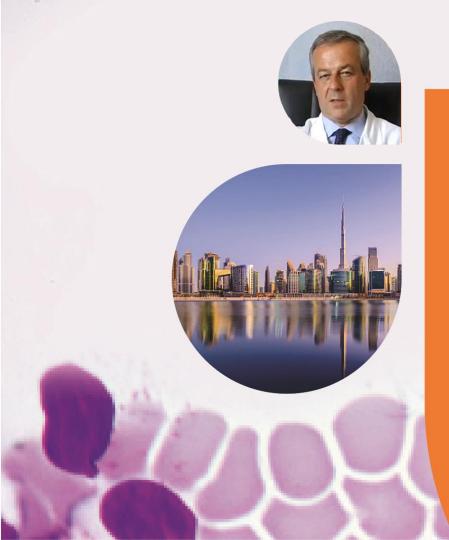


Recent Updates in Pediatric and Adolescent Young Adult (AYA) Acute Lymphocytic Leukemia (ALL)

Webinar

Welcome and Introductions

Franco Locatelli, MD University of Rome IRCCS Ospedale Pediatrico Bambino Gesù of Rome Italy


Patrick A. Brown, MD Johns Hopkins University School of Medicine USA

APTITUDE HEALTH

Agenda 9 September 2021

Time	Торіс	Presenter
7.00 PM – 7.05 PM GST	Welcome and Introductions	Franco Locatelli, MD, PhD and Patrick Brown, MD
7.05 рм – 7.15 рм GST	 Current Paradigm and Long-term Toxicities for Pediatric ALL Integration of innovative immunotherapies Role of MRD in treatment Long-term toxicities 	Franco Locatelli, MD, PhD
7.15 рм – 7.30 рм GST	 Bispecifics for Pediatric/AYA ALL Review of trial results in pediatric/AYA ALL Role of MRD in research and treatment AYA considerations 	Patrick Brown, MD
7.30 рм – 8.00 рм GST	Questions to Experts	Franco Locatelli, MD, PhD and Patrick Brown, MD

Current Paradigm and Long-Term Toxicities for Pediatric ALL

Franco Locatelli, MD University of Rome IRCCS Ospedale Pediatrico Bambino Gesù of Rome Italy

Current Paradigm for Treatment of Pediatric ALL

Franco Locatelli, MD Università Sapienza, Roma Dept. Pediatric Hematology/Oncology and Cell/Gene Therapy IRCCS Ospedale Bambino Gesù, Roma, Italy

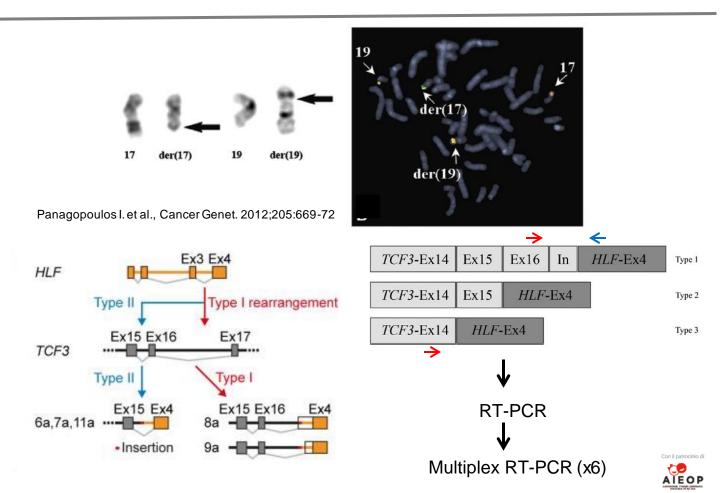
DISCLOSURES

Name of Company	Research support	Employee	Consultant	Słockholder	Speaker's Bureau	Advisory Board	Other
Miltenyi					Х		
Bellicum	X				X	X	
Amgen					X	Х	
Medac					X		
Neovii					X	х	
Novartis						X	
Sanofi						X	
Gilead					x		
BluebirdBio					X		

Outcome of contemporary trials involving children and adolescents with ALL

Research Group	Trial	Reference	Region	Years	Subgroup	No. of Patients	Event-free Survival†	Overall Survival†
							percent	
COG	Many trials	Hunger et al. ³⁷	United States, Canada, Australia, New Zealand	2000–2005	All patients B-cell ALL T-cell ALL	6994 5845 457	N/A N/A N/A	91.3 92.0 81.5
SJCRH	Total Therapy Study XV	Pui et al. ⁵⁶	United States	2000–2007	All patients B-cell ALL T-cell ALL	498 422 76	85.6 86.9 78.4	93.5 94.6 87.6
DFCI	DFCI ALL Consortium Protocol 00–01	Vrooman et al.57	United States, Canada	2000–2004	All patients B-cell ALL T-cell ALL	492 443 49	80.0 82.0 69.0	91.0 N/A N/A
AIEOP-BFM	AIEOP-BFM ALL 2000	Conter et al., ⁴⁹ Schrappe et al. ⁵⁰	Western Europe	2000–2006	All patients B-cell ALL T-cell ALL	4480 4016 464	80.3 80.4 75.9	91.1 91.8 80.7
MRC-NCRI	UKALL 2003	Vora et al. ⁵⁸	United Kingdom	2003–2011	All patients B-cell ALL T-cell ALL	3126 2731 388	87.2 N/A N/A	91.5 N/A N/A
DCOG	DCOG Protocol ALL-9	Veerman et al. ⁵⁹	The Netherlands	1997–2004	All patients B-cell ALL T-cell ALL	859 701 90	81 82 72	86 N/A N/A
EORTC CLG	EORTC CLG 58591	Domenech et al.60	Belgium, France	1998–2008	All patients	1940	82.6	89.7
NOPHO	ALL-2000	Schmiegelow et al. ⁶¹	Denmark, Finland, Iceland, Norway, Sweden	2000–2007	All patients B-cell ALL T-cell ALL	1023 906 115	79 81 64	89 91 72

* Infants younger than 1 year of age were excluded from these studies when possible. AIEOP denotes Italian Association of Pediatric Hematology and Oncology, BFM Berlin–Frankfurt– Münster, DCOG Dutch Childhood Oncology Group, DFCI Dana–Farber Cancer Institute, EORTC CLG European Organization for Research and Treatment of Cancer–Children's Leukemia Group, MRC-NCRI Medical Research Council–National Cancer Research Institute, N/A not available, NOPHO Nordic Society of Paediatric Haematology and Oncology, SJCRH St. Jude Children's Research Hospital, and UKALL Medical Research Council Working Party on Leukaemia in Children UK National Acute Lymphoblastic Leukaemia Trial. † Survival percentages shown are the rates at 5 years except for the rates for the AIEOP-BFM trial, which were reported at 7 years.


Hunger SP and Mullighan CG N Engl J Med 2015;373:1541-52 Teachey DT and Pui CH Lancet Oncolo.2019: 20(30):142-154

Perspectives for new trials in ALL

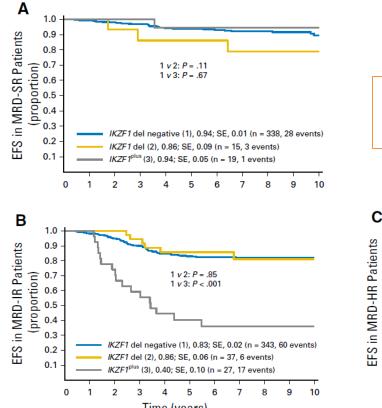
- Utilize novel genetic approaches
- Improve risk stratification by wider combination of genetic factors and response (MRD)
- Avoid additional toxic agents in most patients
- Introduce novel agents under controlled conditions

A novel TCF3-HLF fusion in ALL with a t(17;19)(q22;p13)

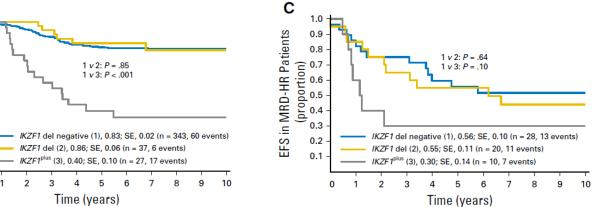
JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

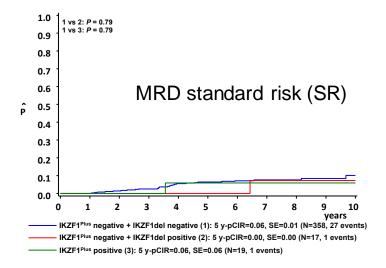
IKZF1^{plus} Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia


Martin Stanulla, Elif Dagdan, Marketa Zaliova, Anja Möricke, Chiara Palmi, Giovanni Cazzaniga, Cornelia Eckert, Geertruy te Kronnie, Jean-Pierre Bourquin, Beat Bornhauser, Rolf Koehler, Claus R. Bartram, Wolf-Dieter Ludwig, Kirsten Bleckmann, Stefanie Groeneveld-Krentz, Denis Schewe, Stefanie V. Junk, Laura Hinze, Norman Klein, Christian P. Kratz, Andrea Biondi, Arndt Borkhardt, Andreas Kulozik, Martina U. Muckenthaler, Giuseppe Basso, Maria Grazia Valsecchi, Shai Izraeli, Britt-Sabina Petersen, Andre Franke, Petra Dörge, Doris Steinemann, Oskar A. Haas, Renate Panzer-Grümayer, Hélène Cavé, Richard S. Houlston, Gunnar Cario, Martin Schrappe, and Martin Zimmermann, for the TRANSCALL Consortium and the International BFM Study Group

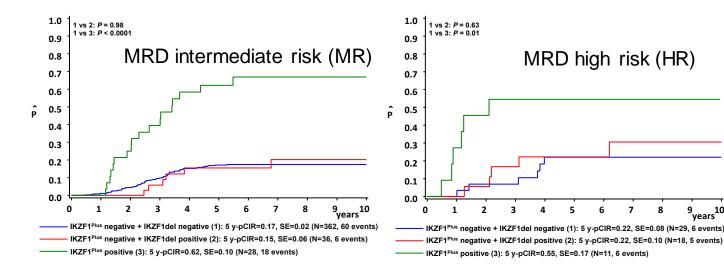
DOI: https://doi.org/10.1200/JCO.2017. 74.3617

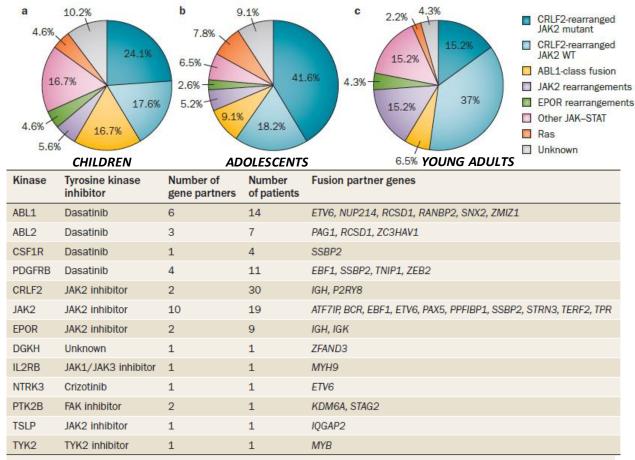

New prognostic pattern: Definition of *IKZF1*^{plus}

- Deletion of *IKZF1* and
 - PAX5 and/or
 - CDKN2A and/or
 - CDKN2B and/or
 - CRLF2 (PAR) and
 - Negativity for ERG deletion


IKZF1^{plus} and MRD: Impact on EFS

A: MRD – Standard risk (MRD neg at 5w and 12w)
B: MRD – Intermediate risk (MRD non SR/HR)
C: MRD – High risk (MRD pos ≥10⁻⁴ at 12w)

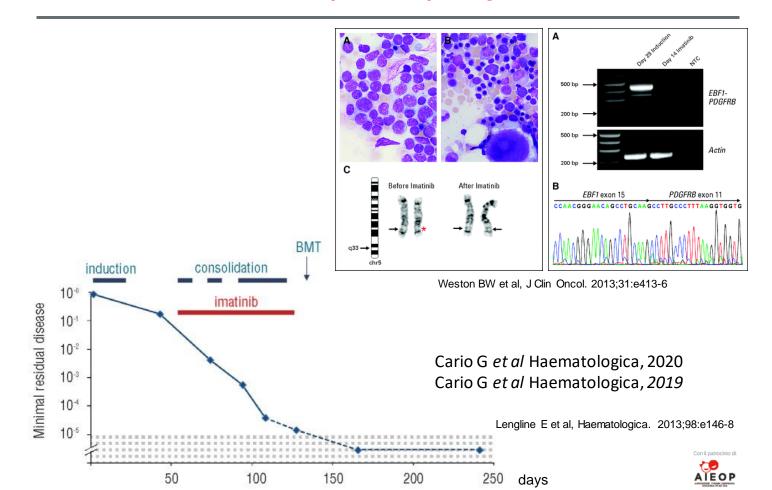

Stanulla M, et al. J Clin Oncol. 2018.


IKZF1^{plus} – cumulative relapse incidence in **MRD-based risk groups**

SR	=	6%
MR	=	62%
HR	=	55%

10 vears

Class of Kinase rearrangements and therapeutic targets in Ph-like ALL

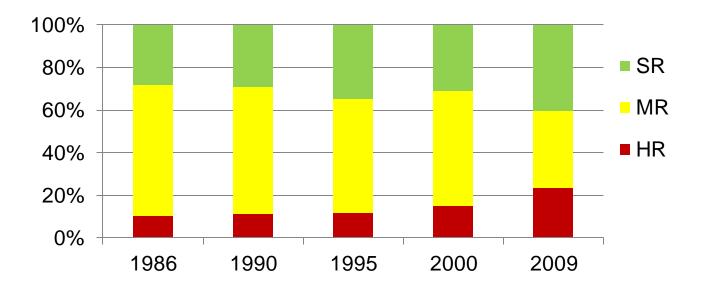


*Several ABL1-class and JAK kinases are rearranged to multiple fusion partners. Abbreviations: ALL, acute lymphoblastic leukaemia; Ph-like, Philadelphia chromosome-like. From the New England Journal of Medicine, Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. **371**, 1010. Copyright © (2014) Massachusetts Medical Society. Reprinted with permission.

Roberts KG & Mullighan CG Nat Rev Clin Onc 201

EBF1-PDGFRB (Ph-like) responds to TKI

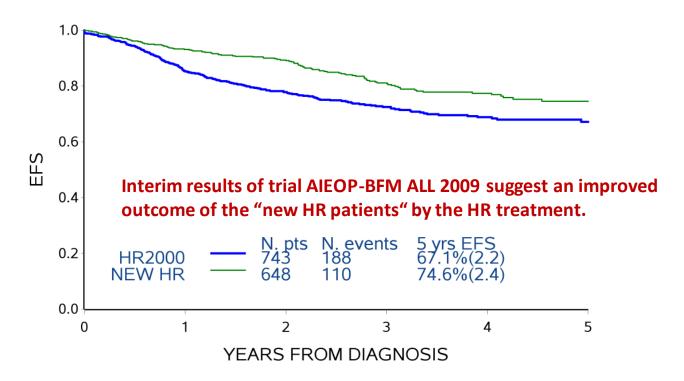
Identification of new high-risk groups and reducing relapses in high-risk patients


High-risk criteria	MLL-AF4+						
gh-ris	"MRD-HR" "MRD-MRD SER"						
Hi	"FCM-MRD d15 HR"						
	Hypodiploidy						
	TCF3-HLF +						
	IKZF1plus and PCR- MRD at TP1 positive or inconclusive						
		1986	1990	1995	2000	2009	2017

Studies ALL-BFM

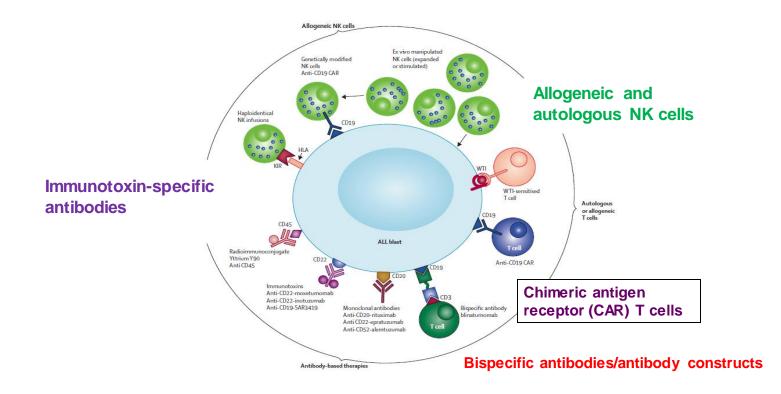
More and more patients with "intermediately unfavorable" outcome have been identified and shifted to the high-risk arm

Identification of new high-risk groups and reducing relapses in high-risk patients


 \rightarrow In AIEOP-BFM ALL 2009, the HR group comprised >20% of the patients

Studies ALL-BFM

AIEOP-BFM ALL 2009 – Interim analysis of the HR group


1391 patients

The essentials in pediatric ALL: Risk stratification and frontline therapy

- Approximately, 80% 5-year EFS can be achieved in unselected populations of pediatric patients
- The early treatment response in particular through MRD detection has been established to be the strongest prognostic factor
- Translation of novel molecular findings into improved treatment outcome is under investigation in various trials
- New molecular subgroups have been described (eg, Ph-like or *BCR/ABL*-like pB-ALL) and their prognostic role defined
- Novel treatment approaches based on immunotherapy; evidence regarding long-term benefit is yet to be established
- Reduction of long-term toxicities, especially in adolescents, is a priority

New immunological approaches under investigation in childhood ALL

Adapted from Bhojw ani D, Pui CH. Lancet Oncol. 2013;14:e205-e217.

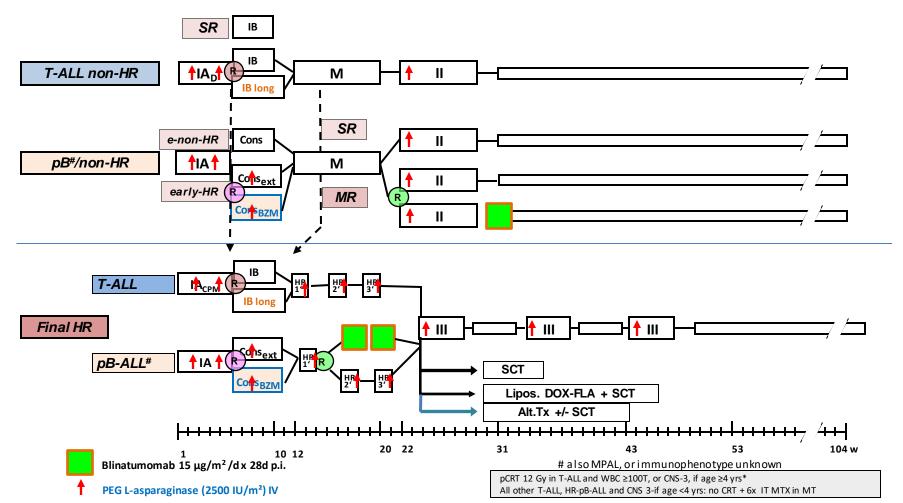
Status of Immunotherapy for ALL in the Front Line

- Cooperative groups worldwide are now introducing various immunotherapy constructs into frontline clinical trials
- Coordination of findings and development of future studies depend on cooperation among investigators and pharmaceutical sponsors globally
- Further implications for
 - Risk stratification
 - Biologic and genetic features of leukemia cells
 - Response kinetics
 - Surrogate and biomarkers of efficacy

AIEOP-BFM ALL 2017

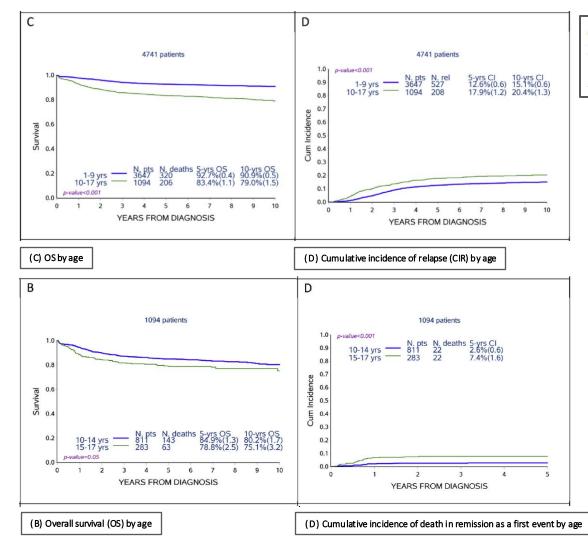
International collaborative treatment protocol for children and adolescents with acute lymphoblastic leukemia

Randomized phase III study conducted by the AIEOP-BFM study group


EudraCT Number: 2016-001935-12

Sponsor: Universitätsklinikum Schleswig-Holstein, Campus Kiel

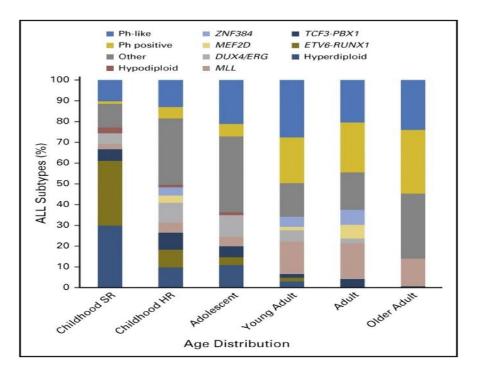
New in trial AIEOP-BFM ALL 2017


- Modified workflow and timing in genetic diagnostics
- Genetic profiles and early MRD response may be combined to characterize previously not identified pts at high risk to relapse, eg, *IKZF1*^{plus}
- Randomized evaluation of blinatumomab in *de novo* ALL in all non-SR patients
- Selective addition of novel agents in HR group
- Limitation of pCRT (only if age ≥4y, only if CNS-3, and/or if T-ALL with WBC ≥100K)
- TDM for ASP activity only in reintensification (P-II, P-III, HR-1/2/3)

AIEOP-BFM ALL 2017: Treatment overview

A brief focus on adolescents

Acute and late toxicities

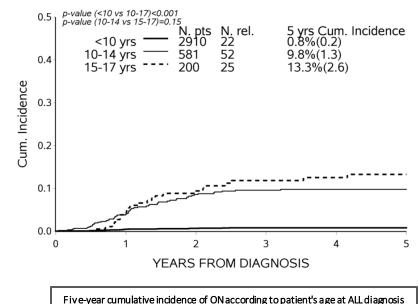

Outcome of adolescent patients with acute lymphoblastic leukaemia aged 10–14 years as compared with those aged 15–17 years: Long-term results of 1094 patients of the AIEOP-BFM ALL 2000 study

European Journal of Cancer 122 (2019) 61-71

ADOLESCENT AND YOUNG ADULT MALIGNANT HEMATOLOGY

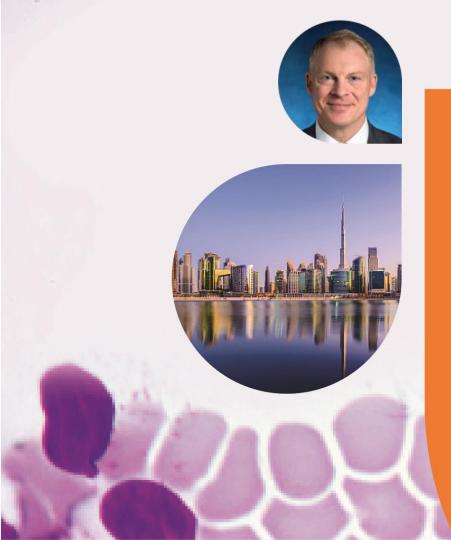
Acute lymphoblastic leukemia in adolescent and young adults: treat as adults or as children?

Nicolas Boissel^{1,2} and André Baruchel^{2,3}


Late effects of treatment in ALL

- Second malignancies
- Osteonecrosis
- Neurocognitive sequelae
- Cardiomyopathy
- Insulin-dependent diabetes (pancreatitis)
- Chronic GvHD
- Chronic immune deficiency (CD19-directed CAR T cells)

Correspondence: Osteonecrosis in childhood acute lymphoblastic leukemia: a retrospective cohort study of the Italian Association of Pediatric Haemato-Oncology (AIEOP)


Parasole et al. Blood Cancer Journal (2018)8:115

a. Overall incidence in the age groups

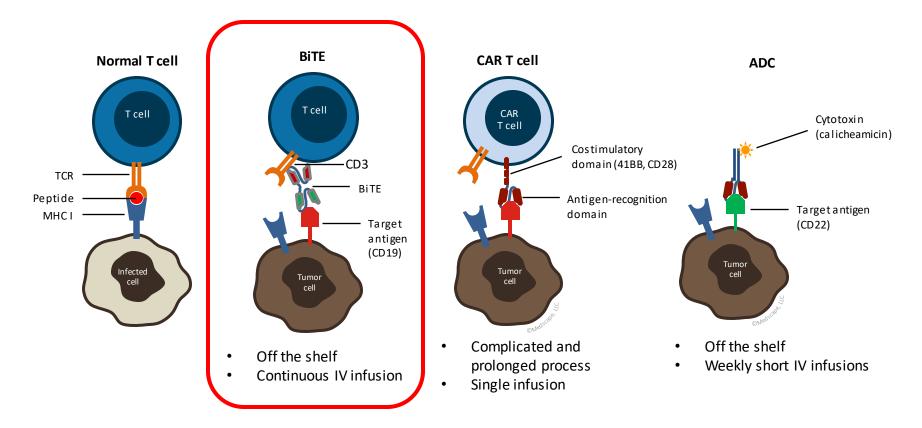
Final considerations

- Treatment of childhood ALL is becoming more and more complex sophisticated over time;
- The goal is that of curing more and better, sparing side effects while maintaining and even improving the high cure rate we have achieved so far;
- Immunotherapy is changing the therapeutic scenario of childhood B-ALL;
- Ongoing studies will define its role in newly diagnosed patients.

Bispecifics for Pediatric/AYA ALL

Patrick A. Brown, MD Johns Hopkins University School of Medicine USA

THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER

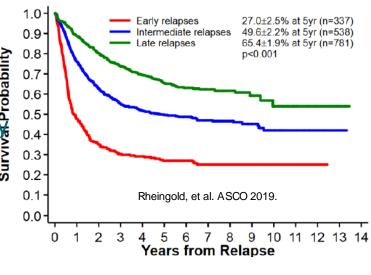

NCCN Network®

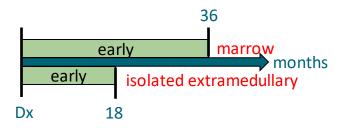
Bispecifics for Pediatric/AYA ALL

Patrick Brown, MD

Professor of Oncology, Johns Hopkins University Director, Pediatric Leukemia Program, Sidney Kimmel Comprehensive Cancer Center Vice Chair for Relapse, COG ALL Committee Chair, NCCN ALL Guidelines Panel

Mechanism: Normal vs BiTE vs CAR vs ADC




Background

- Poor survival for 1st relapse B-ALL in children, adolescents and young adults (AYA), especially early relapses
- Standard treatment approach
 - Reinduction chemotherapy $\rightarrow 2^{nd}$ remission
 - Consolidation
 - Early relapse: Intensive chemo \rightarrow HSCT
 - Goal: MRD-negativity prior to HSCT
 - Late relapse

CHILDREN'S ONCOLOGY GROUP

- "MRD high": same as early
 - "MRD low": Intensive chemo \rightarrow maintenance therapy

Blinatumomab (CD19 BiTE)

- In multiple relapsed/refractory setting (peds and adults)
 - CR 40%-45%
 - MRD-negative CR 20%–35%
 - Early survival benefit (adults)

von Stackelberg et al. *J Clin Oncol.* 2016;34:4381-4389 Kantarjian et al. *N Engl J Med.* 2017;376:836-847

- In MRD+setting (adults)
 - 80% MRD clearance
 - 60% subsequent DFS (bridge to HSCT)

Gokbuget et al. Blood. 2018;131:1522-1531

CHILDREN'S ONCOLOGY GROUP

AALL1331

12/19/2019

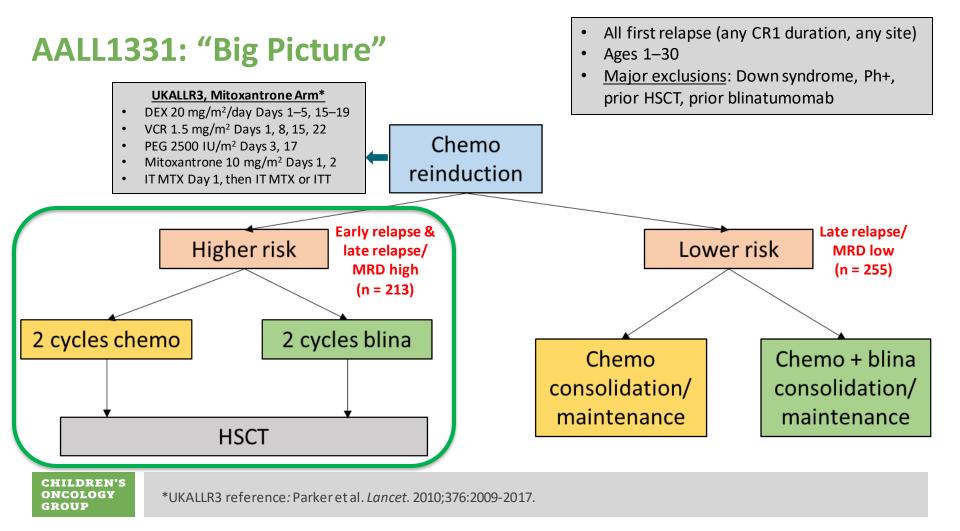
Activated: 12/08/14 Closed: 09/30/19 Version Date: Amendment

idment #10A

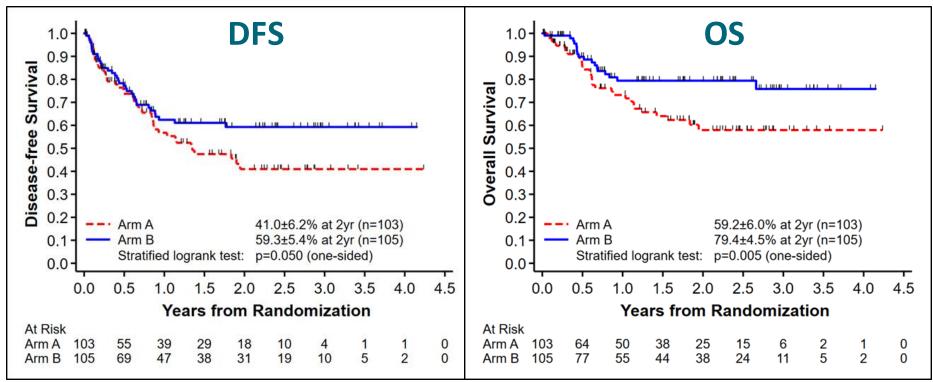
CHILDREN'S ONCOLOGY GROUP

AALL1331

Risk-Stratified Randomized Phase III Testing of Blinatumomab (IND# 117467, NSC# 765986) in First Relapse of Childhood B-Lymphoblastic Leukemia (B-ALL)


IND Sponsor for Blinatumomab: DCTD, NCI

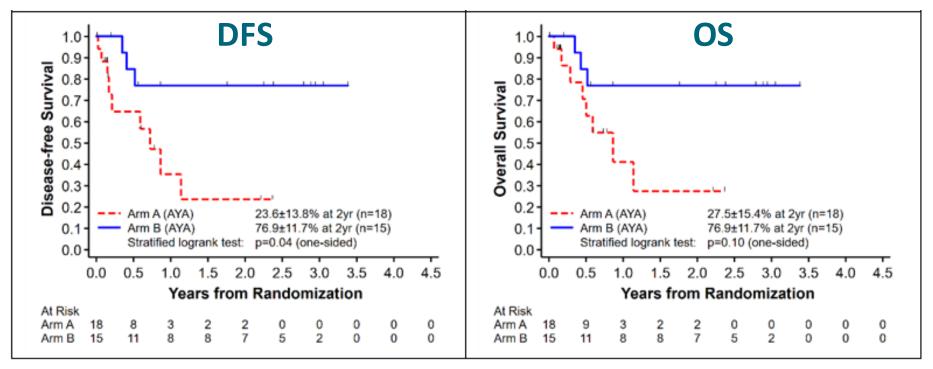
STUDY CHAIR


Patrick Brown, MD 1650 Orleans Street, CRB1 RM 2M49 Baltimore, MD. 21231 Phone: (410) 614-4915 Fax: (410) 955-8897 E-mail: pbrown2@jhmi.edu

Overall objective of COG AALL1331:

CHILDREN'S ONCOLOGY GROUP To determine if substituting blinatumomab for intensive consolidation chemotherapy improves survival in first relapse of childhood/AYA B-ALL

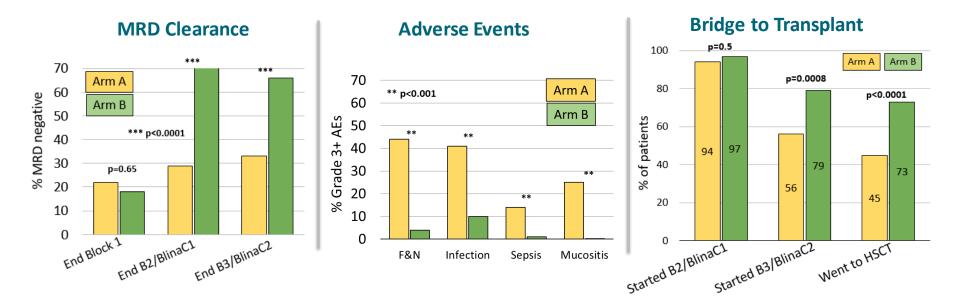
Survival: Arm A (chemotherapy) vs Arm B (blinatumomab)



CHILDREN'S ONCOLOGY GROUP

Median follow up 2.9 years

Brown P, et al. JAMA. 2021;325(9):833-842.


Results AYA Patients (Ages 18–30 at Relapse)

CHILDREN'S ONCOLOGY GROUP

Median follow up 1.4 years

Other Endpoints: MRD, AEs, HSCT Bridging

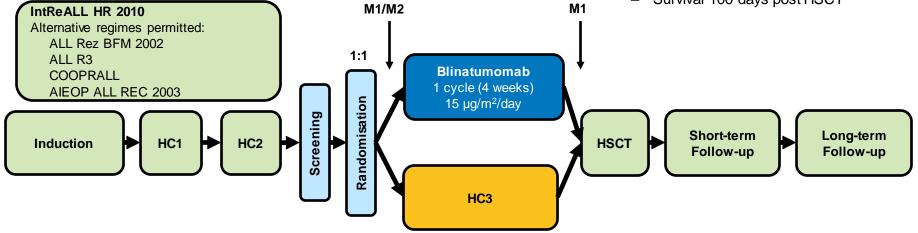
Significant contributors to the improved outcomes for Arm B (blina) vs Arm A (chemo) in HR/IR relapses may include better **MRD clearance, less toxicity and greater ability to successfully bridge to HSCT**

CHILDREN'S ONCOLOGY GROUP

Brown P, et al. JAMA. 2021;325(9):833-842.

Amgen 20120215: Open-Label, Randomized, Phase III Trial: 47 Centers, 13 Countries

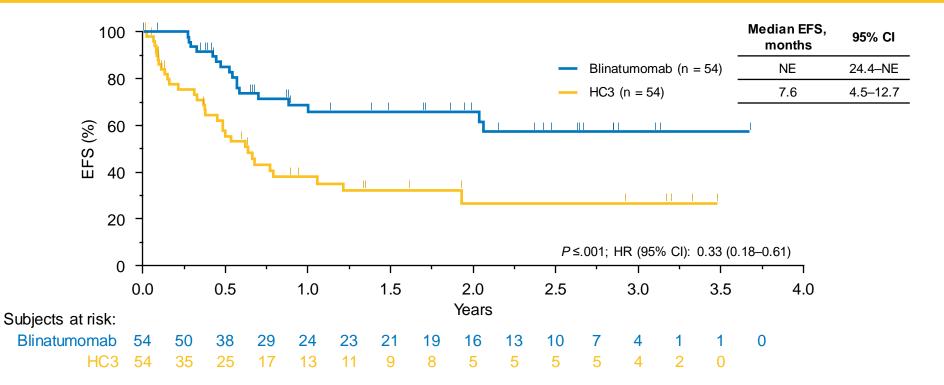
Key eligibility criteria


- Age >28 days <18 years
- HR 1st relapse Ph- BCP-ALL
- M1 or M2 marrow at randomization
- No CNS disease, unless treated before enrollment
- No clinically relevant CNS pathology

Stratification

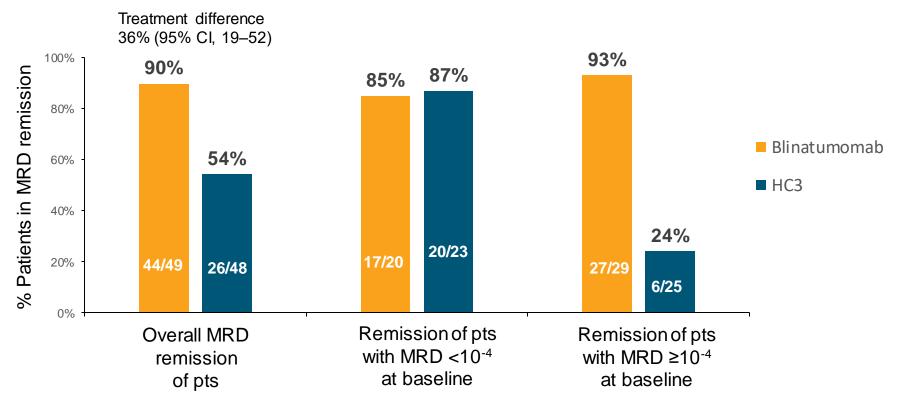
- Age: <1 year, 1 to 9 years, >9 years
- BM status at end of HC2
 - M1 with MRD >10⁻³
 - M1 with MRD <10⁻³
 - M2

Endpoints

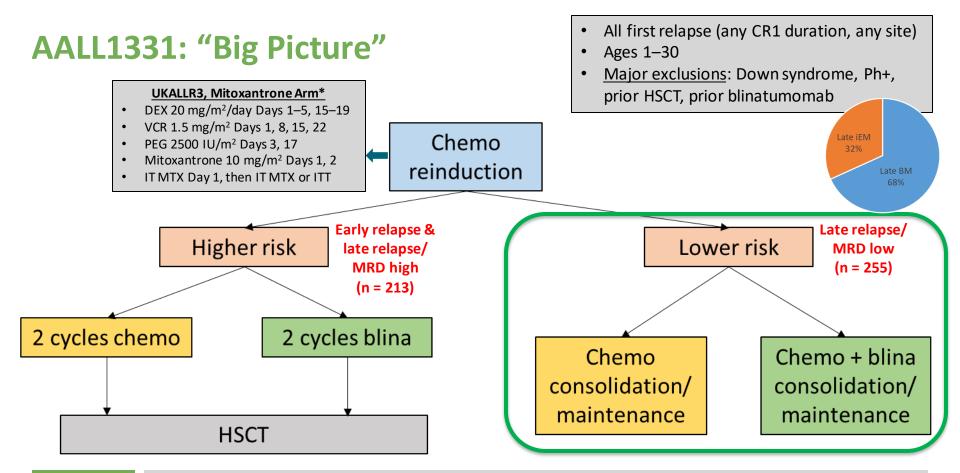

- Primary: EFS
- Secondary
 - OS
 - MRD response (end of blinatumomab or HC3)
 - Cumulative incidence of relapse
 - Incidence of AEs
 - Survival 100 days post HSCT

Locatelli F, et al. JAMA. 2021;325(9):843-854.

BCP, B-cell precursor; EFS, event-free survival; HC, high-risk consolidation.


Superior EFS in the Blinatumomab Arm

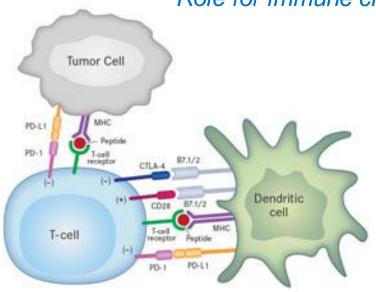
Locatelli F, et al. JAMA. 2021;325(9):843-854.


P, stratified log rank P value; HR, hazard ratio from stratified Cox regression.

Superior MRD Remission by PCR in the Blinatumomab Arm (overall and by baseline^{*} MRD status)

Locatelli F, et al. JAMA. 2021;325(9):843-854.

*Baseline: end of HC2 (screening sample before enrollment) PCR, polymerase chain reaction

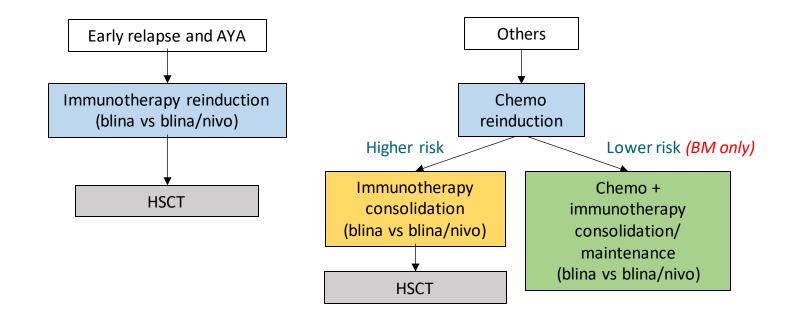


CHILDREN'S ONCOLOGY GROUP

*UKALLR3 reference: Parker et al. Lancet. 2010;376:2009-2017.

What Happens When Blinatumomab Doesn't Work?

Endogenous T-cell "exhaustion"


Role for immune checkpoint inhibitors (eg, anti–PD-1)?

PD-1	PD-L1	CTLA-4
Nivolumab	Atezolizumab	lpilimumab
Pembrolizumab*	Avelumab	
	Durvalumab	

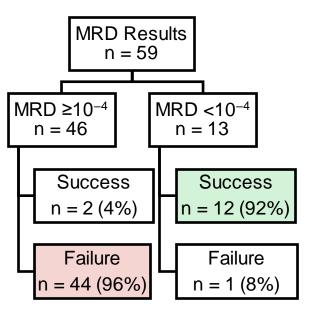
Reports of efficacy in patients relapsing after blina/CAR T-cells

* Feucht, et al. *Oncotarget*. 2016;7(47):76902-76919

AALL1821: Blinatumomab + Nivolumab

Can We Predict When Blinatumomab Won't Work?

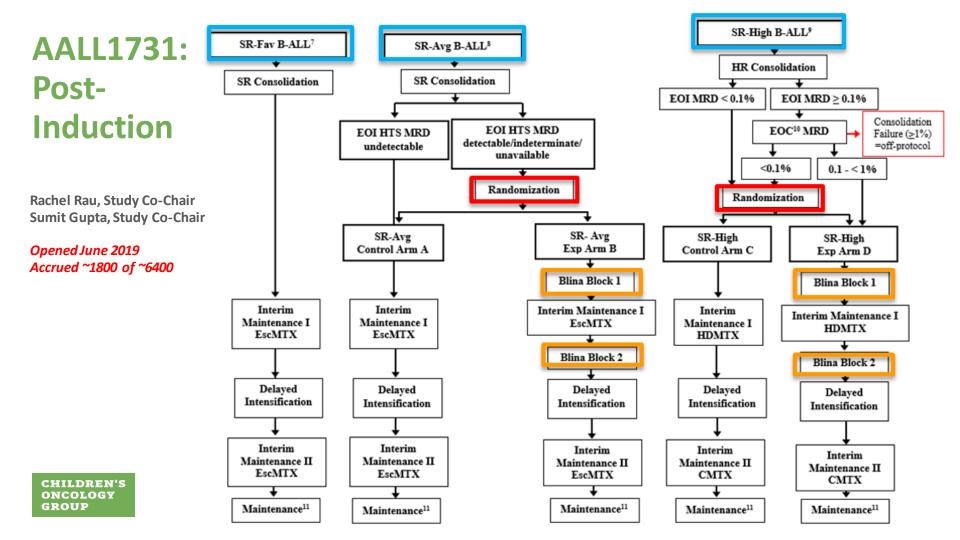
Correspondence 🔂 Free Access

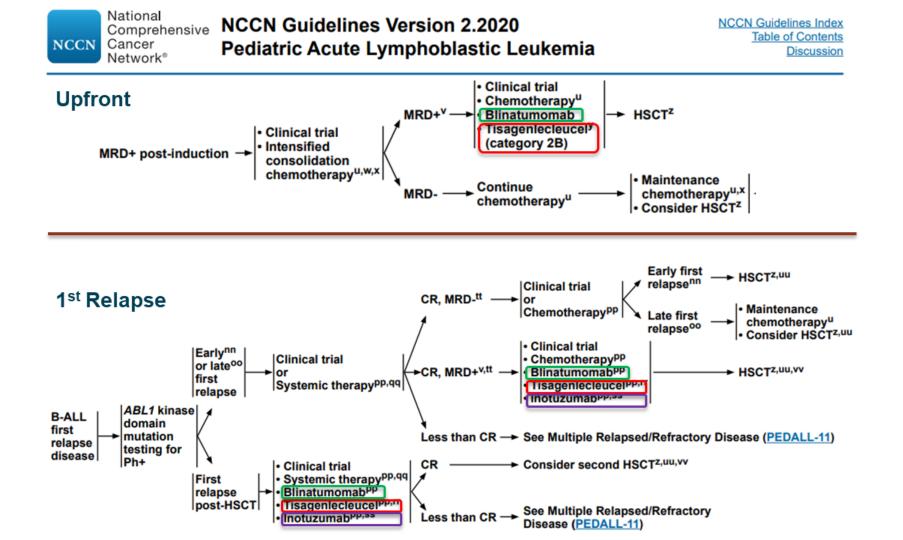

Day 15 bone marrow minimal residual disease predicts response to blinatumomab in relapsed/refractory paediatric B-ALL

Patrick Brown 🔀, Gerhard Zugmaier, Lia Gore, Catherine A. Tuglus, Arend von Stackelberg

First published: 03 December 2019 | https://doi.org/10.1111/bjh.16306

Biomarkers to Predict Blinatumomab Success/Failure


- Study definitions
 - "Success" was defined as complete MRD response in CR (n = 14)
 - "Failure" was defined as anything other than success (n = 50)
- Overall, Day 15 MRD results predicted best response after 2 cycles with 95% accuracy (correctly in 56 of 59 patients)



As patients with MRD $\geq 10^{-4}$ at Day 15 could potentially pursue alternative therapies. such as dose escalation or combination therapies, **Day 15** MRD results may allow personalized treatment and improve outcomes in pediatric patients with relapsed/refractory B-ALL

Clinical Trial Questions in COG: Molecularly/Immunologically Targeted Therapy in B-ALL

	Risk Group	Projected 5-yr DFS	Therapeutic Question		
33%	SR-Favorable	>95%	Standard therapy with 2 year duration of maintenance therapy for boys and girls		AALL1731
2%	HR-Favorable	>94%			AALL1732
32%	SR-Avg & High	~89%	Blinatumomab	4	AALL1731
27%	High Risk	~80%	Inotuzumab	umab	
2%	Very High Risk	<50%	CAR T-cell therapy		AALL1721
5%	Ph+, Ph-like	60-85%	Molecularly targeted therapy		AALL1631 & 1521

Blinatumomab: Questions and Discussion

- HSCT after MRD clearance with blinatumomab?
- Role of HTS (ClonoSEQ) MRD?
- Ability of checkpoint inhibition to safely enhance blinatumomab response?
- Earlier (pre-treatment) predictive biomarkers of blinatumomab response?
- Risk of prior blinatumomab exposure and CD19 escape after subsequent CD19 CAR T therapy?

Questions to the Experts

Platinum Sponsor:

Closing

Franco Locatelli, MD University of Rome IRCCS Ospedale Pediatrico Bambino Gesù of Rome Italy

Patrick A. Brown, MD Johns Hopkins University School of Medicine USA

APTITUDE HEALTH

Thank you to all participants!

And thank you to Amgen for their sponsorship

> Please complete the evaluation form using the provided link

To obtain a copy of the meeting slides and access other educational materials, please visit the GLA website at: <u>www.globalleukemiaacademy.com</u>

- Meeting materials will be available in approximately 1 week

If you have a question for any of our experts that was not answered today, you can submit it through the GLA website at: <u>https://globalleukemiaacademy.com/ask-the-expert/</u>

APTITUDE HEALTH

Recent Updates in Pediatric and Adolescent Young Adult (AYA) Acute Lymphocytic Leukemia (ALL)

Webinar

Sponsor:

Platinum

