

Sponsors

AMGEN

abbvie

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 16 May 2021

Virtual Breakout: Adult Leukemia Patients

Strath APTITUDE HEALTH

Welcome and Meeting Overview

Elias Jabbour

Meet the Faculty

Elias Jabbour, MD Professor of Medicine Department of Leukemia University of Texas MD Anderson Cancer Center USA

José-Maria Ribera, MD

Chief of the Stem Cell Transplantation at University Hospital "Germans Trias I Pujol" Head of the Clinical Hematology Department for the Catalan Institute of Oncology Spain

Naval Daver, MD Associate Professor Department of Leukemia University of Texas MD Anderson Cancer Center USA

Eunice Wang, MD Chief of the Leukemia Service Roswell Park Comprehensive Cancer Center USA

Aaron Logan, MD, PhD UCSF, Helen Diller Family Comprehensive Cancer Care, USA

JPAC Faculty

- Shaun Fleming, MBBS(Hons), FRACP, FRCPA Alfred Hospital, Australia
- > Chyn Chua, MBBS, BMedSc, FRCAP, FRCPA

Alfred Hospital, Australia

Sun Loo, MD Alfred Hospital, Australia

3

Objectives of the Program

Understand current treatment patterns for leukemia including incorporation of new technologies in ALL and AML

Uncover when genomic testing is being done and how these tests are interpreted and utilized Understand the role of stem cell transplantation as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring leukemias Gain insights into antibodies and bispecifics in ALL: what are they? When and how should they be used? Where is the science going?

Discuss the evolving role of ADC therapies Review promising novel and emerging therapies in ALL and AML

Virtual Breakout – Adult Leukemia Patients (Day 2)

Chair: Elias Jabbour

TIME (UTC +9)	TITLE	SPEAKER
11.00 – 11.15	Session open Educational ARS questions for the audience 	Elias Jabbour
11.15 – 11.35	 Optimizing first-line therapy in adult and older ALL – integration of immunotherapy into frontline regimens Presentation (15 min) Q&A (5 min) 	Aaron Logan
11.35 – 11.55	Current treatment options for relapsed ALL in adult and elderly patients (including COVID-19 and vaccination strategy) • Presentation (15 min) • Q&A (5 min)	José-Maria Ribera
11.55 – 12.30	Case-based panel discussion Management of long- and short-term toxicities and treatment selection in adult and elderly patients Panelists: Elias Jabbour, José-Maria Ribera, Aaron Logan	Shaun Fleming
12.30 – 12.45	Break	
12.45 – 13.05	Personalized induction and maintenance approaches for AML Presentation (15 min) Q&A (5 min) 	Naval Daver
13.05 – 13.25	Optimizing management of relapsed/refractory AML Presentation (15 min) Q&A (5 min) 	Eunice Wang
13.25 – 14.15	Case-based panel discussion or questions on regional challenges in AML care	Case 1: Chyn Chua Case 2: Sun Loo
14.15 – 14.30	Session close	Elias Jabbour

Educational ARS Questions

Elias Jabbour

Question 1

What age group is considered elderly ALL patients?

- a) ≥50 years
- b) ≥55 years
- c) ≥60 years
- d) ≥65 years
- e) ≥70 years

Question 2

Which of the following is NOT true for treating ALL?

- a) Inotuzumab and blinatumomab plus chemotherapy has produced 90%
 CR rates in salvage therapy and in first line in older patients
- b) Blinatumomab and ponatinib can be used as a chemotherapy-free regimen in Ph+ ALL
- c) MRD-negative CR does not correlate strongly with outcome
- d) Since 1999, median survival for ALL patients older than 60 has been increasing with each successive decade

Optimizing first-line therapy in adult and older ALL – integration of immunotherapy into frontline regimens

Aaron Logan

Comprehensive Cancer Center

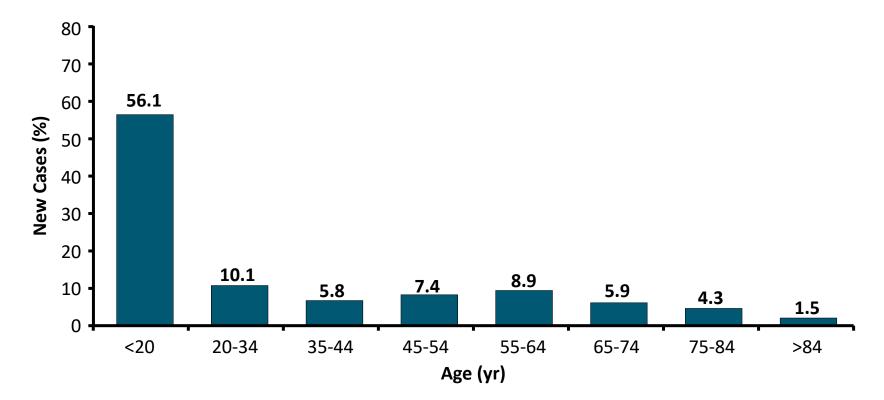
Optimizing First-Line Therapy in Older Adults With ALL:

Integration of Immunotherapy Into Frontline Regimens

Aaron Logan, MD, PhD, MPhil

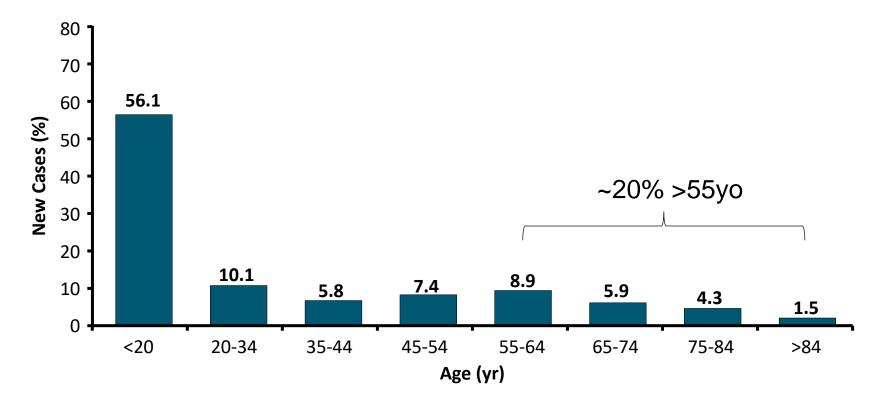
UCSF Division of Hematology and Blood and Marrow Transplantation

aaron.logan@ucsf.edu

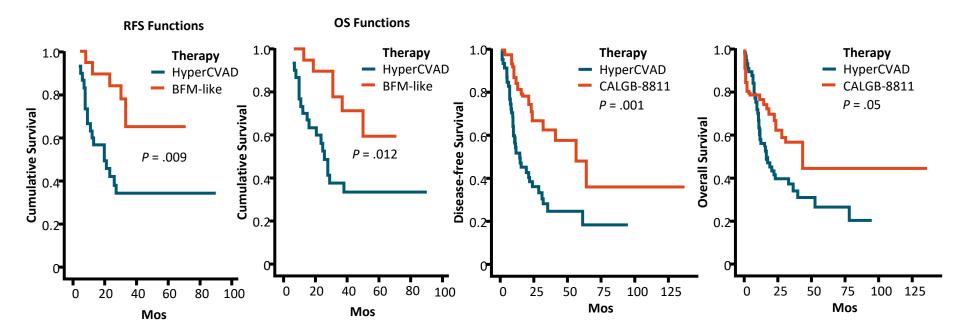


Question 1

Which of the following agents, when added to front-line therapy for adults with ALL, have been shown to improve leukemia-free survival in a randomized clinical trial:

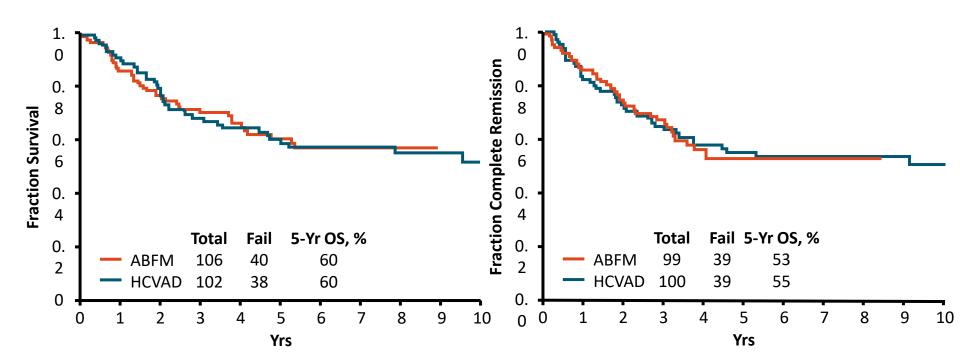

- (a) Inotuzumab
- (b) Blinatumomab
- (c) Rituximab
- (d) Ponatinib
- (e) Ofatumumab

Incidence of Acute Lymphoblastic Leukemia by Age

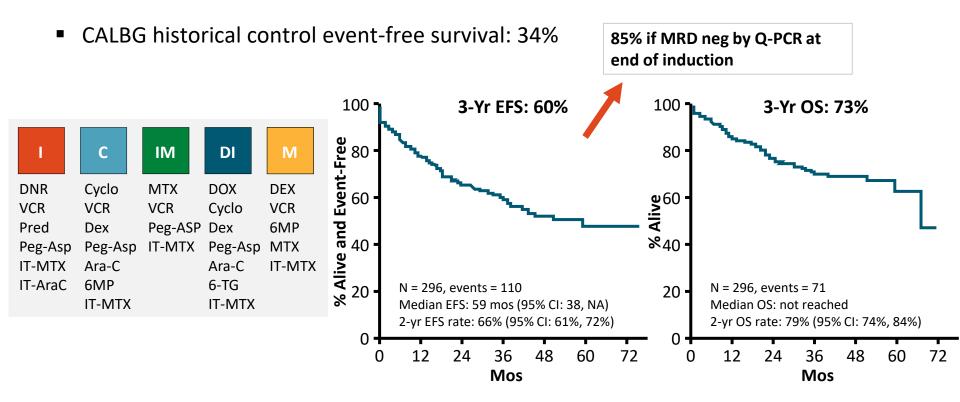

SEER Cancer Statistics Factsheets, 2017.

Incidence of Acute Lymphoblastic Leukemia by Age

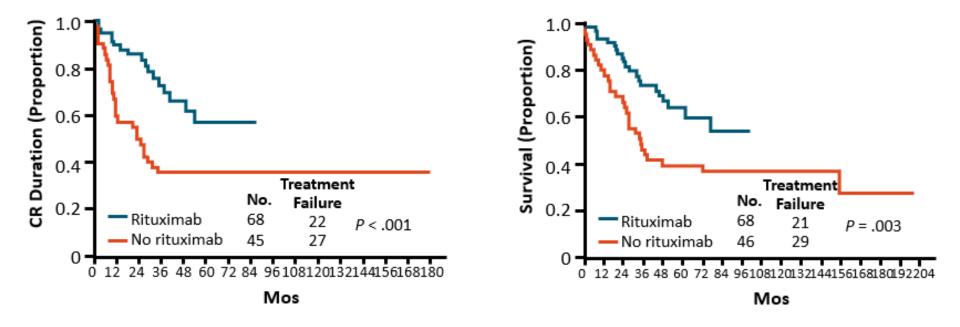
SEER Cancer Statistics Factsheets, 2017.


Pediatric vs Adult Regimens for Adults with ALL

Alacacioglu I, et al. Chemotherapy 2014; 60:219-223.

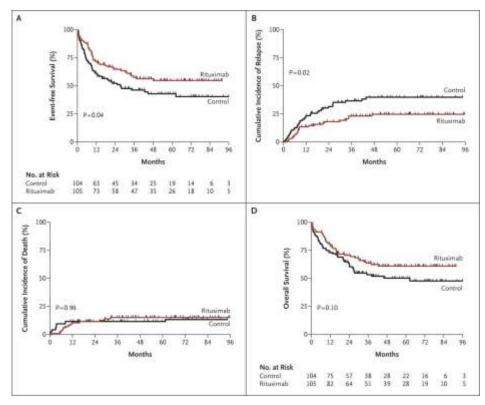

Buyukasik et al. Acta Haematologica 2013; 130:199-205.

Pediatric vs Adult Regimens for ALL: BFM vs hyper-CVAD


Rytting ME, et al. Am J Hematol 2016; 91:819-823.

Intergroup C10403: Pediatric-Like Regimen for AYA <40yo

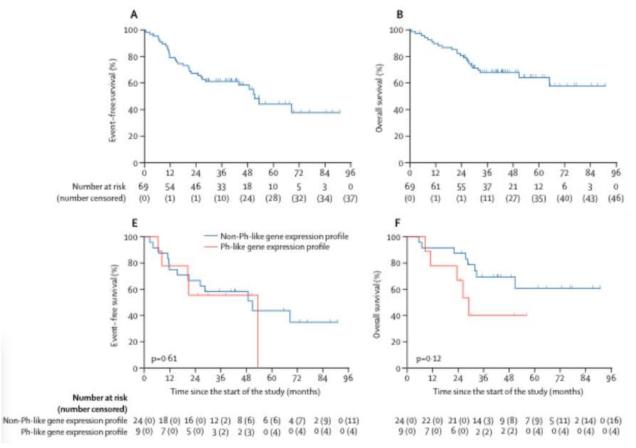
Rituximab Improves Outcomes for CD20⁺ ALL


Rituximab + Hyper-CVAD

Thomas DA, et al. J Clin Oncol. 2010;28:3880-3889.

GRAALL: Rituximab Improves Outcome for CD20⁺ ALL treated with BFM-like regimen

RCT, n=209, Age 18-59


Table 2. Response to Initial Therapy.®				
Variable	All Patients {N=209}	Rituximab Group (N=105)	Control Group (N=104)	P Value
Early response to therapy — no. (%)				
Poor peripheral-blood blast clearance	34 (16)	20 (19)	14 (13)	0.35
Poor bone marrow blast clearance	87 (42)	46 (44)	41 (39)	0.58
Response to induction no. (%)				
Complete remission				
Without salvage reinduction	186 (89)	95 (90)	91 (88)	0.52
With or without salvage reinduction	191 (91)	97 (92)	94 (90)	0.63
Resistant disease	2 (2)	1 (1)	1 (1)	
Death during induction	16 (8)	7 (7)	9 (9)	
MRD <10 ⁻⁴ bone marrow blasts — no./total no. (%)				
After first induction course	54/85 (64)	32/49 (65)	22/36 (61)	0.82
After first consolidation phase	70/80 (88)	42/46 (91)	28/34 (82)	0.31
High-risk ALL — no. (%) ?	140 (67)	73 (70)	67 (64)	
Allogeneic SCT during first complete remission no. (%)	57 (27)	36 (34)	21 (20)	

* MRD denotes minimal residual disease, and SCT stem-cell transplantation.

? High-risk acute lymphoblastic leukemia (ALL) was determined according to protocol-specified criteria.

Maury S, et al. NEJM. 2016;375:1044-1053.

Ofatumumab + hyper-CVAD

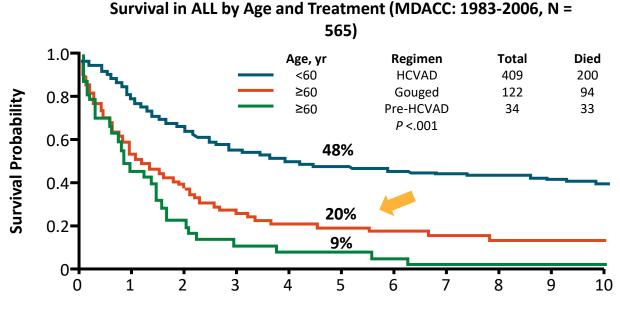
Thomas DA, et al. J Clin Oncol. 2010;28:3880-3889.

Older ALL Patient Outcomes With Conventional Regimens

Reference	Year	Age (y)	Ph+	Patients (N)	CR rate (%)	Early death	Failure	CCR*	DFS*	OSt
16	1996	60-73 (64)	Yes	22	59	18%	14%	12	9	20% (2 y)
23	1997	55-86 (67)	Yes	40	85	n.r.	n.r.	n.r.	14	16% (2 y)
24	2002	65 (55-81)	Yes	58	43	10%	47%	5	10	n.r.
17	2004	69 (61-79)	Yes	17	76	17%	6%	20	21	38% (2 y)
19	2007	65 (56-77)	No	33	58	36%	6%	46% (2 y)	7	39% (1 y)
20	2008	66 (60-78)	Yes	17	71	29%	0%	82% (1 y)	n.r.	71% (1 y)
25	2008	66 (56-73)	No	54	85	0%	15%	9	n.r.	61% (1 y)
18	2011	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	No						n.r.	
	Arm 1	68 (55-77)		31	90	7%	3%	32% (2 y)		35% (2 y)
	Arm 2	66 (60-80)		29	72	10%	17%	52% (2 y)		24% (2 y)
14	2012	57 (55-85)	No	268	76	14%	10%	32% (5 y)	n.r.	23% (5 y)
21	2016	58 (51-72)	Yes	30	67	3%	30%	n.r.	52% (2 y)	52% (2 y)
22	2016	66 (56-79)	No	54	74	14%	14%	n.r.	8; 24%	12; 30%
		532501 7 5226567028 7 0							(2 y)‡	(2 y)‡

Arm 1, continuous infusion doxorubicin; Arm 2, pegylated doxorubicin; CCR, continuous complete remission; DFS, disease-free survival; n.r., not reported; OS, overall survival;

Ph+, Ph/BCR-ABL1-positive ALL included yes or no.

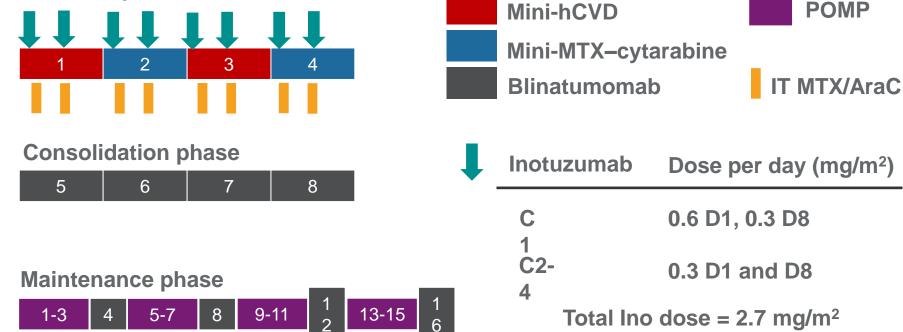

*Median months or probability.

†Probability.

‡Estimated from Kaplan-Meier curve.

Gökbuget N. Hematol Am Soc Hematol Educ Program. 2016;2016(1):573-579.

Older ALL Patient Outcomes With Conventional Regimens


Years

Mini-hyperCVD + Inotuzumab +/– Blinatumomab

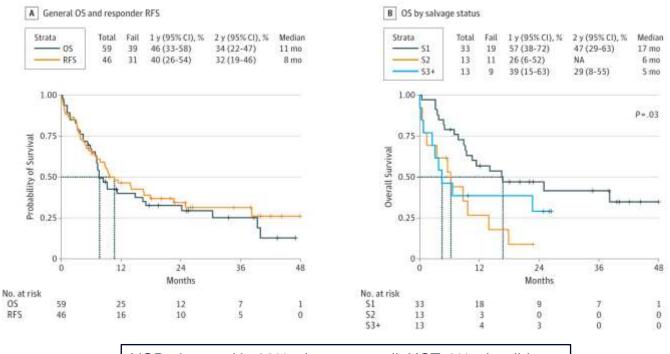
Intensive phase

5-7

1-3

13-15

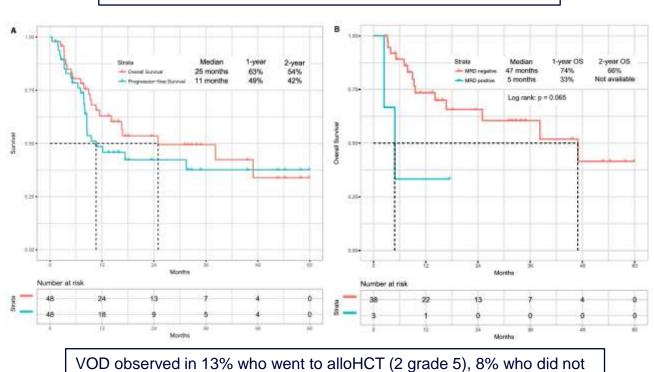
Total Ino dose = 2.7 mg/m^2


Jabbour E, et al. JAMA Oncol. 2018;4(2):230-234; Jabbour E, et al. Cancer. 2018;124:4044-4055.

9-11

8

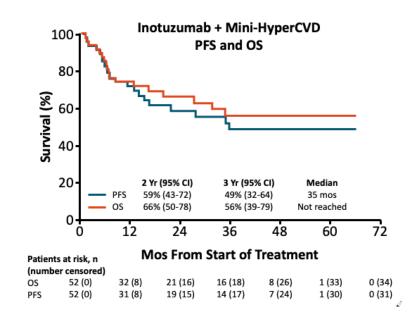
Mini-hyperCVD + Low-Dose Inotuzumab: R/R ALL


N = 59; responses: 78% ORR, 59% CR (82% MRD neg in CR)

VOD observed in 23% who went to alloHCT, 9% who did not

Jabbour E, et al. JAMA Oncol. 2018;4(2):230-234.

Mini-hCVD + Low-Dose Inotuzumab +/– Blin: R/R ALL



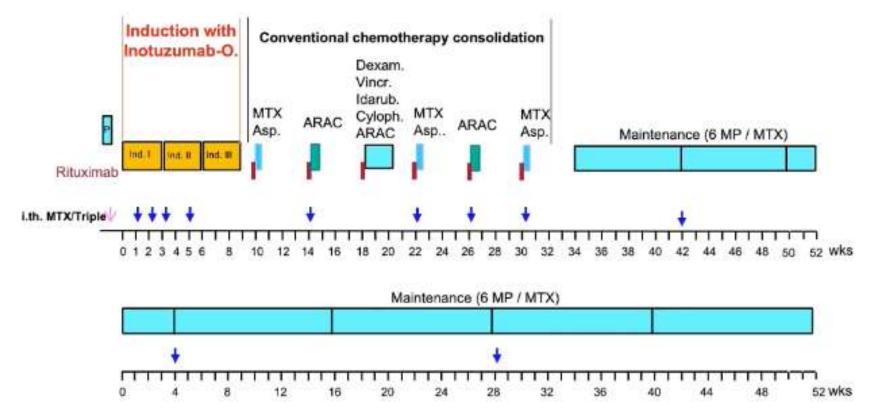
N = 48 responses: 92% ORR, 73% CR (93% MRD neg in CR)

Jabbour E, et al. Cancer. 2018;124:4044-4055.

Mini-hCVD + Inotuzumab as Frontline Therapy in Patients >60 Years Old

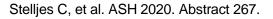
N = 52 responses: 98% ORR, 85% CR/CRi

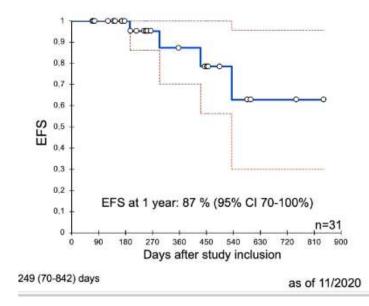
VOD observed in 8% of patients (Ino 1.8 mg/m² in C1, 1.3 mg/m² in C2+) -> No VOD after further dose reduction (Ino 1.3 mg/m² in C1, 1 mg/m² in C2+)


Kantarjian H, et al. Lancet Oncol. 2018;19:240-248.

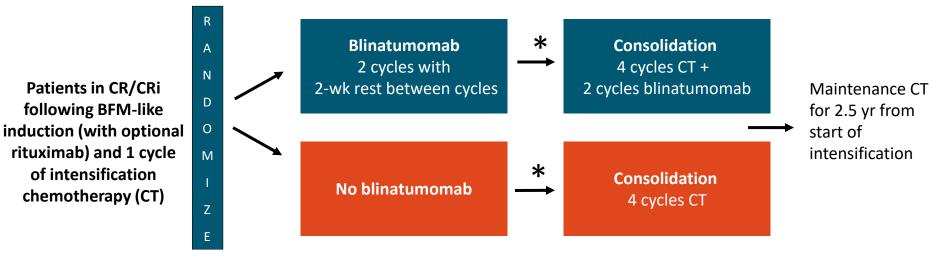
Mini-hCVD + Inotuzumab as Frontline Therapy in Patients >60 Years Old

Jabbour E, et al. Cancer. 125(15):2579-2586.

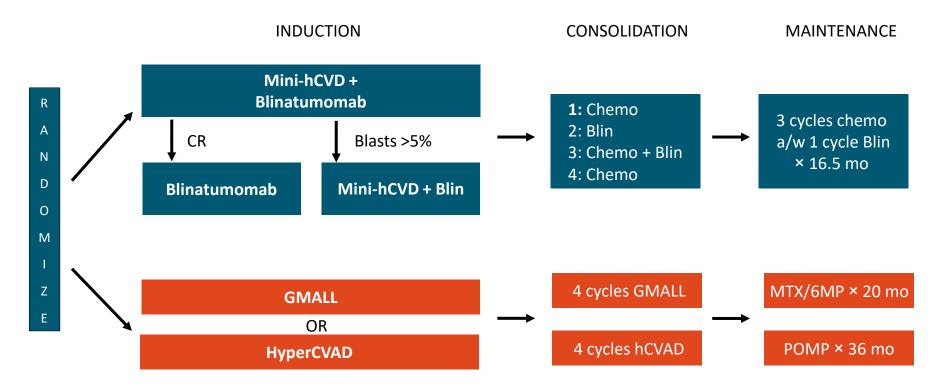

Initial-1: Inotuzumab for Induction Therapy Followed by Conventional Chemo, Age 55+, Phase II (GMALL)



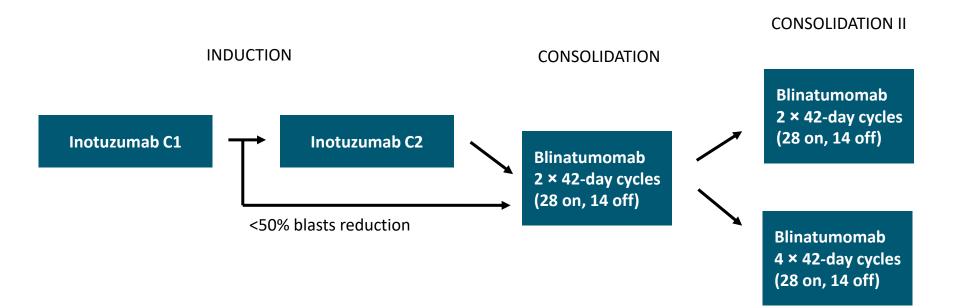
Stelljes C, et al. ASH 2020. Abstract 267.


Initial-1: Inotuzumab for Induction Therapy Followed by Conventional Chemo, Age 55+, Phase II

- N = 36, age 56-80
- CR/CRi after ≥1 induction cycle with inotuzumab: 100% (31 evaluable)
- Patients receiving 3 cycles of inotuzumab: 29 (94%)
- MRD-negative remission as best response: 21 (78%)
- Relapses: 3 (2 hematologic, 1 molecular)
- Allogeneic HCT in remission: 3

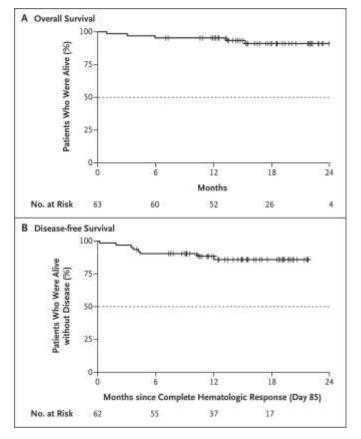


ECOG 1910: Blinatumomab in Frontline Therapy for Newly Diagnosed Ph-Neg B-ALL (Age 30-70), Phase III RCT



*Patients can proceed to BMT if recommended and suitable donor found.

Blinatumomab in Frontline Therapy for Newly Diagnosed Ph-Neg B-ALL Age 55+, Phase III RCT



Frontline Inotuzumab Followed by Blinatumomab for Ph-Neg B-ALL in Older Adults, Phase II (Alliance)

Blinatumomab + Dasatinib as Frontline Therapy in Ph+ ALL

Characteristic	Enrolled Patients (N=63)
Age — yr	
Median	54
Range	2482
Sex — no. (%)	
Male	29 (46)
Female	34 (54)
White-cell count — per mm ³	
Median	13,000
Range	60088,000
Fusion protein — no. (%)	
p190	41 (65)
p210	17 (27)
p190 and p210	5 (8)

Foa R, et al. N Engl J Med. 2020;383:1613-1623.

Adult / Older Adult ALL Summary

- Rituximab improves disease-free survival when added to front-line hyper-CVAD or BFM-like therapy
- Historically, older adults (>55 yr) have done poorly with conventional adult ALL regimens high toxicity, high early death, low long-term OS
- Mini-hyperCVD + low-dose inotuzumab is well tolerated and achieves 3yr OS ~50% in age 60+
- Ongoing studies are assessing alternative uses of inotuzumab, blinatumomab, and combinations of Ino-Blin as potential strategies in this patient population

Question 1

Which of the following agents, when added to front-line therapy for adults with ALL, have been shown to improve leukemia-free survival in a randomized clinical trial:

- (a) Inotuzumab
- (b) Blinatumomab
- (c) Rituximab
- (d) Ponatinib
- (e) Ofatumumab

Current treatment options for relapsed ALL in adult and elderly patients (including COVID-19 and vaccination strategy)

José Maria Ribera

SAPTITUDE HEALTH

Global Leukemia Academy Virtual Breakout – Adult Leukemia Patients April 24, 2021

Current Treatment Options for R/R ALL in Adult and Elderly Patients (including COVID-19 and vaccination)

JM Ribera Clinical Hematology Department ICO-Hospital Germans Trias i Pujol Institut de Recerca contra la Leucèmia Josep Carreras Universitat Autònoma de Barcelona, Spain

- Pfizer: speaker and advisory boards honoraria, clinical trials
- AMGEN: speaker and advisory boards honoraria, research support, clinical trials
- Shire: speaker and advisory boards honoraria
- · Ariad: speaker and advisory boards honoraria, clinical trials
- Takeda: speaker and advisory boards honoraria, clinical trials
- Novartis: speaker and advisory boards honoraria

How Can We Improve the Outcome of Elderly Patients With R/R ALL?

Ph+ ALL Ph- ALL

Prospective Trials in Older Patients With Newly Diagnosed Ph+ ALL

Author	Year	N	Age (median)	Induction	Post-induction	CR (%)	OS (%)
Vignetti	2007	29	69	IM + PRED	IM + physician's choice	100	74 (1 y)
Foa*	2011	53	54	DASA + PRED	DASA + physician's choice	100	69 (1.5 y)
Pfeifer	2012	121	66	IM ± CHT	IM + CHT	88	22 (5 y)
Ottmann	2014	47	66	NILO + CHT	NILO + CHT	97	-
Ribera	2016	53	66	IM + CHT	IM + CHT	87	41 (5 y)
Rousselot	2016	71	69	DASA + CHT	DAS + CHT	96	36 (5 y)
Ottmann	2017	72	66	NILO + CHT	NILO + CHT	94	40 (5 y)
Jabbour*	2018	68	46 (>60: 20)	PONA + CHT	PONA + CHT	100	74 (5 y)
Martinelli	2017	44	68	PONA	PONA	90	89 (1 y)
Foa*	2020	63	54	DASA	DASA + BLINA	98	87 (2 y)
Jabbour*	2020	27		PONA + BLINA	PONA + BLINA	100	100 (1 y)

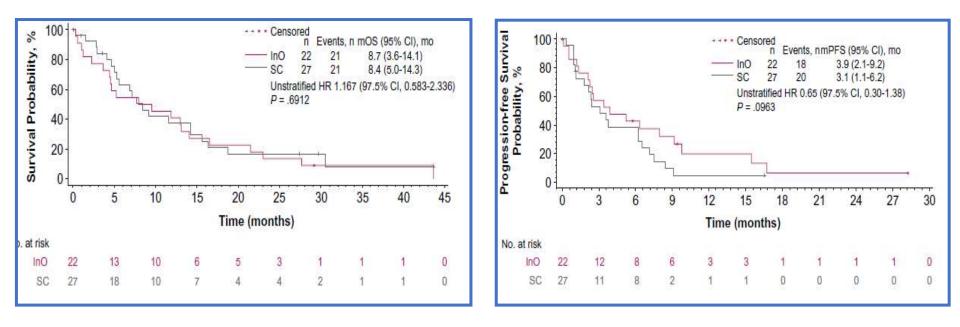
Strategies Potentially Useful in R/R Ph+ ALL in Elderly

CAR T

cells

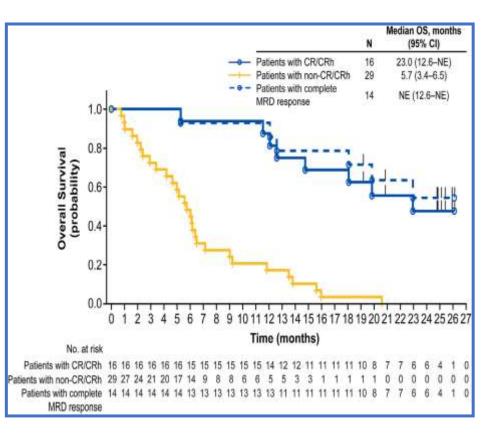
Attenuated chemotherapy Third-generation TKI Monoclonal antibodies BCL2 inhibitors

RIC allogeneic HSCT


Inotuzumab as Single Drug for R/R Ph+ ALL: INO-VATE (n = 22) + Phase I/II Trial (n = 16)

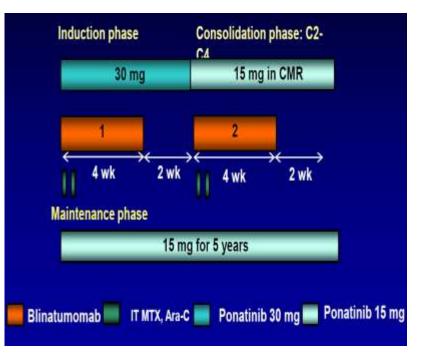
		Study 1010			
Efficacy Endpoints	InO (n = 22)	SC (n = 27)	P	InO (n = 16)	
CR/CRi, n (% [95% Cl])	16 (72.7 [49.8-89.3])	15 (55.6 [35.3-74.5])	.1075	9 (56.3 [29.9-80.3])	
CR, n (% [95% CI])	10 (45.5 [24.4-67.8])	8 (29.6 [13.8-50.2])	.1265	4 (25.0)	
CRi, n (% [95% Cl])	6 (27.3 [10.7-50.2])	7 (25.9 [11.1-46.3])	.4577	5 (31.3)	
MRD negativity, n (% [95% Cl]) ^a	13 (81.3 [54.4-96.0])	5 (33.3 [11.8-61.6])	.009	9 (100.0	
		· · · · · · · · · · · · · · · · · · ·		[66.4-100.0])	
OS					
Median, mo (95% Cl)	8.7 (3.6-14.1)	8.4 (5.0-14.3)		7.4 (4.3-11.3)	
HR (95% CI)	1.17 (0	0.64-2.14)	.6912	· _ ·	
PFS		87			
Median, mo (95% Cl)	3.9 (2.1-9.2)	3.1 (1.1-6.2)		4.4 (1.8-5.9)	
HR (95% CI)		0.34-1.25)	.0963	-	

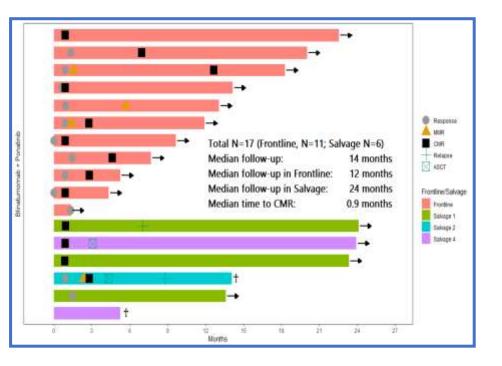
TABLE 2. Efficacy Endpoints Stratified According to Whether Ph+ Patients Received Follow-up HSCT


		Study 1	022	Study 1010			
	+ Follow	up HSCT	No Follow-up HSCT		+ Follow-up HSCT	No Follow-up HSCT	
	InO (n = 9)	SC (n = 5)	InO (n = 13)	SC (n = 22)	InO (n = 3)	InO (n = 13)	
PFS, mo, median (95% Cl)	9.2 (1.3-NE)	6.5 (2.2-NE)	2.4 (0.6-6.3)	2.4 (1.0-6.2)	5.4 (4.3-NE)	3.5 (1.7-5.9)	
OS, mo, median (95% Cl)	16.5 (4.7-43.6)	16.4 (11.6-30.6)	4.4 (1.1-8.0)	6.9 (4.1-9.1)	11.3 (4.3-NE)	7.4 (3.5-11.3)	

Inotuzumab as Single Drug for R/R Ph+ ALL: Outcomes From INO-VATE Trial

Blinatumomab in R/R Ph+ ALL

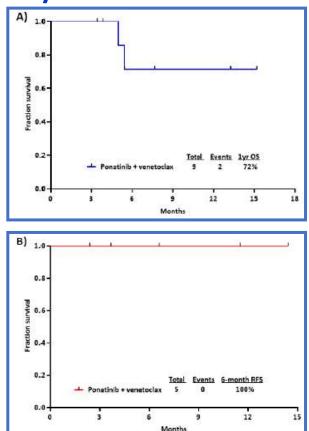

Outcome	Responders/ Evaluable	%
CR/CRh	16/45	36
T315I mutation	4/10	40
2 prior therapies	7/21	33
≥3 prior TKI therapies	8/17	47
Prior ponatinib	8/23	35
Prior alloSCT	5/20	25
Best response during the first 2 cycles: CR	14/45	31
CRh	2/45	4
Complete MRD response	14/16	88
Proceed to alloHSCT	4/16	25



Blinatumomab and Inotuzumab in R/R Ph+ ALL

Parameter	Blinatumomab	Inotuzumab		
No. Rx	45	38		
No. CR/marrow CR (%)	16 (36)	25 (66)		
MRD negative in CR, %	88	63		
Median OS (mo)	7.1	8.1		
Later alloSCT, %	44	32		

Blinatumomab + Ponatinib Swimmer Plot (N = 17)



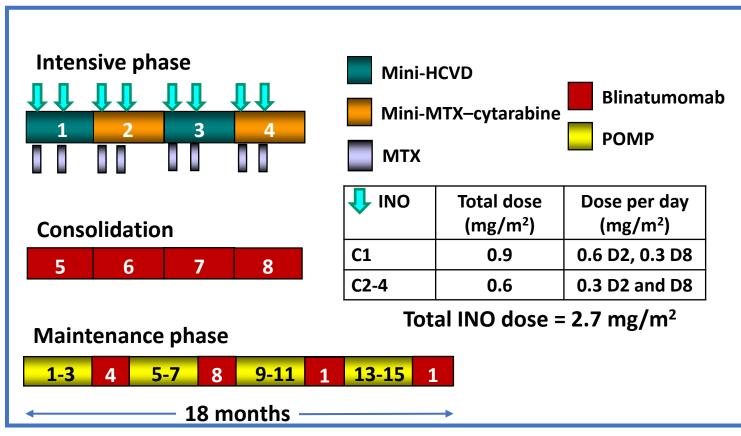
Ponatinib-Venetoclax for R/R Ph+ ALL

Ponatinib 45 mg/d 30 mg/d if CR/CRi 15 mg/d if CMR Dex 40 mg 4 days/cycle Venetoclax 400-800 mg

9 pts; *T315I* (4/8); prior therapies 3 (2-4) CR/CRi: 56% CMR: 44% 1-yr OS: 72% (2 deaths)

Short NJ, et al. Am J Hematol. 2021. doi: 10.1002/ajh.26175.

How Can We Improve the Outcome of Elderly Patients With R/R ALL?


Ph+ ALL Ph- ALL

Strategies Potentially Useful in R/R Ph– ALL in Elderly

Attenuated chemotherapy Monoclonal antibodies BCL2 inhibitors

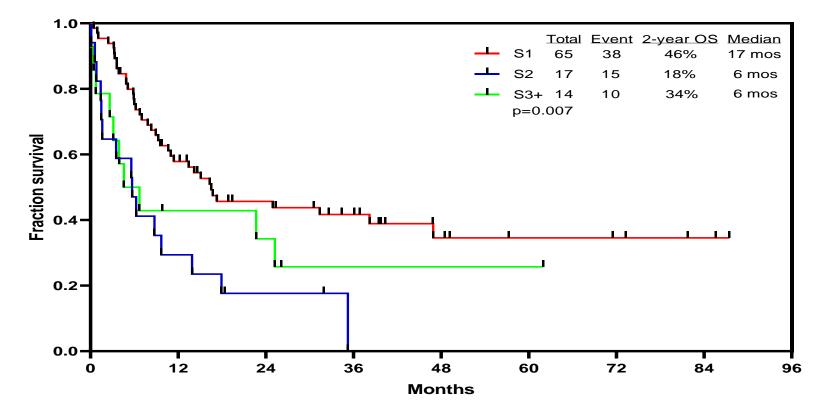
RIC allogeneic HSCT CAR T cells

Mini-HCVD + INO ± Blina in Salvage ALL and Frontline Older ALL: Modified Design (Pts #50+)



Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Short N, et al. ASH 2018. Abstract 36.

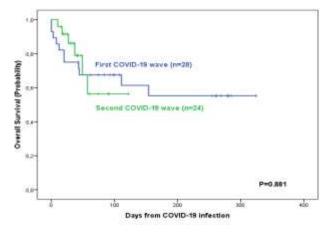
Mini-HCVD + INO ± Blinatumomab in R/R ALL: Response by Salvage (N = 96)

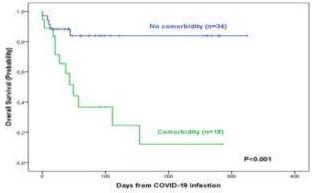

Response	N	Percentage
Salvage 1	58/64	91
S1, primary refractory	8	100
S1, CRD1 <12 mo	21	84
S1, CRD1 ≥12 mo	29	94
Salvage 2	11	61
Salvage ≥3	8	57
Overall	77	80
MRD negativity	62/75	83
Salvage 1	50/56	89
Salvage ≥2	12/19	63
Early death	7	7

Mini-HCVD + Inotuzumab/Blinatumomab in R/R ALL

Jabbour E, et al. JAMA Oncol. 2018;4:230-234.

Mini-HCVD + INO ± Blinatumomab in R/R ALL: OS by Salvage Status




Conclusion

- Treatment of R/R elderly patients with ALL: unmet need
- Better approach for salvage therapy
 - Ph– ALL: attenuated chemotherapy + immunotherapy (INO, Blina)
 - Ph+ ALL
 - Third-generation TKI + immunotherapy
 - Third-generation TKI + BCL2 inhibitors
- Do not forget cell therapy
 - RIC alloHSCT
 - CAR T

Spanish Registry of ALL and COVID-19 Infection: Outcomes in First vs Second Pandemic Wave

	Overall (n = 52)	First COVID-19 Wave (n = 28)	Second COVID-19 Wave (n = 24)	P Value
COVID-19 infection resolution	36 (69)	18 (64)	18 (75)	.404
Infection onset-clinical recovery interval, days, median (range)	14 (2-47)	17 (2-47)	12.5 (5-39)	.095
Alive patients at close of follow-up	35 (67)	17 (61)	18 (75)	.274
Causes of death (n = 17) COVID-19 infection Pseudomonas sepsis and COVID-19 infection Leukemia progression and COVID-19 infection	10 3 2	6 2 2	4 1 0	.467
Leukemia progression ALL treatment-related mortality	1 1	1 0	0 1	
Infection onset-death interval, days, median (range)	20 (0-154)	20 (0-154)	32 (10-57)	.335

Ribera JM, et al. (submitted).

Spanish Society of Hematology: Recommendations for Vaccination in ALL

1) Patients under conventional chemotherapy

- 1) Once CR is obtained
- 2) Between consolidation cycles
- 3) At any time during maintenance

2) Patients treated with monoclonal antibodies (mAbs)

- 1) Anti-CD20: Delay vaccination until at least 3 months after the last dose
- 2) Bispecific monoclonal antibodies: Vaccination indicated due to vulnerability of these patients. Avoid overlapping with continuous infusion of blinatumomab
- 3) Immunoconjugated mAb: Priority for vaccination due to vulnerability of these patients

3) Patients treated with tyrosine kinase inhibitors: As other ALL patients

4) Patients in complete remission without active treatment

1) Vaccination as soon as possible

Question #1

The best approach to date in treatment of R/R Ph– ALL in elderly has been:

- A. Inotuzumab as single drug
- B. Blinatumomab as single drug
- C. Attenuated chemotherapy + inotuzumab
- D. Attenuated chemotherapy + ofatumumab
- E. Allogeneic HSCT upfront

Question #2

Venetoclax has demonstrated activity in:

- A. Ph+ ALL only
- B. Ph– ALL only
- C. Ph+ and Ph– ALL
- D. T-ALL
- E. C and D answers are correct

Case-based panel discussion: Management of long- and shortterm toxicities and treatment selection in adult and elderly patients

Presenter: Shaun Fleming

Panelists: Elias Jabbour, Shaun Fleming, Aaron Logan, and José Maria Ribera

KAPTITUDE HEALTH

Case – Mr G.L.

Mr G.L. – introduction

- Mr G.L. is a 39-year-old man presenting with newly diagnosed Ph– B-precursor acute lymphoblastic leukaemia
- Background history of moderate obesity
- Received induction with the FRALLE93 protocol (a paediatric-inspired regimen)
- Attains a complete remission however, at the end of consolidation phase he is MRD+ at a level of 0.15%
- Has an unrelated donor available to him

Therapeutic options?

- Proceed immediately to allogeneic stem cell transplant?
- Continue chemotherapy with the FRALLE93 protocol?
- Switch to salvage with FLAG + Ida?
- Blinatumomab?

Approaches to MRD+ disease – the GMALL experience Table: Molecular Response in MolF Pts with MolF after Different Consolidation Cycles and

- Review of treated patients with either ٠ molecular failure or relapse on the GMALL 07/03 protocol
 - Poor response to chemotherapy as molecular salvage
 - AlloHSCT able to rescue a proportion of patients
 - Survival better in patients who had "MRDdirected" therapy pre-alloHSCT
 - 63% vs 34% (P = .002)
 - Blinatumomab had a very high MRD response rate
 - Relatively early data with few patients treated
- Targeted therapies should be delivered early to avoid cytologic relapse
- Current GMALL protocols amended for early administration of MRD-directed therapy

Therapy	B-precursor				T-ALL			
	N	MolCR	MolF	Cytologic Relapse	N	MolCR	MolF	Cytologie Relapse
Molecular Failur	e							
MTX/PEG-ASP	49	12 (24%)	32 (65%)	5 (10%)	14	7 (50%)	5 (36%)	2 (14%)
Other Chemo	7	1 (n.c.)	4 (n.c.)	2 (n.c.)	3 (n.c.)	0 (n.c.)	2 (n.c.)	1 (n.c.)
Nelarabine	0	0	0	0	6 (n.c.)	3 (n.c.)	3 (n.c.)	0 (n.c.)
Blinatumomab	11	10 (91%)	1 (9%)	0 (0%)	0	0	0	0
Total Non SCT	67	23 (34%)	37 (55%)	7 (10%)	23	10 (43%)	10 (43%)	3 (13%)
SCT	28	21 (75%)	6 (21%)	1 (4%)	24	17 (71%)	7 (29%)	0 (0%)
Molecular Rela	pse			0	2			20
Other Chemo	26	11 (42%)	12 (46%)	3 (11%)	8 (n.c.)	2 (n.c.)	4 (n.c.)	2 (n.c.)
Blinatumomab	15	15 (100%)	0 (0%)	0 (0%)				
Nelarabine					6 (n.c.)	3 (n.c.)	3 (n.c.)	0 (n.c.)

Immediate SCT

n.c. : Percentages not calculated in cohorts of N=10 and lower.

Definitions

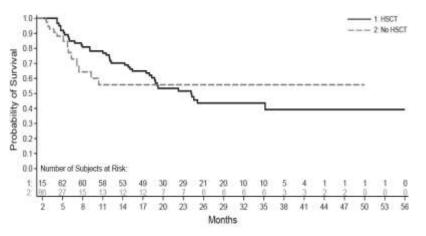
MolCR: No MRD detection with minimum sensitivity of 10⁻⁴ MolF: MRD positive >10⁻⁴ MRDneg: No MRD detection but insufficient sensitivity MRDpos: MRD detection < 10⁻⁴ or non quantifiable MRD

MolR: Reoccurence of MRD >10⁻⁴ beyond wk 16 after prior molCR

Is transplant still required after blinatumomab for MRD eradication?

• While overall survival appeared similar irrespective of whether patients went to transplant or not, the devil is in the details

Outcome for HSCT was better in those who attained MRD response (median OS NR vs 16.1 months) The majority of long-term survivors who did not receive an alloHSCT postblinatumomab received an alloHSCT with later relapse Overall survival was better with alloHSCT in younger patients (<39 years) following MRD-directed therapy


Mr G.L. (continued)

- Received his first cycle of blinatumomab
- Achieved MRD negativity
- Admitted for a second cycle
- Planned for unrelated donor transplant . . .

"I feel great now, much better than when I had chemotherapy. I don't want a transplant"

Can he avoid transplant?

Figure S5. Simon-Makuch plot of relapse-free survival among all patients in the full analysis set by HSCT status

• Maybe

- Transplant would be high-risk in G.L.'s case, given his obesity
- Most relapses are early if they do occur

Approach to G.L.

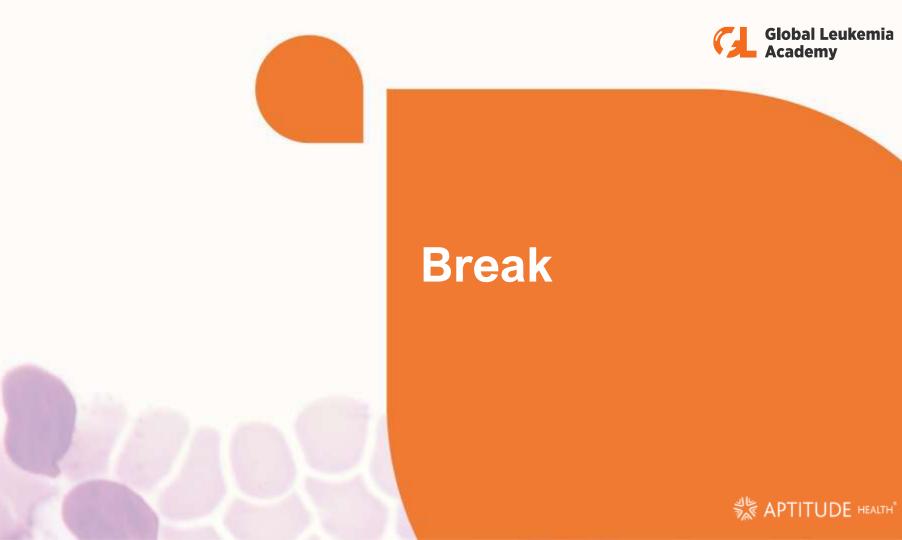
- Discussed the pros and cons of transplantation in this setting
- Decided not to proceed to transplant in CR1
- Completed 4 cycles of blinatumomab
- Maintenance therapy with POMP for 2 years
 - Three monthly bone marrow aspirates for MRD assessment
- Now completed maintenance and off all therapy for 1 year remains in ongoing remission

Educational ARS Questions

Elias Jabbour

Question 1

What age group is considered elderly ALL patients?


- a) ≥50 years
- b) ≥55 years
- c) ≥60 years
- d) ≥65 years
- e) ≥70 years

Question 2

Which of the following is NOT true for treating ALL?

- a) Inotuzumab and blinatumomab plus chemotherapy has produced 90%
 CR rates in salvage therapy and in first line in older patients
- b) Blinatumomab and ponatinib can be used as a chemotherapy-free regimen in Ph+ ALL
- c) MRD-negative CR does not correlate strongly with outcome
- d) Since 1999, median survival for ALL patients older than 60 has been increasing with each successive decade

Educational ARS Questions

Naval Daver

Question 1 (AML)

Which patients were not included in the VIALE-A study:

- a) Patients >75 years of age
- b) Patients <75 years of age with ECOG PS 3
- c) Patients <75 years of age with significant cardiac co-morbidity
- d) Patients <75 years of age with significant pulmonary comorbidities
- e) Patients <75 years of age with adverse cytogenetics

Question 2 (AML)

Which of the following is not true regarding HMA + venetoclax in AML:

- a) The CR/CRi with HMA+VEN in the VIALE-A was >65%
- b) HMA+VEN improved median OS compared with HMA alone
- c) Lab or clinical TLS is not seen with HMA+VEN in AML
- d) The recommended daily dose of venetoclax (without azoles) was 400mg PO Qday in VIALE-A study
- e) Neutropenia is commonly seen with HMA+VEN regimen

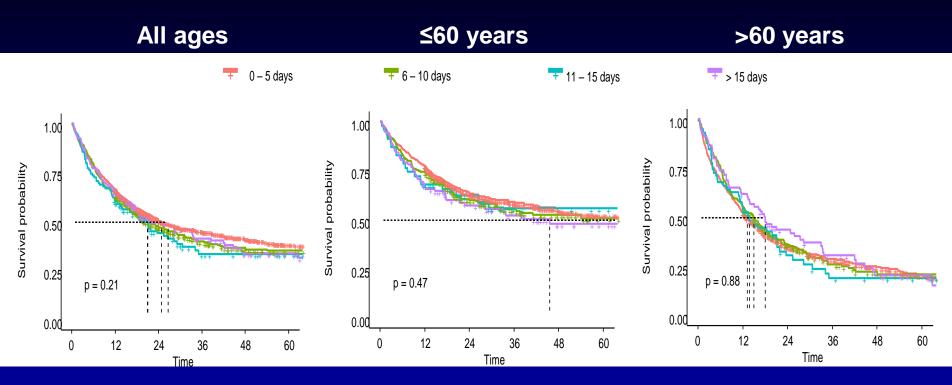
Personalized induction and maintenance approaches for AML

Naval Daver

Personalized induction and maintenance approaches for AML

APRIL 2021

Naval Daver, MD Director, Leukemia Research Alliance Program, Associate Professor Department of Leukemia MD Anderson Cancer Center


Clinical Applications of Molecular Studies in AML

- FLT3 mutations add FLT3 inhibitor (midostaurin, sorafenib, quizartinib, gilteritinib), consider allo-SCT
- IDH1-2 mutations add IDH inhibitor: enasidenib (AG-221/IDH2 inhibitor), ivosidenib (AG-120/IDH1 inhibitor)
- *NPM1* mutation in diploid CG Ara-C sensitivity, VEN sensitivity
- TP53 mutation consider decitabine 10 days ± others (GO, venetoclax); new agents (APR, CD47) refer to allo-SCT
- RAS mutations no targetable therapies in AML, common resistance to VEN, FLT3i, IDHi; consider clinical trials

Time from diagnosis to treatment does not affect outcome in intensively treated patients with newly diagnosed acute myeloid leukemia

Röllig C, Kramer M, Schliemann C, Mikesch JH, Steffen B, Krämer A, Sauer T, Hänel M, Herbst R, Schäfer-Eckart K, Noppeney R, Jost E, Brümmendorf TH, Krause S, Kunzmann V, Einsele H, Scholl S, Hochhaus A, Fransecky L, Kaufmann M, Neubauer A, Niemann D, Schaich M, Frickhofen N, Kiani A, Heits F, Krümpelmann U, Kaiser U, Kullmer J, Wass M, Klein S, Stölzel F, von Bonin M, Middeke JM, Thiede C, Schetelig J, Ehninger GE, Baldus CD, Müller-Tidow C, Platzbecker U, Serve H, Bornhäuser M

TDT Groups: Overall Survival

No impact of TDT on CR, early death, and OS in multivariable models. In practice, would avoid delays >5–7 days if possible.

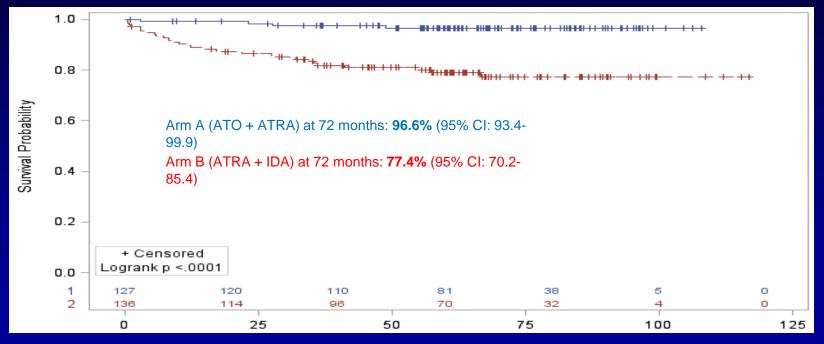
1. APL: ATRA + As₂O₃ Without Chemotherapy in APL: MD Anderson Experience

Induction

- -ATRA 45 mg/m²/D until CR
- -As₂O₃0.15 mg/kg/D until CR

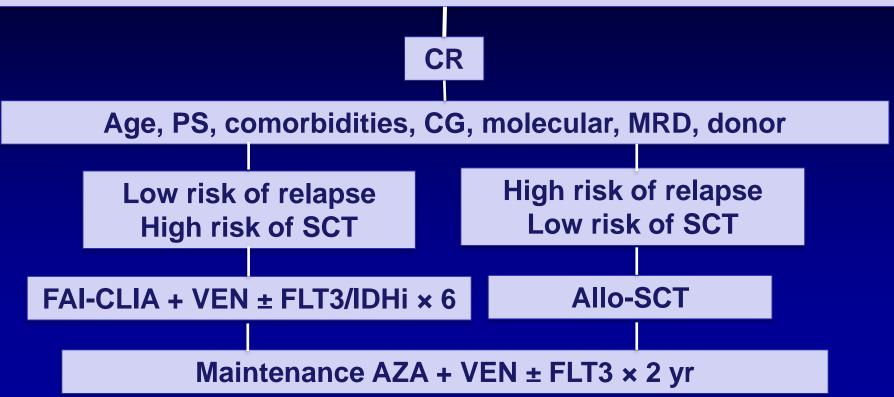
-Gemtuzumab (GO) 9 mg/m² × 1 if WBC >10 × $10^{9}/L^{1}$

Maintenance

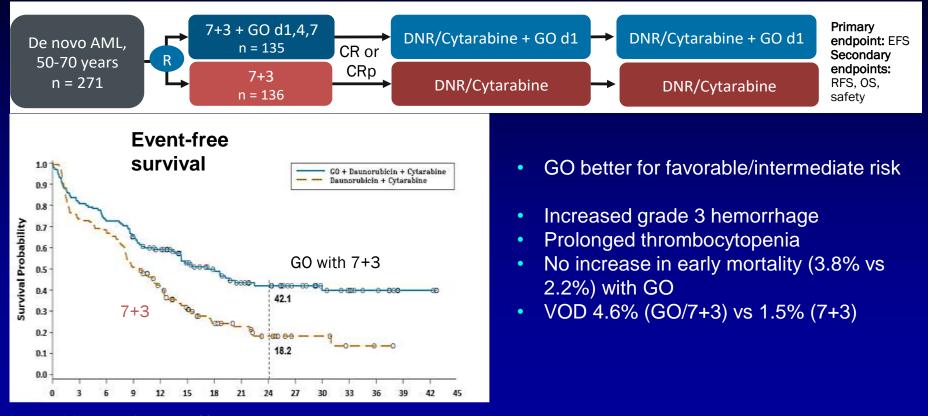

-ATRA 45 mg/m²/D × 2 wk Q mo × 6 -As₂O₃ 0.15/kg/D × 4 wk Q2 mo × 3

-GO in PCR+

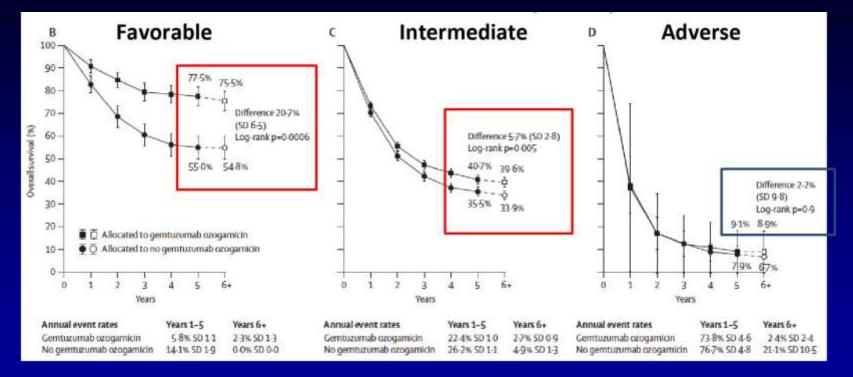
APL0406: Updated Event-Free Survival


276 pts; follow-up 67 months

Event-free survival



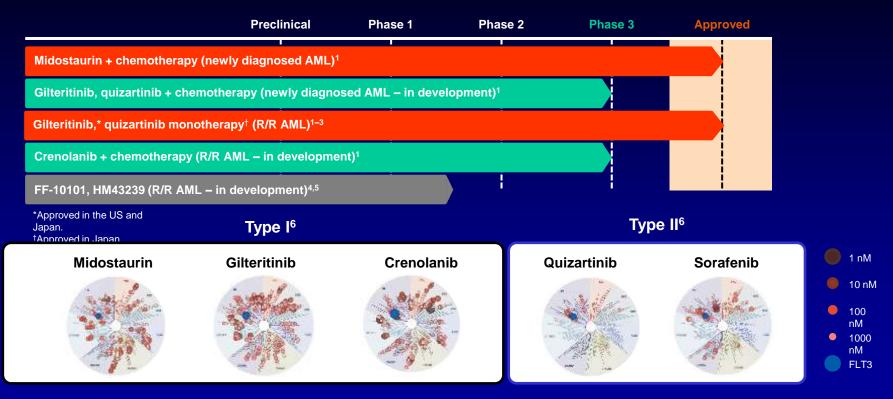
Since 2009: Therapy of Younger AML at MD Anderson in 2020+


FAI/CLIA + venetoclax ± FLT3/IDHi induction; consolidation × 1–2

2. CD33-Targeted Therapy – Gemtuzumab Ozogamicin ALFA-0701: Phase III Trial of GO Plus 7+3 vs 7+3

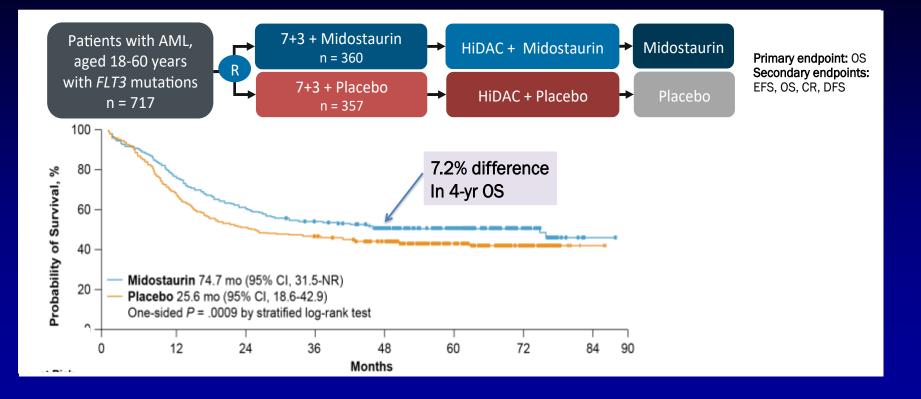
Meta-analysis of Gemtuzumab Ozogamicin Plus 7+3

Meta-analysis of overall survival of 3325 AML patients stratified by cytogenetic risk

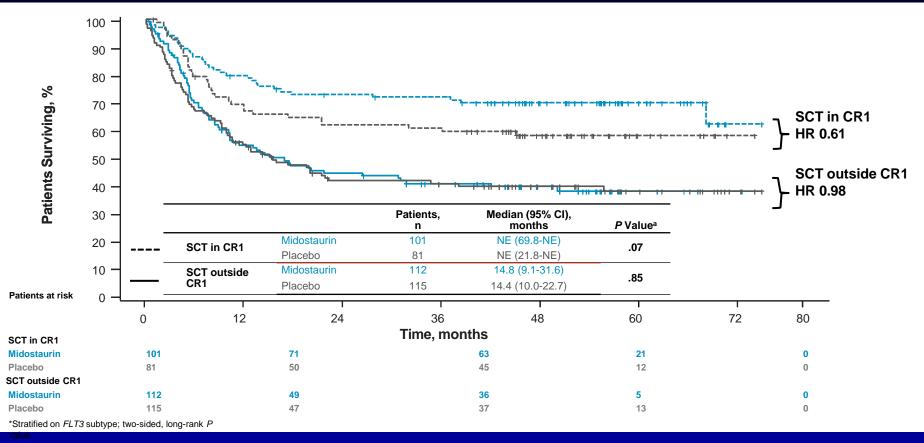

Hills RK, et al. Lancet Oncol. 2014;15:986-996.

MDACC: FLAG-GO in CBF AML

- Induction: fludarabine (FL) 30 mg/m² days 1–5; cytarabine (A) 2 g/m² IV days 1–5; gemtuzumab ozogamicin (GO) 3 mg/m² day 1; G-CSF (G) 5 µg/kg day –1 until neutrophil recovery (can use peg-filgrastim 6 mg × 1 day 4)
- Consolidation: FL and A for 4 (amended to 3) days, GO (in cycle 2/3 and 5/6) and G as in induction for 6 cycles
- Peg–G-CSF instead of G-CSF allowed beyond day 5 (induction) or day 4 (consolidation)

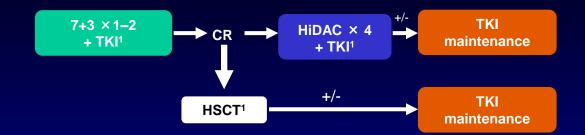

Replaced GO with low-dose idarubicin 6 mg/m² days 3 and 4 after patient 50

3. Current and Future Induction Approaches for FLT3-Positive AML



1. Short NJ, et al. *Ther Adv Hematol.* 2019;10:2040620719827310; 2. Daiichi Sankyo. Press release. Available at: https://www.daiichisankyo.com/media_investors/media_relations/press_releases/detail/007030.html; 3. Astellas. Press release. Available at: <u>https://www.astellas.com/en/news/14271;</u> 4. ClinicalTrials.gov. NCT03194685. Available from: https://clinicaltrials.gov/ct2/show/NCT03194685; 5. ClinicalTrials.gov. NCT03850574. Available from: https://clinicaltrials.gov/ct2/show/NCT03850574; 6. Aikawa T, et al. Presented at the 2019 Annual Meeting of the AACR; March 29–April 03, 2019; Atlanta, GA. Abstract 131.8

Midostaurin Plus 7+3 vs 7+3 in De Novo FLT3-Mutant AML

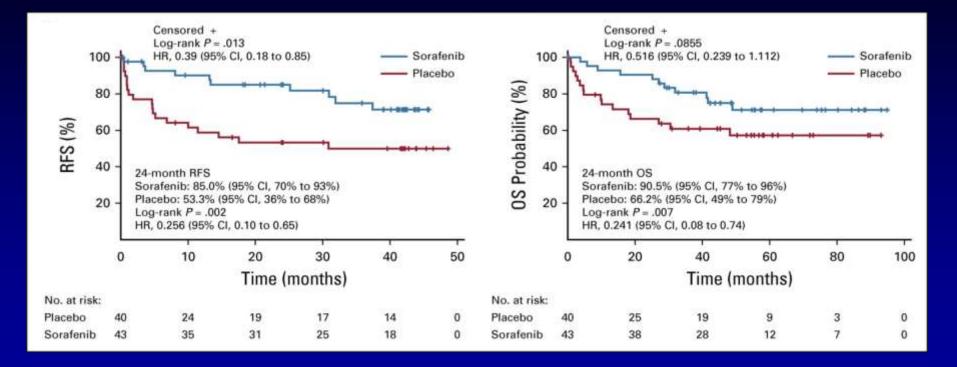


OS, Posttransplant With 3+7 Plus Mido vs 3+7 Plus Placebo

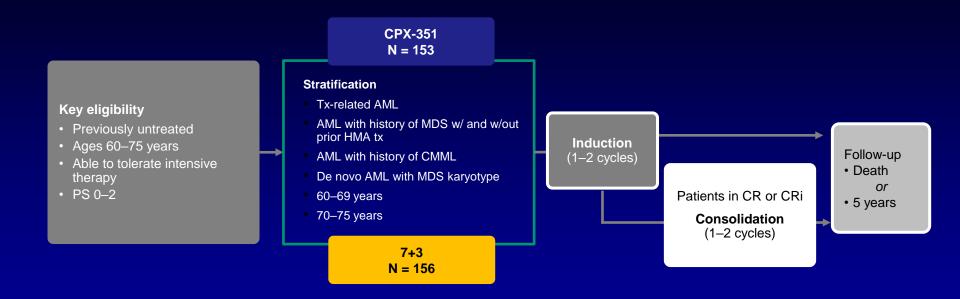
Stone RM, et al. N Engl J Med. 2017;377:454-464.

Combining FLT3 Inhibitors With Standard Therapies Frontline Intensive Chemotherapy Plus FLT3 Inhibitor

RATIFY ²	Midostaurin (n = 360)	Placebo (n = 357)	P Value*
CR by day 60, n (%)	212 (59)	191 (53)	.15
CR in induction/ consolidation, n (%)	239 (66)	211 (59)	.045
Days to CR, median (range)	37 (20–99)	36 (20–112)	

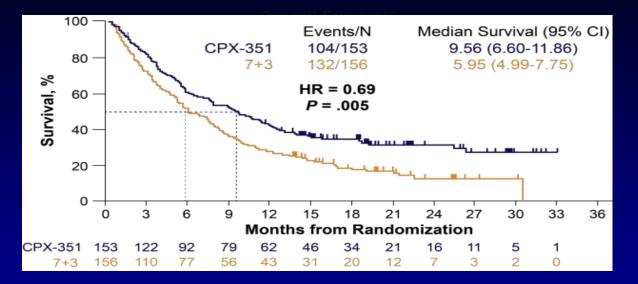

Second-Generation FLT3 Inhibitor	CRc Rate, n (%)
Gilteritinib plus 7+3 ³	31/33 (94)
Crenolanib plus 7+3 ⁴	24/25 (96)
Quizartinib plus 7+3 ⁵	16/19 (84) [†]

*P value is 2-sided and was calculated with the use of Fisher's exact test; †Includes CRc/MLFS.


CR, complete remission; HiDAC, high-dose cytarabine; HSCT, hematopoietic stem cell transplantation; TKI, tyrosine kinase inhibitor.

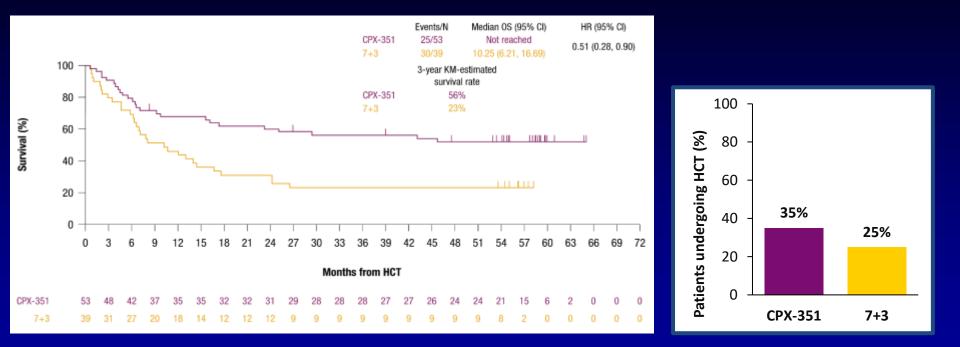
1. American Cancer Society. Treatment of AML. Available at: https://www.cancer.org/cancer/acute-myeloid-leukemia/treating/typical-treatment-of-aml.html. Accessed October 2019; 2. Stone RM, et al. *Blood.* 2015;126:abstract 6; 3. Pratz K, et al. ASH 2017. Abstract 722; 4. Wang ES, et al. ASH 2016. Abstract 1071; 5. Altman JK, et al. *Am J Hematol.* 2018;93:213-221.

RFS and OS in FLT3+ AML in CR After HCT Treated With Sorafenib vs Placebo (SORMAIN)


4. AML With Myelodysplasia-Related Changes (AML-MRC) Phase III Study of CPX-351 vs 7+3 in Older Patients With Newly Diagnosed High-Risk AML

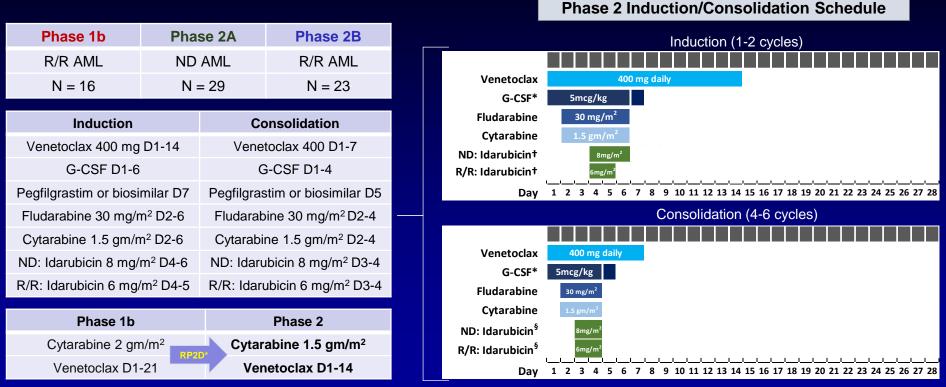
Primary endpoint: overall survival

AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; CR, complete remission; Cri, complete remission with incomplete platelet recovery; HMA, hypomethylating agents; MDS, myelodysplastic syndromes; PS, patient performance status; Tx, therapy. Lancet J, et al. ASCO 2016. Abstract 7000.


CPX-351 vs 7+3 in Newly Diagnosed Secondary AML: Clinical Outcomes

	CPX-351 (n = 153)	7+3 (n = 156)	Odds Ratio	<i>P</i> Value
CR + CRi	47.7%	33.3%	1.77 (1.11, 2.81)	.016
HCT rate	34.0%	25.0%	1.54 (0.92, 2.56)	.098
Deaths ≤60 days*	13.8%	21.8%		

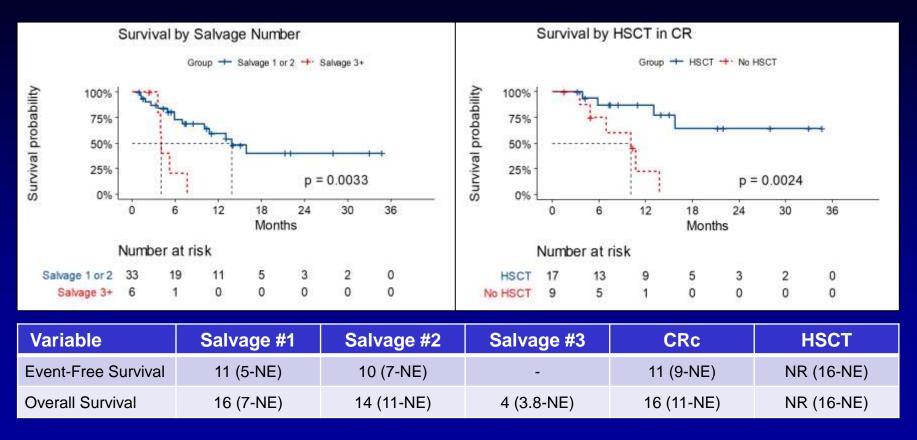
*Kaplan-Meier estimate. Medeiros BC, et al. ASH 2016; Abstract 902.


Overall Survival Landmarked From the HCT Date (long-term follow-up of CPX351 vs 3+7 phase III)

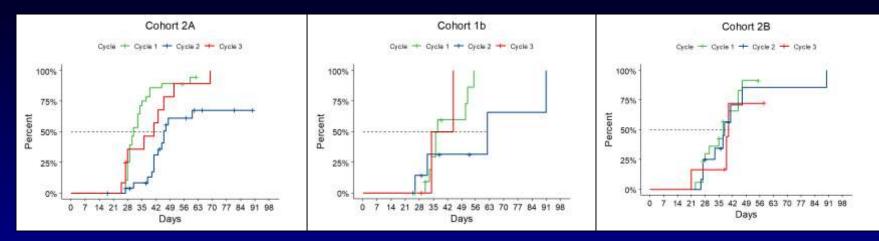
Kaplan-Meier–estimated survival rate landmarked from the date of HCT was >50% at 3 and 5 years for patients treated with CPX-351

Lancet J, et al. ASH 2020. Abstract 635.

5. Novel Intensive Therapy Approaches: Nonmolecular or Cytogenetic Targeted Groups – FLAG-IDA-VEN: Study Cohorts and Treatment Schedule

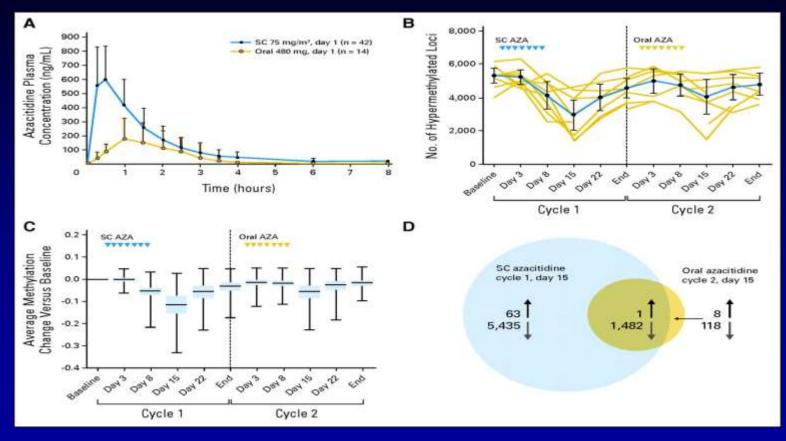


*5/6 initially enrolled phase Ib patients developed bacteremia/sepsis with phase Ib dosing


*G-CSF: 5 mcg/kg the day prior to and days of IV chemotherapy followed by 1 dose of pegfilgrastim or biosimilar each 28 D cycle. †Induction: ND AML = Idarubicin 8 mg/m² days 4–6; R/R AML = Idarubicin 6 mg/m² days 4 and 5. \$Consolidation: Idarubicin permitted on days 3 and 4 in 2 postremission cycles (ie, C2 or C3 and C5 or C6) at physician discretion.

Lachowiez C, et al. ASH 2020. Abstract 332.

FLAG-IDA-VEN: R/R AML Outcomes

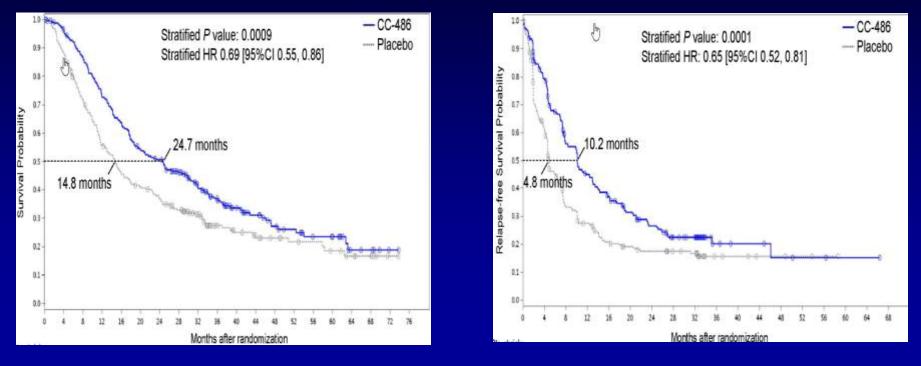

FLAG-IDA-VEN: Median Time to Count Recovery*

	Phase 2A ND AML (N = 29)	Phase Ib (Dose Finding) R/R AML (N = 16)	Phase 2B (Expansion) R/R AML (N = 23)
Cycle #1	31 days	37 days	37 days
Cycle #2	46 days	62 days	38 days
Cycle #3	41 days	40 days	40 days

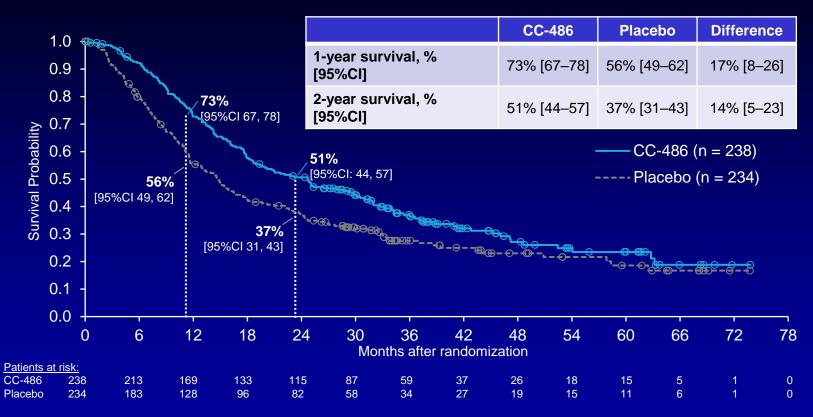
*Count recovery: ANC \geq 500 and platelet count \geq 50,000 /µL Lachowiez C, et al. ASH 2020. Abstract 332.

Maintenance: CC486 in MDS and AML

QUAZAR AML-001: Study Design

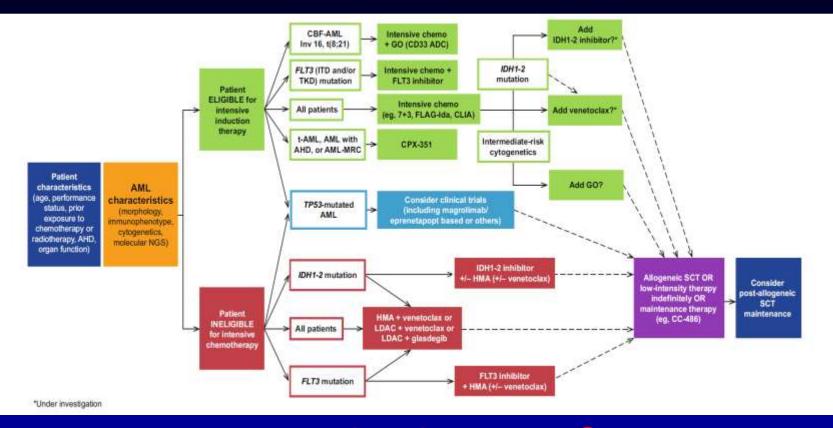

 International, multicenter, placebo-controlled, double-blind, randomized, phase III study that enrolled patients from 148 sites in 23 countries (NCT01757535)

PRE-RANDOMIZATION	RANDOMIZATION	TREATMENT PHASE
Screening Key eligibility criteria • First CR/CRi with IC ± consolidation • Age ≥55 years • De novo or secondary AML • ECOG PS score 0–3 • Intermediate- or poor-risk cytogenetics • Ineligible for HSCT • Adequate bone marrow	Randomization (1:1) Within 4 months (±7 days) of CR/CRi Stratified by • Age: 55–64/≥ 65 • Prior MDS/CMML: Y/N • Cytogenetic risk: Intermediate/Poor • Consolidation: Y/N	CC-486 300 mg QD ×14 days 28-day cycles Placebo QD ×14 days Placebo QD ×14 days Placebo QD ×14 days Placebo QD ×14 days Placebo QD ×14 days Placebo QD ×14 days Placebo
recovery (ANC ≥0.5 × 10º/L, platelet count ≥20 × 10º/L)	Primary end	Follow until death, withdrawal of consent, study termination, or loss


to follow-up

Phase III Study of Oral Azacitidine vs Placebo as Maintenance in AML (QUAZAR-AML-001)

 472 pts 55+ yr (median age 68 yr) with AML in CR-Cri <4 mo randomized to CC-486 300 mg/ daily x 14 Q mo (n = 238) or PBO (n = 234)


One-Year and 2-Year Survival

Data cutoff: July 15, 2019.

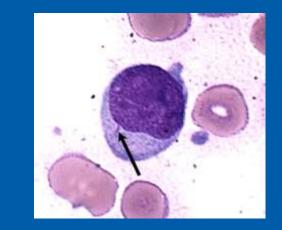
OS was defined as the time from randomization to death by any cause. Kaplan-Meier estimated OS was compared for CC-486 vs placebo by stratified log-rank test. Hazard ratios (HRs) and 95% CIs were generated using a stratified Cox proportional hazards model.

Evolving Diagnostic and Treatment Paradigm for Newly Dx AML

Questions: ndaver@mdanderson.org

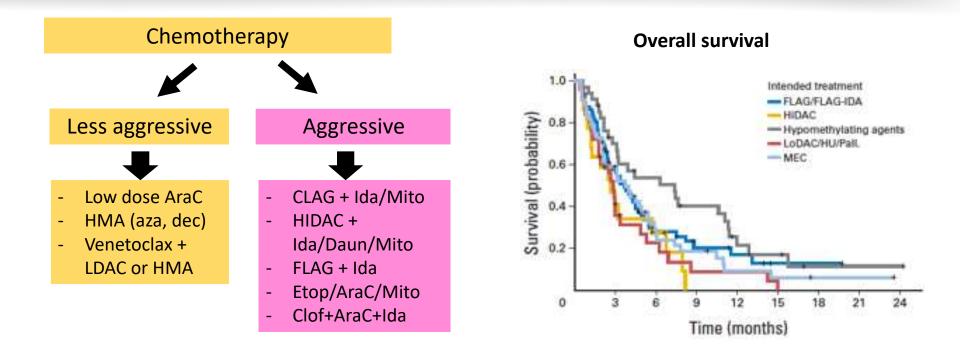
Daver N, et al. Blood Cancer J. 2020;10(10):107.

Optimizing management of relapsed/refractory AML


Eunice Wang

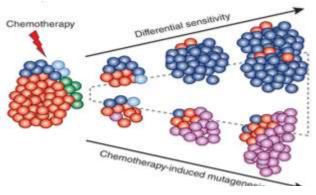
Optimizing management of relapsed/refractory AML

Global Leukemia Academy

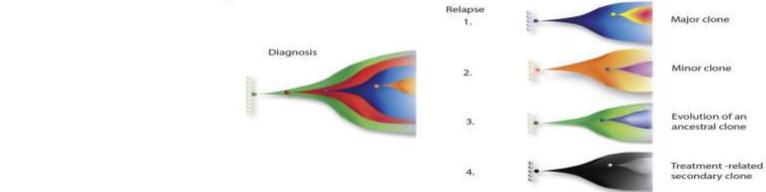


Eunice S. Wang, MD Chief, Leukemia Service Professor of Oncology

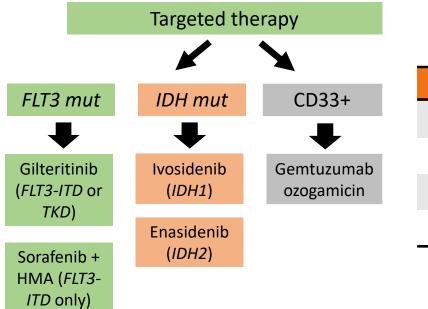
Disclosures: Eunice Wang, MD


- Advisory board: AbbVie, Astellas, BMS/Celgene, Genentech, GlaxoSmithKline, Jazz, Kite Pharmaceuticals, Kura Oncology, Novartis, Pfizer, Stemline, Takeda
- Consulting: Mana Therapeutics
- Speaker role: Stemline, Kura, Pfizer, DAVA Oncology
- Data monitoring committees: AbbVie, Rafael Pharmaceuticals

Cytotoxic Chemotherapy for R/R AML¹⁻⁵


1. Roboz GJ, et al. J Clin Oncol. 2014;32(18)1919-1926; 2. Stein EM, et al. Blood. 2017;130(6):722-731; 3. DiNardo CD. N Engl J Med. 2019;379(12):1186; 3. Taskin AL, et al. Leukemia. 2007;21(1):66-71; 5. Perl AE, et al. N Engl J Med. 2019;381(18):1728-1740.

Clonal Evolution and Therapy Resistance at Relapse

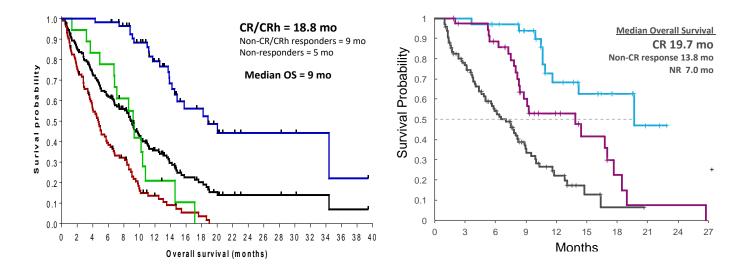

Leukemia is not a static condition!

Repeat genomic analysis at relapse is necessary

Kleppe M, Levine RL. Nat Med. 2014;20(4):342;Grimwade D, et al. Blood. 2016;127(1):29-41.

Targeted Therapy for R/R AML

Outcomes of clinical trials

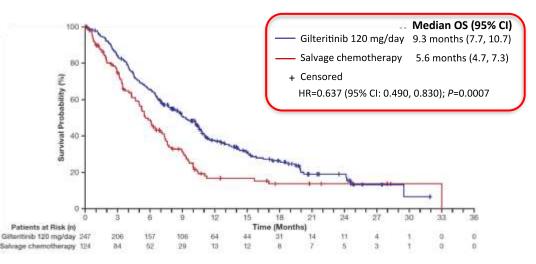

Drug Name	AML Subset	ORR	Median OS
Enasidenib ^[2]	IDH2 mutant	40.3%	9.3 mos
Ivosidenib ^[3]	IDH1 mutant	41.6%	8.8 mos
GO ^[4]	CD33+ AML	26%	11.6 mos
Gilteritinib ^[5]	FLT3 mutant	34%	9.3 mos

Stein EM, et al. *Blood*. 2017;130(6):722-731; DiNardo CD. *N Engl J Med*. 2019;379(12):1186; Taskin AL, et al. *Leukemia*. 2007;21(1):66-71; Perl AE, et al. *N Engl J Med*. 2019;381(18):1728-1740.

IDH1/2 Inhibitors for *IDH*-Mutant R/R AML

Ivosidenib (IDH1): R/R AML

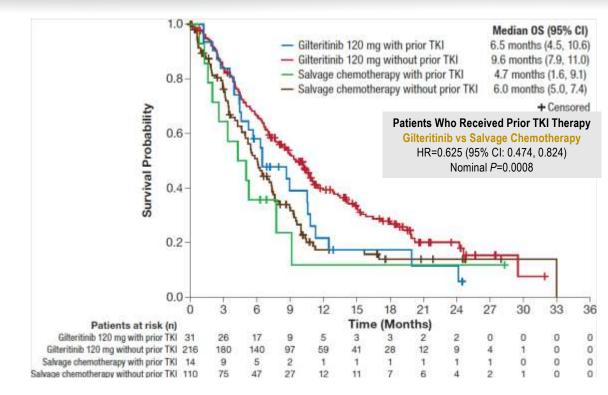
Enasidenib (IDH2): R/R AML


Mechanisms of resistance: Mutant isoform switch (m*IDH1* <-> m*IDH2*), *IDH2* mutations (trans or cis), presence or development of co-mutations (ie, RAS, FLT3)

DiNardo CD, et al. *N Engl J Med.* 2018;378(25):2386; Stein EM, et al. *Blood.* 2017;130(6):722-731.

FLT3 Inhibitors for *FLT3*-Mutant R/R AML

	Other Kinases	IC ₅₀ (Plasma)
Lestaurtinib	JAK2, TrkA	700 nM
Midostaurin	cKIT, PKC, PDGFR, VEGFR	1000 nM
Sorafenib	cKIT, PDGFR, RAF, VEGFR	265 nM
Quizartinib	cKIT, PDGFR, RET	18 nM
Crenolanib	PDGFR	48 nM
Gilteritinib	AXL	43 nM


Gilteritinib vs salvage chemo in FLT^{mut} R/R AML

Pratz KW, et al. *Blood.* 2010;115(7):1425-1432; Zarrinkar PP, et al. *Blood.* 2009;114(14):2984-2992; Galanis A, et al. *Blood.* 2014;123(1):94-100; Levis MJ, et al. *J Clin Oncol.* 2015;33(15_suppl): abstract 7003.

Perl AE, et al. N Engl J Med. 2019;381(18):1728-1740.

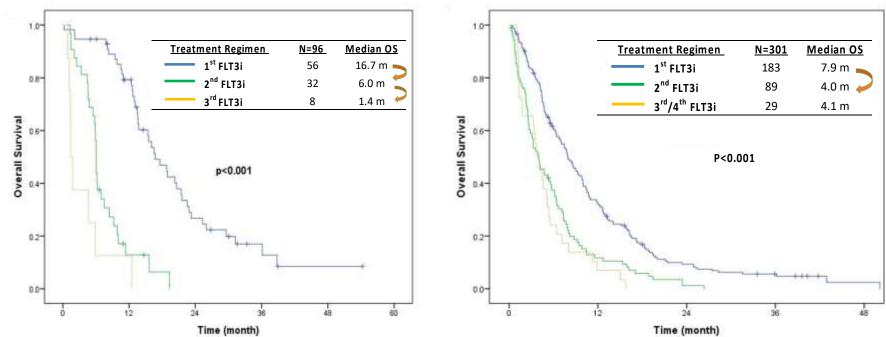
FLT3-Mutant AML: Gilteritinib vs Chemotherapy

Median OS,	Gilteritinib			
mos (95% CI)	Prior TKI	No Prior TKI		
FLT3 Mutation Type				
<i>FLT3</i> -ITD	6.5 (4.4, 10.8)	10.2 (7.7, 11.1)		
FLT3-TKD	4.6 (1.2, 24.1)	8.0 (3.0, 24.6)		
<i>FLT3</i> -ITD and -TKD	13.2 (4.0, NE)	10.2 (8.9, 20.2)		
Relapsed or Refractory Status				
Relapsed	6.5 (4.0, 11.3)	8.9 (6.7 <i>,</i> 10.8)		
Defrecter	10.5	10.3		

(2.4, 24.1)

(7.9, 13.5)

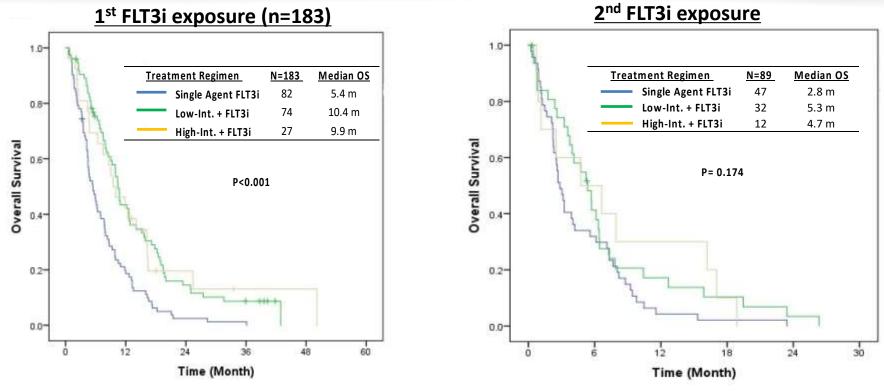
Refractory


Perl AE, et al. ASH 2020. Abstract 262.

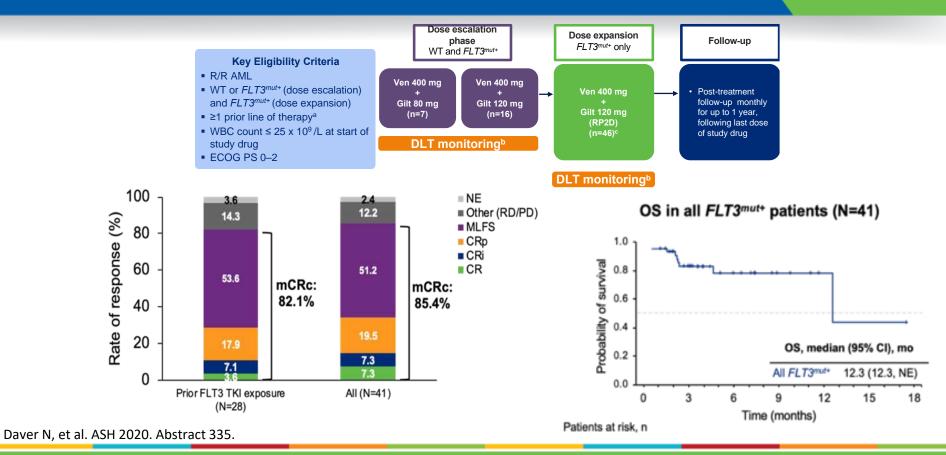
ROSWELL PARK COMPREHENSIVE CANCER CENTER

Sequential FLT3 Inhibitor Therapy for R/R AML

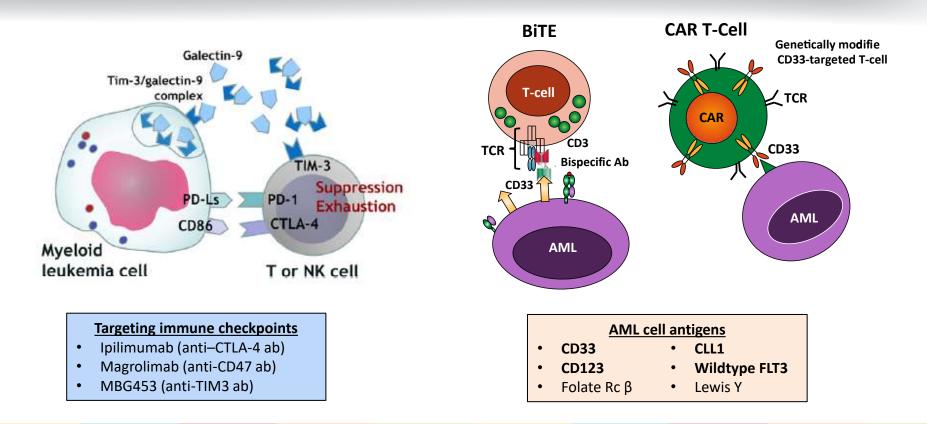
Frontline Cohort (n=96)


Salvage Cohort (n=301)

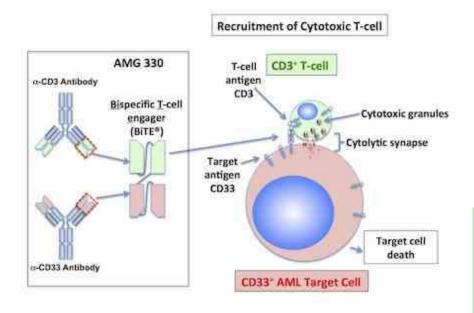
Yilmaz M, et al. ASH 2020. Abstract 29.

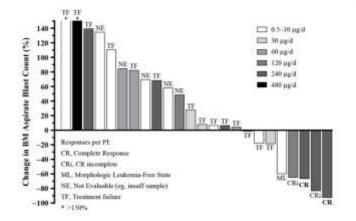

ROSWELL PARK COMPREHENSIVE CANCER CENTER

Combination vs Single-Agent FLT3 Inhibitor Salvage



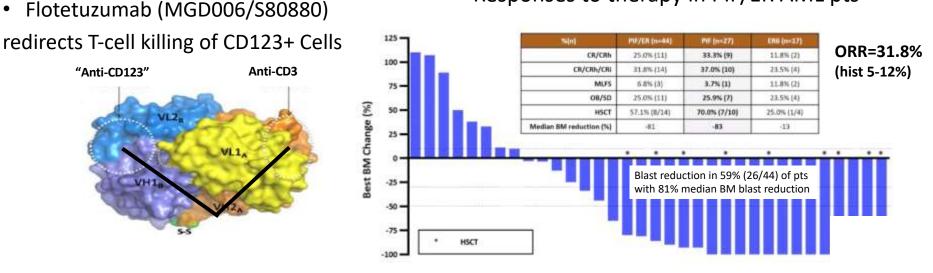
Yilmaz M, et al. ASH 2020. Abstract 29.


FLT3-Mutant R/R AML: Venetoclax + Gilteritinib



Immunotherapeutic Approaches for R/R AML

AMG 330: CD33/CD3 Bispecific Antibody



35 pts on 12 dose cohorts (40% prior alloSCT) DLTs grade 2 CRS, grade 4 VF Target dose = 240 μg/day Responses: 2 CR, 2 CRi at 120–240-μg/day dosing CRs seen after 1 cycle of therapy

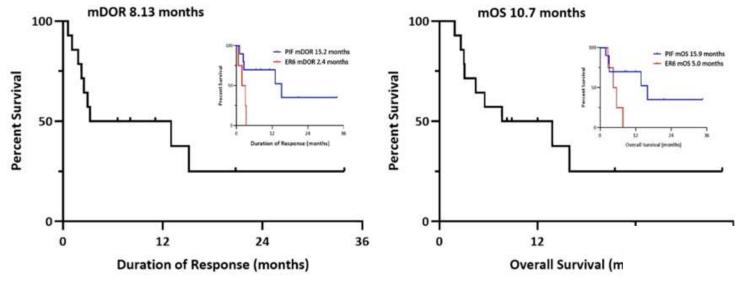
Laszlo GS, et al. Blood. 2014;123(4):554-561; Harrington KH, et al. PLOS One. 2015;10(8):e0135945; Ravandi F, et al. ASH 2018. Abstract 25.

Flotetuzumab: Primary Induction Failure/Early Relapse

Root, et al. Antibodies 2016, 5, 6 Chichili, et al. Sci Transl Med. 2015 May 27;7(289)

Need for hospitalization (min 8 d) in all patients 100% infusion reaction/cytokine release Outpatient dosing after day 8 feasible

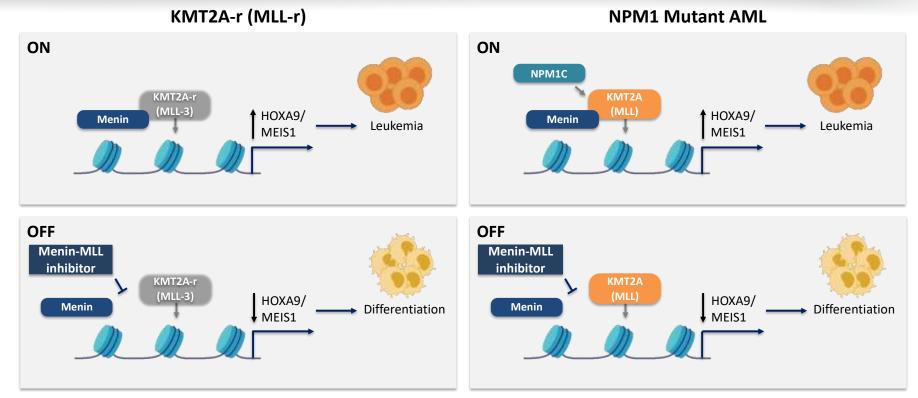
Responses to therapy in PIF/ER AML pts


Aldoss I, et al. ASH 2020. Abstract 331.

"Anti-CD123"

Flotetuzumab in Primary Induction Failure/Early Relapse

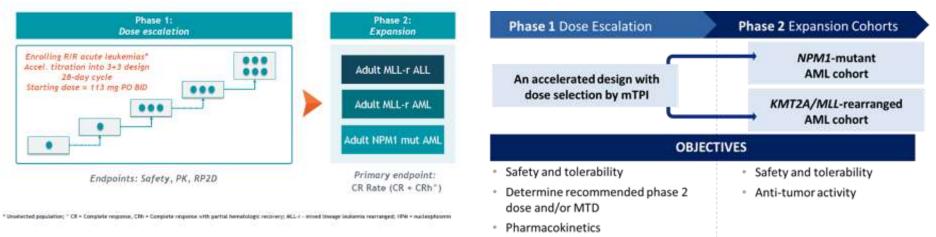
Primary refractory (PIF): Refractory to up to 2 cycles of cytarabine-based chemotherapy Or \geq 2 but \leq 4 bcl-2 inhibitor-based combinations or gemtuzumab ozogamicin


Early relapse (ER6): First relapse with initial CR duration of <6 months

Aldoss I, et al. ASH 2020. Abstract 331.

ROSWELL PARK COMPREHENSIVE CANCER CENTER

KMT2A-r and NPM1-Mutant AML: Menin Inhibition

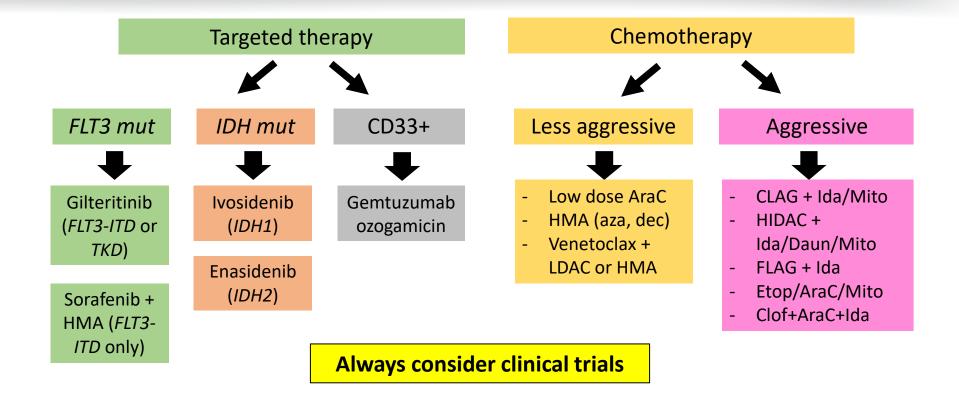


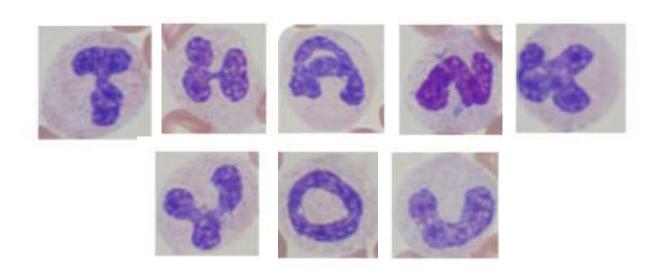
Wang ES, et al. ASH 2020. Abstract 1015.

Phase I Clinical Trials for KMT2A-r/NPM1-Mutant AML

AUGMENT-101 schema: ALL and AML pts

KOMET-001: Phase I/IIA trial




PK: QTC prolongation, interactions with azoles (CYP inhibitors)

Early evidence of anti-tumor activity

McGeehan J. AACR 2020 meeting; Wang ES, et al. ASH 2020 meeting.

Summary: Optimizing Therapy of R/R AML

Email: Eunice.wang@roswellpark.org

Case based panel discussion: regional challenges in AML care

Chyn Chua

AML Clinical Case

Dr Chyn Chua MBBS, BMedSc, FRACP, FRCPA Alfred Hospital, Melbourne Australia

Case: 45-year-old man (pre-midostaurin era)

- Presented with leukemia cutis and circulating blasts
- Diagnosed with acute myelomonocytic leukemia
- Cytogenetics: normal karyotype
- Rapid FLT3 testing (capillary electrophoresis): *FLT3-ITD* with allelic ratio (AR) 0.28
- Further myeloid NGS testing: *NPM1* and *NRAS* mutations
- Commenced on IDAC-3 induction \rightarrow CR1 after induction
- Proceeded to IcE consolidation

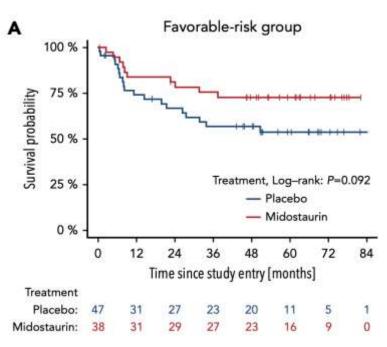
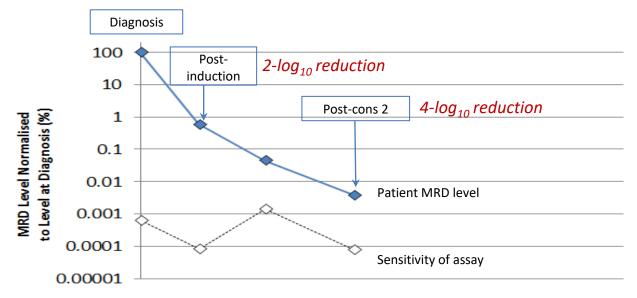

Favorable risk by ELN 2017

Table 5. 2017 ELN risk stratification by genetics

Risk category*	Genetic abnormality		
Favorable	t(8;21)(q22;q22.1); RUNX1-RUNX1T1		
	inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11		
	Mutated NPM1 without FLT3-ITD or with FLT3-ITD ^{low} †		
	Biallelic mutated CEBPA		
Intermediate	Mutated NPM1 and FLT3-ITD ^{high} †		
	Wild-type NPM1 without FLT3-ITD or with FLT3-ITD ^{low} † (without adverse-risk genetic lesions)		
	t(9;11)(p21.3;q23.3); MLLT3-KMT2A‡		
	Cytogenetic abnormalities not classified as favorable or adverse		
Adverse	t(6;9)(p23;q34.1); DEK-NUP214		
	t(v;11q23.3); KMT2A rearranged		
	t(9;22)(q34.1;q11.2); BCR-ABL1		
	inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)		
	-5 or del(5q); -7; -17/abn(17p)		
	Complex karyotype,§ monosomal karyotypell		
	Wild-type NPM1 and FLT3-ITD ^{high} †		
	Mutated RUNX19		
	Mutated ASXL19		
	Mutated TP53#		


If in the midostaurin era . . .

RATIFY study

Case: 45-year-old man

- Completed 2 cycles of IcE consolidation \rightarrow remains in CR
- A sibling donor is identified
- *NPM1* MRD testing by RT-qPCR performed in the bone marrow

FLT3-ITD low-allelic ratio/*NPM1*-mutant AML – CR1 achieved Positive *NPM1* MRD in BM post-consolidation 2

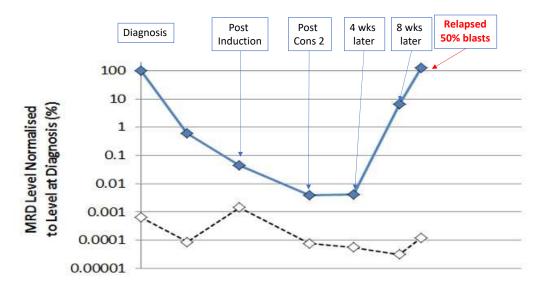
What would you do next?

- 1. Go directly to allogeneic stem cell transplant if good donor
- 2. Give salvage chemotherapy (eg, FLAG-Ida) then allogeneic stem cell transplant in CR1
- 3. Complete 4 cycles of consolidation therapy, commence maintenance therapy (if available), and monitor *NPM1* MRD
- 4. No further therapy and monitor *NPM1* MRD in PB and BM

FLT3-ITD low-allelic ratio/*NPM1*-mutant AML – CR1 achieved Positive *NPM1* MRD in BM post-consolidation 2

What would you do next?

- 1. Go directly to allogeneic stem cell transplant if good donor
- 2. Give salvage chemotherapy (eg, FLAG-Ida) then allogeneic stem cell transplant in CR1
- 3. Complete 4 cycles of consolidation therapy, commence maintenance therapy (if available), and monitor *NPM1* MRD
- 4. No further therapy and monitor *NPM1* MRD in PB and BM


Would your management differ if the patient was receiving midostaurin/FLT3i?

Key questions to the panel

- What is an optimal *NPM1* MRD response?
- What is the conversion rate from *NPM1* MRD positive to MRD negative beyond 3 cycles of intensive chemotherapy?
 - Does that differ between *FLT3*-ITD–mutant vs –wildtype patients?
- How often would you monitor the *NPM1* MRD, and by which source, ie, peripheral blood vs bone marrow?
- What is the role of alloSCT in *FLT3*-ITD_{low}/*NPM1*-mutant patients?

Case: 45-year-old man

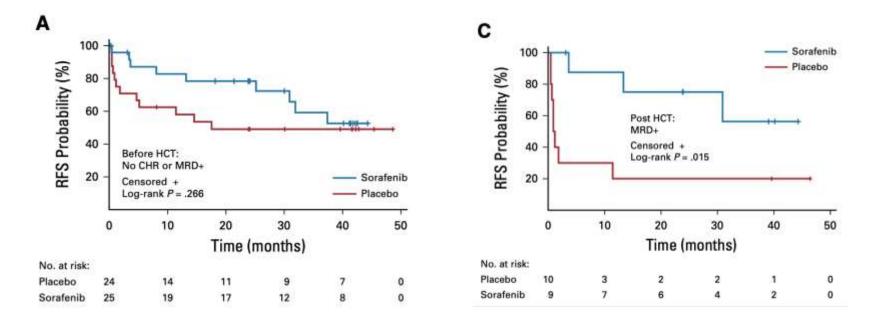
- Did not proceed immediately to further consolidation cycles, as had a very tough time during consolidation cycle 2
- NPM1 MRD repeated 4 and 8 weeks later (2-log rise) → MRD progression
- Morphologic relapse 2 weeks later

Relapsed FLT3-ITD low-allelic ratio/NPM1-mutant AML

What would you do next?

- 1. Give salvage intensive chemotherapy (eg, FLAG-Ida) then allogeneic stem cell transplant
- 2. Commence gilteritinib and then allogeneic SCT if CR2
- 3. Enroll in a clinical trial if available

ADMIRAL trial: Gilteritinib vs chemotherapy for R/R *FLT3*-mutant AML


Variable	Gilteritinib (N=247)	Salvage Chernotherapy (N = 124)	Hazard Ratio or Risk Difference (95% CI)†
Median overall survival (95% CI) — mo	9.3 (7.7-10.7)	5.6 (4.7-7.3)	0.64 (0.49-0.83)
Median event-free survival (95% CI) — mo	2.8 (1.4-3.7)	0.7 (0.2-NE)	0.79 (0.58-1.09)
Response — no. (%)			
Complete remission	52 (21.1)	13 (10.5)	10.6 (2.8-18.4)
Complete remission or complete remission with partial hematologic recovery	84 (34.0)	19 (15.3)	18.6 (9.8–27.4)
Complete remission with partial hematologic recovery	32 (13.0)	6 (4.8)	ND
Complete remission with incomplete hematologic recovery	63 (25.5)	14 (11.3)	ND
Complete remission with incomplete platelet recovery	19 (7.7)	0	ND
Partial remission	33 (13.4)	5 (4.0)	ND
No response	66 (26.7)	43 (34.7)	ND
Composite complete remission‡	134 (54.3)	27 (21.8)	32.5 (22.3-42.6)
Overall response	167 (67.6)	32 (25.8)	
Median duration of remission (95% CI) — mo§	11.0 (4.6-NE)	NE (NE-NE)	NE
Time to composite complete remission — mo	2.3±1.9	1.3±0.5	NA
Median leukemia-free survival (95% CI) — mo	4.4 (3.6-5.2)	6.7 (2.1-8.5)	NE

Case progress

- Received salvage FLAG-amsacrine for morphologic relapse \rightarrow CR2
 - Gilteritinib was not available then
 - *NPM1* MRD post-salvage 0.47% (212 copies/10⁵ ABL)
- Proceeding to myeloablative allogeneic SCT with sibling donor
- No GVHD
- Relapsed day +60 post-alloSCT 38% blasts
 - *FLT3*-ITD AR 0.22
 - *NPM1* mutation detected

SORMAIN trial: Sorafenib vs placebo Starting between day +60 to +100 for 24 months

RFS benefit especially in patients with MRD+ post-HCT

Case progress

- Commenced gilteritinib monotherapy (compassionate access)
 - Best response: MLFS
- Progressive disease with CNS involvement
- Palliative therapy > death

Summary

- Therapeutic landscape is rapidly changing for *FLT3*-mutant AML
- Better strategies are needed to tackle rising MRD
 - NPM1 MRD monitoring
 - Optimal utilization of *FLT3*-ITD MRD by NGS still being investigated
- Better strategies to salvage relapsed *FLT3*-ITD AML

Case based panel discussion: regional challenges in AML care

Sun Loo

GLOBAL LEUKEMIA ACADEMY

AML Clinical Case 16 May 2021

Dr Sun Loo MBBS, FRACP, FRCPA Alfred Hospital, Victoria, Australia Email: s.loo@alfred.org.au

Case presentation

72-year-old male, ECOG 0 with no major comorbidities

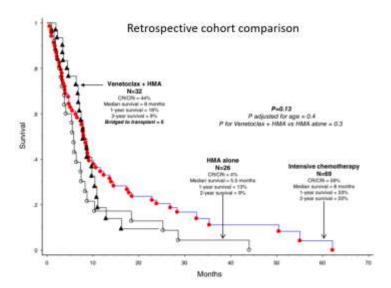
History of

- JAK2 V617F-mutant essential thrombocytosis (ET) since 2015
- Progression to myelofibrosis (MF) in 2020 managed with peg-interferon

14 months later, progression to AML with: WCC 12 × 10⁹/L, platelets 279 × 10⁹/L 28% bone marrow blasts G2-3 reticulin fibrosis with mild osteosclerosis on trephine

Secondary AML: post-ET-MF in blast phase

Cytogenetics: del(7q) *FLT3*-ITD, -TKD and *NPM1* negative


How would you treat this patient?

- 1. Induction chemotherapy (ie, 7+3 with cytarabine and anthracycline)
- 2. Venetoclax and azacitidine/low-dose cytarabine
- 3. Azacitidine monotherapy
- 4. Azacitidine and ruxolitinib, if accessible
- 5. Enroll onto a clinical trial
- 6. Palliation and supportive care

Use of venetoclax combinations in AML transformed from prior myeloproliferative neoplasm described

- Due to rarity, no large prospective studies
- Retrospective cohort comparisons with other agents or case series exist

Regime	Response	Adverse events	References
Venetoclax-azacitidine/decitabine (n = 32) Median VEN dose 200 mg daily	CR/CRi 44%	Febrile neutropenia/sepsis in 31% Degree of pancytopenia not graded	Gangat N, et al. Am J Hematol. 2021
Venetoclax-cytarabine (n = 2) VEN dose 600 mg daily	CR in 1 of 2	No major adverse events described	McKay J, et al. <i>Blood</i> . 2019 134(Suppl 1): abstract 5140

Question:

Are there any pertinent concerns with using a venetoclax-based regimen in a patient with AML from prior myelofibrosis?

Received induction chemotherapy 7+3 Tolerated chemotherapy well D28 response = 52% blasts REFRACTORY

Next step?

- 1. Venetoclax + HMA/LDAC
- 2. More extensive mutation testing to identify "druggable" targets
- 3. Intensive salvage chemotherapy (FLAG-AMSA)
- 4. Enroll onto clinical trial
- 5. Palliation and supportive care

Case presentation

Received induction chemotherapy 7+3 Tolerated chemotherapy well D28 response = 52% blasts REFRACTORY

Next step?

- 1. Venetoclax + HMA/LDAC
- 2. More extensive mutation testing to identify "druggable" targets
- 3. Intensive salvage chemotherapy (FLAG-AMSA)
- 4. Enroll onto clinical trial
- 5. Palliation and supportive care

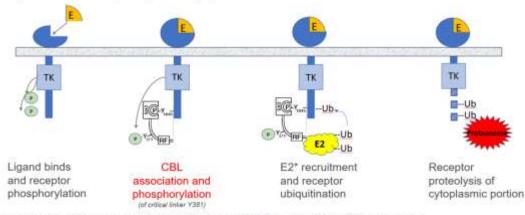
Discussion Question:

In this setting, what potential "druggable" targets would you be looking for?

Case presentation

• Myeloid NGS was performed

Mutation	Genotype	Amino acid change	VAF%
JAK2	c.1849G>T	p.Val617Phe	3%
TET2	c.2051_2061del AACAAAGAGCA	p.Gln684ArgfsTer5	38%
CBL	c.1111T>A	p.Tyr371Asn	34%


Discussion Question: Is there a mutation identified above that could be amenable to a targeted inhibitor?

CBL in myeloid neoplasms

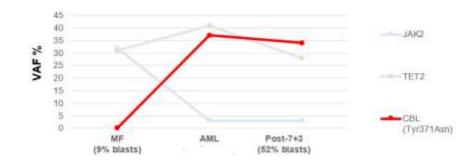
- Highest frequency in MDS/MPN overlap disorders (13%-20%)
- Primary myelofibrosis (~5%)
- In AML, described in 1.1%–5%
- Frequency in Australian AML population evaluated retrospectively in 90 AML samples with 4.44% CBL-mutant identified

Critical function of CBL: Receptor tyrosine kinase degradation

E3 ligases which ubiquitinate activated RTKs (such as FLT3) and DIRECT their trafficking through endosomal compartments → resulting in degradation by lysosomes

*E2 - ubiquitin conjugating enzyme. This enzyme transfers Ub to TK once cbl RING finger binds to it → recruits proteasome

CBL is a negative regulator of activated tyrosine kinase receptors


- Functions as E3 ligases that <u>ubiquitinate</u> and negatively regulate activated RTKs such as FLT3 receptor
- Directs trafficking through endosomal compartments and degradation by lysosomes

CBL mutation \rightarrow loss of ubiquitin ligase function \rightarrow maintenance of signaling function (oncogenic)

Progress

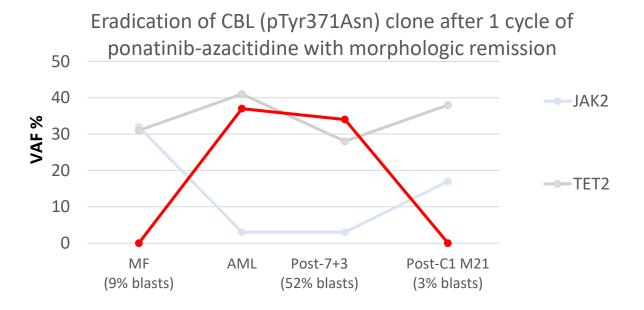
• Sequencing of prior stored DNA samples from this patient

Acquisition of a CBL clone (p.Tyr371Asn) on progression to AML

Mutant clones on NGS and VAF at serial timepoints

- Ba/F3.FLT3(wt).CBL.AY371 BaF3.FLT3(wt).CBL.Y371H Ba/F3.FLT3(wt).CBL.Ins (SK366) в C D 160 140 Control) (% of Control) of Control 140 120 160 Sorafenib 120 140 100 Gilteritinib 120 5 80 100 Midostaurin ž 60 8(Cell number Crenolanib numb Cell numbe 40 40 Quizartinib 20 Cell 20 20 PRT062607 10 100 0.01 0.1 10 100 Drug [nM] Drug [nM] Drug [nM]
- Assessment of preclinical rationale for use of a FLT3 inhibitor in this case

 Amendment of protocol to include *CBL*-mutant AML patients into an Australian study primarily evaluating FLT3 inhibitor ponatinib with azacitidine in *FLT3*-ITD AML mutant patients


FLT3-ITD or CBL AML either relapsed or refractory to or unfit for frontline intensive chemotherapy Azacitidine 75 mg/m² for 7 days Oral ponatinib 30 mg from days 5–25 28-day cycles

Challenges include

- 1. Overall rarity of CBL-mutant AML or low frequency of testing in the first place.
- 2. Identifying other potential combination partners with maximum antileukemic activity.

Back to the case

- Complete remission with incomplete recovery achieved <u>after 1 cycle</u> of ponatinib-azacitidine
- **Remains in complete remission at the end of cycle 13** with reversion to MPN disease phenotype

Summary

- Patients with AML transformed from MPN remain a therapeutic challenge. Variable practice with regard to upfront/relapsed-refractory treatment of AML transformed from prior myelofibrosis.
- 2. Importance of molecular profiling in these cases (including AML with antecedent CMML) to identify potential option for use of targeted inhibitors.
- *3. CBL* mutation is rare, and use of FLT3 inhibitor as a targeted inhibitor is not yet widespread practice beyond clinical trials; however, it is important to document individual/case-series responses in this difficult-to-treat group of patients.

Panel Discussion

All faculty

Educational ARS Questions

Naval Daver

Question 1 (AML)

Which patients were not included in the VIALE-A study:

- a) Patients >75 years of age
- b) Patients <75 years of age with ECOG PS 3
- c) Patients <75 years of age with significant cardiac co-morbidity
- d) Patients <75 years of age with significant pulmonary comorbidities
- e) Patients <75 years of age with adverse cytogenetics

Question 2 (AML)

Which of the following is not true regarding HMA + venetoclax in AML:

- a) The CR/CRi with HMA+VEN in the VIALE-A was >65%
- b) HMA+VEN improved median OS compared with HMA alone
- c) Lab or clinical TLS is not seen with HMA+VEN in AML
- d) The recommended daily dose of venetoclax (without azoles) was 400mg PO Qday in VIALE-A study
- e) Neutropenia is commonly seen with HMA+VEN regimen

Closing Remarks

Elias Jabbour

Thank You!

- >Thank you to our sponsors, expert presenters, and to you for your participation
- > Please complete the **evaluation link** that will be sent to you via chat
- >The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website within a few weeks
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website in our Ask the Experts section

THANK YOU!

abbvie

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 16 May 2021

Virtual Breakout: Adult Leukemia Patients

Strath APTITUDE HEALTH