T and more mature results are available
- Face-to-face comparison MoAb vs CAR T not available to date
- Main objective: timely use of the most adequate strategy to maximize the efficacy with minimal toxicity

¿Why Are All CAR T Not Equal?

- Construct: antigen, co-stimulatory molecule
- Specificity: single antigen, dual, triple
- Origin of T cells: autologous, allogeneic (off the shelf)
- Production: commercial, academic
- Dose: single, fractioned

Differences in CAR T-cell Therapies

Tokarew N, et al. Br J Cancer. 2019;120:26-37.


Second-Generation CD19 CAR T in R/R Adult ALL: Facts

- Limited experience, short-term results
- High CR rate (80%–90%), MRD–neg in 60%–80%
- Short duration of response (median 8–18 months)
- Better results in patients with low tumor mass, promising in MRD+ patients
- Need for subsequent alloHSCT unclear, with good results in some series
- Early MRD assessment by high-throughput sequencing predicts outcome
- Prognostic factors in MRD–neg CR patients identified
- Major concerns: durability, CD19–neg relapses
- First CAR T for adult ALL (brexucabtagene autoleucel) approved for adults with R/R ALL on October 1, 2021

Second-Generation CD19 CAR T in R/R Adult ALL

Study	N*	Age, Median (range)	CR, %	MRD– in CR, %	Relapse (%)	PFS	OS
UPenn	35	33 (20–70) Single dose, low: 9 Single dose, high: 6 Fractionated dose, high: 20	33 50 90			0% 17% 49% (24 mo)	22% 17% 73% (24 mo)
MSKCC	53	44 (23–74)	83	67	57	Median: 6.1 mo	Median: 12.1 mo
FHCRC	53	39 (20–76)	85	85	49	Median: 7.6 mo	Median: 20 mo
City of Hope	13	33 (24–72)	100	91	NR	NR	NR
UCL	19	43 (18–72)	84	84	26	62% (6 mo)	NR
HCB-HSJD	27	35 (18–69)	85	85	15	Median: 9.4 mo	Median: 20.2 mo
KTE-X19 phase I	45	46 (18–77)	83	100		Median: 17.6 mo	Median: 16.1 mo
KTE-X19 phase II	55	40 (19–84)	71	97		Median 11.6 mo	Median 18.2 mo

Early Clearance of the Leukemic Clone by HTS Associated With Better Outcome

Median OS 26.9 vs 6.8 months

CD19 CAR T Cells in Relapsed/Refractory Adult ALL

CAR: CD19 4-1BB

59 pts apheresis

53 infused

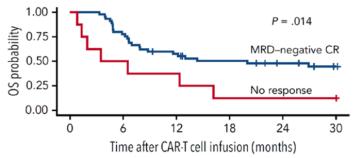
Patient characteristics

Median age: 39 (20-76) years

21% Ph+

43% prior SCT

26% bridging


Disease at lymphodepletion:

64% (N=34) morphological BM relapse (≥5%)

- 13 extramedullary
- 4% (N=2) extramedullary only
- 32% (N=17) MRD pos
 - 3 extramedullary

85% in CR and MRD neg after infusion

Overall survival after infusion

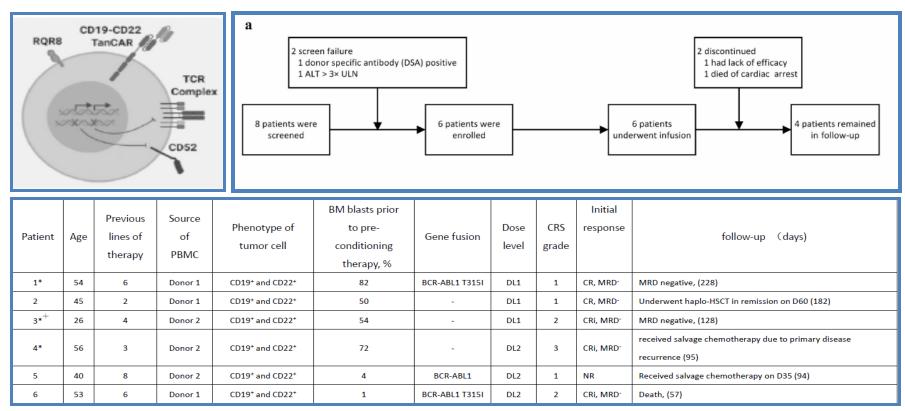
Prognostic factors for EFS

		tivariable nalysis	
Variable	HR	95% CI	Р
LDH prelymphodepletion (per 100 U/L increment)	1.39	1.11-1.73	.004
Platelets prelymphodepletion (per 50 000/μL increment)	0.74	0.53-1.03	.069
Fludarabine added to lymphodepletion	0.25	0.15-0.78	.003
HCT after CAR T-cell therapy	0.39	0.13-1.15	.088

EFS, event-free survival. Hay KA, et al. *Blood.* 2019;133:1652-1663.

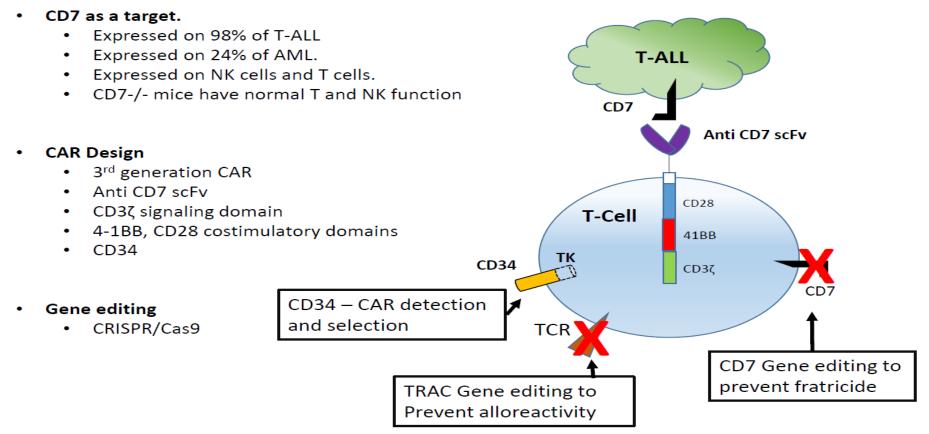
	Stuc MRD Status Qvorell CI	019. 28z) CAR T Cell in Actits
P<.0001	With R/R ALL (55/7	
10 ³ -	10 ³ - +	49 (89)
10^{2}	10 ² -	13 (24)
10º - 📕	10 ¹ - 10 ⁰ -	
10 ⁻¹ • •	10-1	46 (94)
10-3	10-3	33 (67)
CR/CRi Non-CR/CRi (n=36) (n=14)	Negative Positiv <mark>e</mark> (n=39) (n=4)	5
(11-30) (11-14)	,,	7.5
Neurologic Events		
Any grade neurologic e	event, n (%) ^b	33 (60)
Grade ≥3		14 (25)
Most common any grad	de symptoms, n (%)	
Tremor		15 (27)
Shah BD, et al. Loncet. 2021;398:491-502		14 (25)

Improvements in CAR T


- Humanized CAR T (Myers RM. J Clin Oncol. 2021;39:3044-3055)
- Fast-off rate, low-affinity CAR T 19 (Roddie C. J Clin Oncol. 2021)
- CAR T 22
- Dual CAR T (Spiegel JY. Nat Med. 2021;27:1419-1431)
- Off-the-shelf CAR T
- CAR T combined with checkpoint inhibitors
- CAR T for T-ALL
- NK CAR

Maximum grade CRS (ASTCT criteria)	icity: Fast Off-rate
CRS (any)	11 of 20 (55)
Grade 2	8 of 20 (40)
≥ Grade 3	0 of 20 (0)
Maximum grade neurotoxicity (ICANS)	
ICANS (any)	4 of 20 (20)
Grade 2	1 of 20 (5)
Grade 3	3 of 20 (15)
Cytopenias at day 28ª	
≥ Grade 3 neutropenia	9 of 18 (50)
≥ Grade 3 thrombocytopenia	10 of 18 (56)
Io. at risk: 20 13 11 8 5 	1

Autologous Dual CAR T 19/22


Author (yr)	Trial Phase	Pts, n Age (range)	CR	MRD–CR	Survival	Grade ≥3 CRS	Grade ≥3 ICANS
Dai H (2020)	I	6	6 (100%)	6 (100%)	5/6	0	0
Schultz LM (2019)	I	19 (2–68 yr)	11/12 (92%)	10/11 (91%)	92% (9 mo)	1/14	1/14
Spiegel JY	I	17 (26–68 yr)	14/17 (88%)	14/14 (100%)	Median 11.8 mo	2	2
Yang J* (2020) *Fast CAR techn	l ology (24 h)	10 (3–48 yr)	10 (100%)	9 (90%)	9/10	0	0

CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-targeted CAR T Cell

Hu Y. Clin Cancer Res. 2021. doi: 10.1158/1078-0432.CCR-20-3863.

CD7 CAR Design

Courtesy of Dr Perales.

Integrative Debate on CD19-Targeted Approaches: Conclusions

- Immunotherapy with MoAb should be first used in patients with R/R ALL as well in first-line therapy (elderly, MRD+)
- MoAb can be used as bridging therapy to HSCT and CAR T
- CAR T only recently approved for R/R adult ALL
- The main current role for CAR T are relapses after HSCT
- CAR T as consolidation therapy evaluated in very high-risk ALL (clinical trials in children)
- CAR T are quickly improved (availability, lower toxicity, improved efficacy, use in R/R BCP and T ALL) and could replace HSCT for most patients in the near future

Debate on sequencing CD19-targeted approaches – discussion and voting

Moderator: Franco Locatelli

What is your preferred ALL treatment choice in salvage if all these therapies were available in your country?

- a) CAR T therapies
- b) Monoclonal antibodies or bispecifics

Debate on sequencing CD19-targeted approaches – discussion

All faculty

Leukemia board discussion

Moderator: Elias Jabbour

Leukemia board discussion – optimal treatment and patient access, regional challenges in Europe – part 1

Rob Pieters

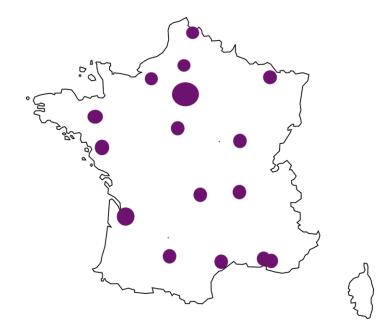
- > Financial challenges
 - Costs for travel and lodging for patients and parents
 - Trial costs are covered, but who covers the costs of standard care around the trial? Insurance companies often do not want to guarantee this
- > Geographic challenges
 - Return to home country when therapy is not successful
 - Translation costs, communication and cultural differences: child and parents may feel displaced in other countries in stressful situations despite good care
 - Difficulties in obtaining detailed information of a patient from abroad (eg, surgical reports, genetic diagnostics, radiation fields)
- > European centers have insufficient resources to run phase I–II programs
- > EMA approval: large differences in HTA approvals per country (reimbursement/insurance) resulting in unequal access

Leukemia board discussion – optimal treatment and patient access, regional challenges in Europe – part 2

Philippe Rousselot

Optimal Treatment and Patient Access

France


Autorisation Temporaire d'Utilisation (ATU) Program in France

- Two new mechanisms: Early access authorization (EAA) and Compassionate use (CU)
- Patients can be treated with medications before their marketing authorization
- The program was amended in July 2021
 - EAA: access to innovative therapies with an ongoing labelling process
 - Named authorization: the labelling process is planned
 - Cohort authorization: just before the labelling
 - CU: access to innovative therapies without a labelling process

Medications With Ongoing ATU in Hematology

- Idecabtagene vicleucel (CAR T): since May 2021
 - Multiple myeloma in fourth line
- Atgam (antilymphocyte globulin): since May 2018
 - Aplastic anemia
- Zanubrutinib (BTK inhibitor): since July 2021
 - Waldenstrom macroglobulinemia after ibrutinib or intolerant
- Inolimomab (IL2R antibody): since Dec 2019 – GvHD
- Vyxeos (DNR AraC): since Aug 2020
 - AML in relapse in pediatric and young adults
- Crizotinib (ALK inhibitor): since Dec 2020
 - T lymphoma ALK+ in second line

CAR T Availability in France

22 centers authorized for "Axi-Cel" and "Tisa-Cel"

- 1. APHP Créteil Henri Mondor
- 2. APHP Saint Louis
- 3. APHP Pitié Salpêtrière
- 4. APHP Saint-Antoine
- 5. APHP Necker
- 6. APHP Robert Debré
- 7. CHU d'Amiens
- 8. CHU Bordeaux
- 9. CHU Clermont Ferrand
- 10. CHU Dijon
- 11. CHU Lille
- 12. CHU Lyon-Sud
- 13. CHU Nancy
- 14. CHU Nantes
- 15. CHU Montpellier
- 16. CHU Reims
- 17. CHU Rennes
- 18. CHU Strasbourg
- 19. CHU La Timone
- 20. Institut Paoli-Calmettes
- 21. Oncopole de Toulouse
- 22. Institut Gustave Roussy à Villejuif

Leukemia board discussion

All faculty

Session close

Elias Jabbour

Which of the following is NOT true?

- a) Inotuzumab and blinatumomab + chemotherapy is active in both frontline and salvage for ALL
- b) ALK inhibitors can be combined with other therapy modalities in Ph+ ALL
- c) MRD is highly prognostic for relapse and survival in Ph– ALL
- d) CAR T approaches are not active beyond 2L in Ph– ALL

Global Leukemia Vitteren Breakout – Adult Leukemia Patients (Day 2) 17.00 – 20.00 Chairs – Elias Jabbour, Naval Daver

Time CET	Title	Speaker/Moderator
17.00 – 17.10	ALL session open	Elias Jabbour
17.10 – 17.30	Optimizing first-line therapy in adult and older ALL - integration of immunotherapy into frontline regimens	Elias Jabbour
17.30 – 17.50	Current treatment options for relapsed ALL in adult and elderly patients	Nicola Gökbuget
17.50 – 18.20	 Case-based panel discussion on toxicity management for adult and elderly ALL patients Case presentation 1: Fabian Lang Case presentation 2: Anna Torrent 	Moderator: Elias Jabbour <i>Faculty panel</i> : E. Jabbour, N. Gökbuget, J.M. Ribera, P. Rousselot
18.20 – 18.30	Break	
18.30 – 18.35	AML session open	Naval Daver
18.35 – 18.55	Personalized induction and maintenance approaches for AML	Richard Schlenk
18.55 – 19.15	Optimizing management of relapsed/refractory AML	Charles Craddock
19.15 – 19.45	 Case-based panel discussion or questions to the panel on regional challenges in AML care Case presentation 1: Justin Loke Case presentation 2: Sonia Jaramillo Segura 	Moderator: Naval Daver <i>Faculty panel</i> :N. Daver, C. Craddock, R. Schlenk
19.45 – 20.00	Session close	Elias Jabbour

Global Leukemia Vifteren Breakout – Pediatric ALL Patients (Day 2) 17.00 – 19.45 Chair – Franco Locatelli

Time CET	Title	Speaker/Moderator
17.00 – 17.15	Session open	Franco Locatelli
17.15 – 17.40	How to use MRD and genetics for risk stratification and therapy guidance in pediatric ALL	Rob Pieters
17.40 – 18.05	First-line treatment of pediatric ALL	Martin Schrappe
18.05 – 18.30	Current treatment options for relapsed ALL in children, including HSCT considerations	Franco Locatelli
18.30 – 18.55	Bispecific T-cell engagers for pediatric ALL	Christina Peters
18.55 – 19.25	 Case-based panel discussion on management of long- and short-term toxicities in pediatric ALL patients Case presentation 1: Francesca Del Bufalo Case presentation 2: Natalia Zubarovskaya 	Moderator: Franco Locatelli <i>Faculty panel:</i> R. Pieters, F. Locatelli, P. Brown, C. Peters, M. Schrappe
19.25 – 19.45	Final discussion, Q&A, and session close	Franco Locatelli

Closing remarks

Elias Jabbour

- > Thank you to our sponsors, expert presenters, and to you for your participation
- > Please complete the evaluation survey that will be sent to you via chat
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website in our Ask the Experts section

THANK YOU!

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

SEE YOU TOMORROW!

Sealth APTITUDE HEALTH