

Recent Updates in
Pediatric and Adolescent
Young Adult (AYA) Acute
Lymphocytic Leukemia (ALL)

Webinar

Sponsors:

Platinum

Silver

Welcome and Introductions

Rupert Handgretinger, MD
Children's University Hospital and
Department of Hematology/Oncology
Germany

Agenda Outline

Time	Topic	Presenter
4.00 PM - 4.05 PM (EET) 5.00 PM - 5.05 PM (AST/TST) 5 min	Welcome and introductions	Rupert Handgretinger, MD
4.05 рм – 4.20 рм (EET) 5.05 рм – 5.20 рм (AST/TST) 15 min	 Current Paradigm and Long-Term Toxicities for Pediatric/AYA ALL Integration of innovative immunotherapies Role of MRD in treatment Long-term toxicities 	Franco Locatelli, MD
4.20 рм – 4.40 рм (EET) 5.20 рм – 5.40 рм (AST/TST) 20 min	Bispecifics for Pediatric/AYA ALL Review of trial results in pediatric/AYA ALL Role of MRD in research and treatment AYA considerations	Patrick Brown, MD
4.40 рм – 4.55 рм (EET) 5.40 рм – 5.55 рм (AST/TST) 15 min	 CAR T Cells for Pediatric/AYA ALL Benefits and risks of CAR-Ts and bispecifics Role of MRD in research and treatment AYA considerations 	Franco Locatelli, MD
4.55 PM - 5.20 PM (EET) 5.55 PM - 6.20 PM (AST/TST) 25 min	Questions to Experts	Rupert Handgretinger, MD

Current Paradigm and Long-Term Toxicities for Pediatric ALL

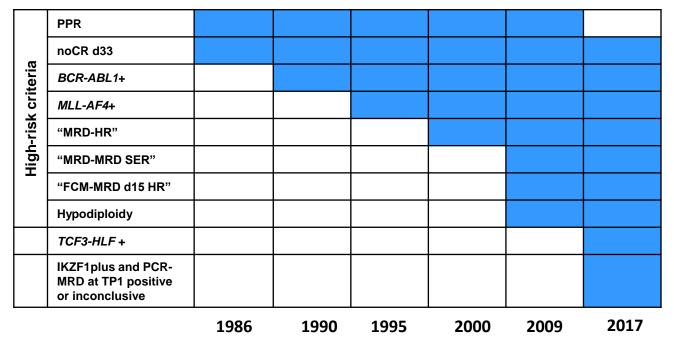
Franco Locatelli, MD

University of Rome IRCCS Ospedale Pediatrico Bambino Gesù of Rome Italy

Current Paradigm and Long-Term Toxicities for Pediatric ALL

Franco Locatelli, MD Università Sapienza, Roma

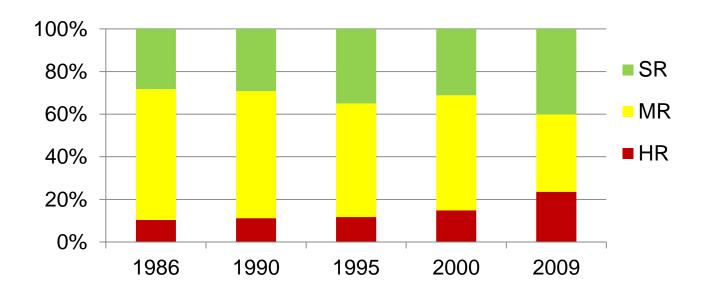
Dept. Pediatric Hematology/Oncology and Cell/Gene Therapy


IRCCS Ospedale Bambino Gesù, Roma, Italy

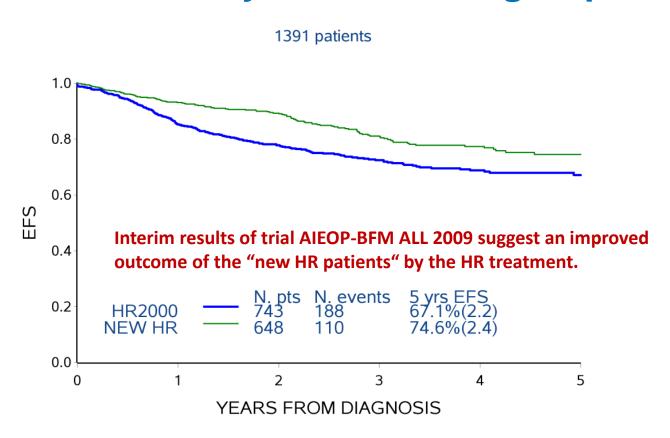
The essentials in pediatric ALL: Risk stratification and therapy

- Approximately 80% 5-year EFS can be achieved in unselected populations of pediatric patients
- The early treatment response in particular through MRD detection has been established to be the strongest prognostic factor
- New molecular subgroups have been described (eg, Ph-like or BCR/ABL-like pB-ALL;
 MPAL) and their prognostic role defined
- Translation of novel molecular findings into improved treatment outcome is under investigation in various trials
- Reduction of long-term toxicities, especially in adolescents, is a priority
- Novel treatment approaches based on immunotherapy; evidence regarding long-term benefit is yet to be established

Identification of new high-risk groups and reducing relapses in high-risk patients



Studies ALL-BFM


More and more patients with "intermediately unfavorable" outcome have been identified and shifted to the high-risk arm

Identification of new high-risk groups and reducing relapses in high-risk patients

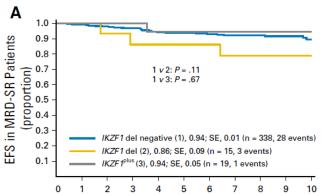
→ In AIEOP-BFM ALL 2009, the HR group comprised >20% of the patients

AIEOP-BFM ALL 2009 – Interim analysis of the HR group

IKZF1^{plus} Defines a New Minimal Residual Disease–Dependent Very-Poor Prognostic Profile in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia

Martin Stanulla, Elif Dagdan, Marketa Zaliova, Anja Möricke, Chiara Palmi, Giovanni Cazzaniga, Cornelia Eckert, Geertruy te Kronnie, Jean-Pierre Bourquin, Beat Bornhauser, Rolf Koehler, Claus R. Bartram, Wolf-Dieter Ludwig, Kirsten Bleckmann, Stefanie Groeneveld-Krentz, Denis Schewe, Stefanie V. Junk, Laura Hinze, Norman Klein, Christian P. Kratz, Andrea Biondi, Arndt Borkhardt, Andreas Kulozik, Martina U. Muckenthaler, Giuseppe Basso, Maria Grazia Valsecchi, Shai Izraeli, Britt-Sabina Petersen, Andre Franke, Petra Dörge, Doris Steinemann, Oskar A. Haas, Renate Panzer-Grümayer, Hélène Cavé, Richard S. Houlston, Gunnar Cario, Martin Schrappe, and Martin Zimmermann, for the TRANSCALL Consortium and the International BFM Study Group

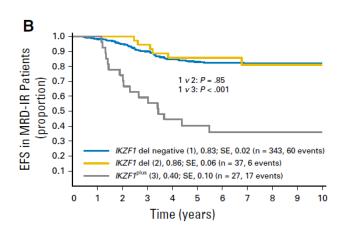
DOI: https://doi.org/10.1200/JCO.2017.

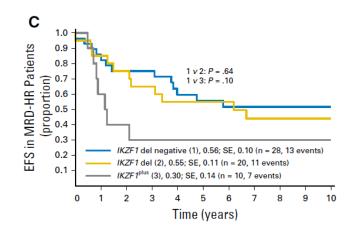

74.3617

New prognostic pattern: Definition of *IKZF1*^{plus}

- Deletion of IKZF1 and
 - PAX5 and/or
 - CDKN2A and/or
 - CDKN2B and/or
 - CRLF2 (PAR) and

Negativity for *ERG* deletion


IKZF1^{plus} and MRD: Impact on EFS



A: MRD – Standard risk (MRD neg at 5w and 12w)

B: MRD – Intermediate risk (MRD non SR/HR)

C: MRD – High risk (MRD pos $\geq 10^{-4}$ at 12w)

Perspectives for new trials in ALL

- Avoid additional toxic agents in most patients
- Utilize novel genetic approaches
- Improve risk stratification by wider combination of genetic factors and response (MRD)
- Introduce novel agents under controlled conditions

AIEOP-BFM ALL 2017

International collaborative treatment protocol for children and adolescents with acute lymphoblastic leukemia

Randomized phase III study conducted by the AIEOP-BFM study group

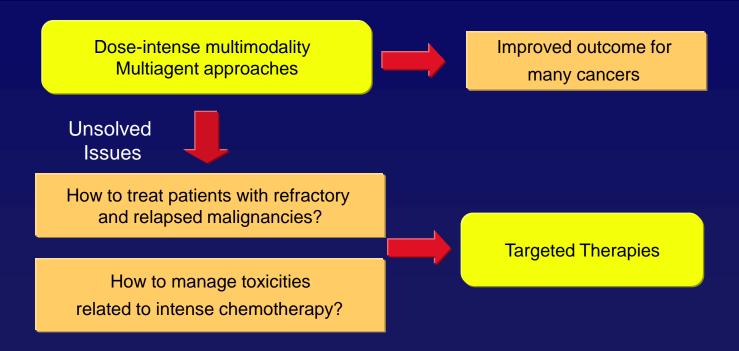
EudraCT Number: 2016-001935-12

Sponsor: Universitätsklinikum Schleswig-Holstein, Campus Kiel

New in trial AIEOP-BFM ALL 2017

- Modified workflow and timing in genetic diagnostics
- Genetic profiles and early MRD response may be combined to characterize previously not identified pts at high risk to relapse, eg, *IKZF1*^{plus}
- Randomized evaluation of blinatumomab in *de novo* ALL in all non-SR patients
- Selective addition of novel agents in HR group
- Limitation of pCRT (only if age ≥4y, only if CNS-3, and/or if T-ALL with WBC ≥100K)
- TDM for ASP activity only in reintensification (P-II, P-III, HR-1/2/3)

AIEOP-BFM ALL 2017 – Risk criteria for pB-ALL MR and HR


High Risk (HR)

- No complete remission on day 33 *or*
- Positivity for KMT2A-AFF1 or
- Positivity for TCF3-HLF or
- Hypodiploidy <45 chromosomes or
- FCM-MRD in BM on day 15 ≥10% and <u>not</u> ETV6-RUNX1 positive or
- IKZF1^{plus} and PCR-MRD at TP1 positive or inconclusive and <u>not</u> positive for ETV6-RUNX1, TCF3-PBX1 or KMT2A rearr. other than KMT2A-AFF1 or
- PCR-MRD at TP1 \geq 5×10⁻⁴ and positive <5×10⁻⁴ at TP2 (PCR-MRD SER)
- PCR-MRD at TP2 \geq 5×10⁻⁴ (PCR-MRD-HR)
- Age <1 year and any KMT2A rearrangement

Medium Risk (MR)

- No HR criteria and
- PCR-MRD either positive at TP1 and/or TP2 or PCR-MRD not evaluable

Why immunotherapy for childhood tumors?

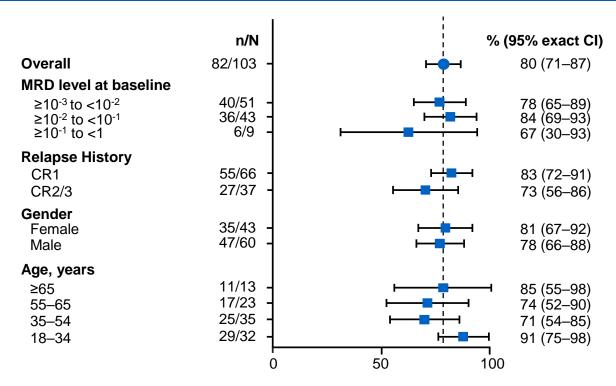
Immunotherapy for de novo pediatric ALL in trial AIEOP-BFM ALL 2017

 Anti-CD19/anti-CD3 (Blinatumomab/BiTE®): prospective evaluation in MR and HR patients

Allogeneic hSCT in predefined subgroups

Blinatumomab activity and toxicity in ALL

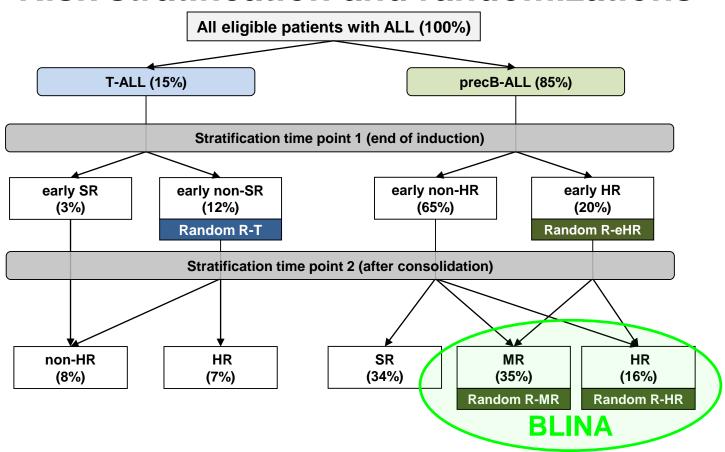
- Antileukemic activity demonstrated in both adults and children
- 80% MRD negativity in ALL patients treated in hematological CR but with molecularly-resistant disease
- Toxicity in patients without overt disease limited
- Toxicity profile different from chemotherapy

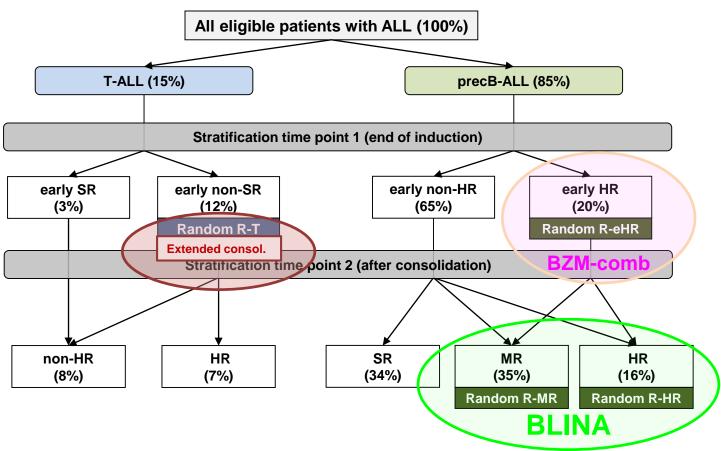

Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia

Arend von Stackelberg, Franco Locatelli, Gerhard Zugmaier, Rupert Handgretinger, Tanya M. Trippett, Carmelo Rizzari, Peter Bader, Maureen M. O'Brien, Benoît Brethon, Deepa Bhojwani, Paul Gerhardt Schlegel, Arndt Borkhardt, Susan R. Rheingold, Todd Michael Cooper, Christian M. Zwaan, Phillip Barnette, Chiara Messina, Gérard Michel, Steven G. DuBois, Kuolung Hu, Min Zhu, James A. Whitlock, and Lia Gore

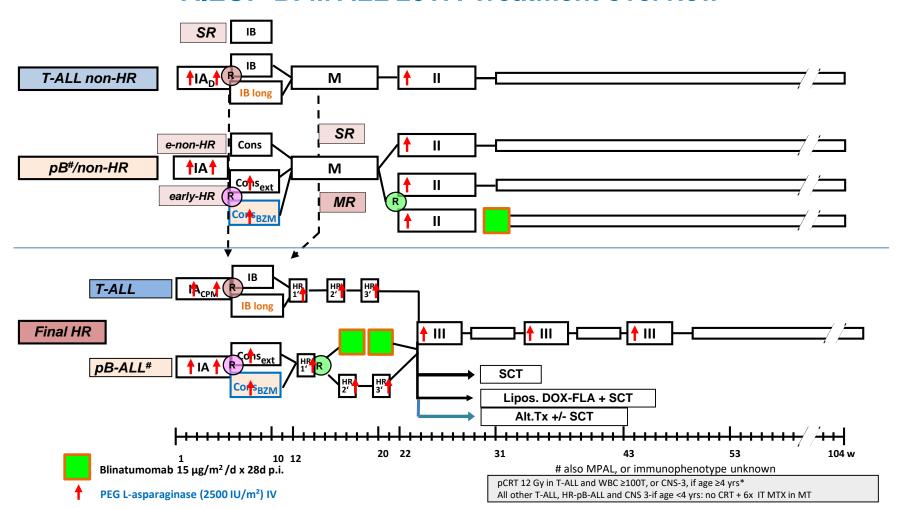
VOLUME 34 · NUMBER 36 · DECEMBER 20, 2016

Complete MRD response after cycle 1 by clinical characteristics

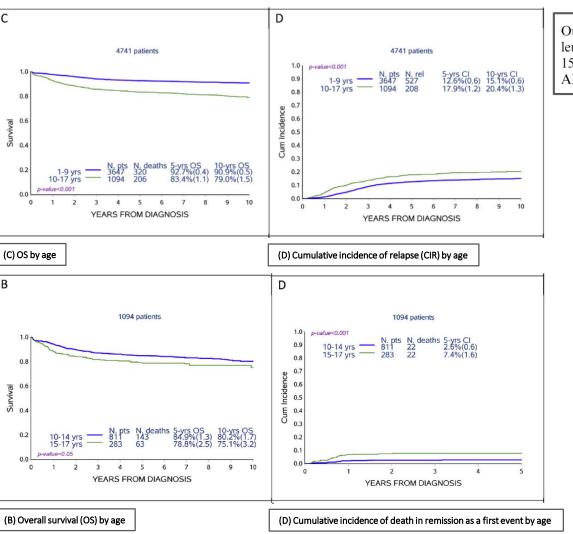

Phase 2 study MT103-203 (BLAST) in adults with MRD-positive B-precursor ALL


- Complete MRD response (primary endpoint, FAS[†]): 78% (88/113)
- Complete MRD response (efficacy set*): 80% (82/103)

Complete MRD response rate, % (95% CI)


AIEOP-BFM ALL 2017 – Risk stratification and randomizations

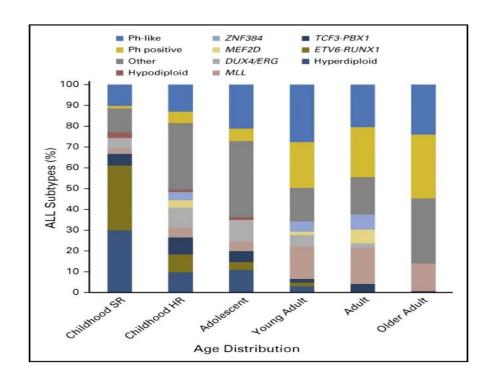
AIEOP-BFM ALL 2017 – Risk stratification and randomizations



AIEOP-BFM ALL 2017: Treatment overview

A brief focus on adolescents

Acute and late toxicities

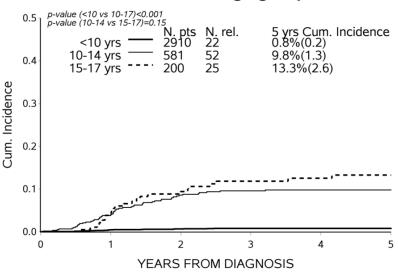

Outcome of adolescent patients with acute lymphoblastic leukaemia aged 10–14 years as compared with those aged 15–17 years: Long-term results of 1094 patients of the AIEOP-BFM ALL 2000 study

European Journal of Cancer 122 (2019) 61-71

ADOLESCENT AND YOUNG ADULT MALIGNANT HEMATOLOGY

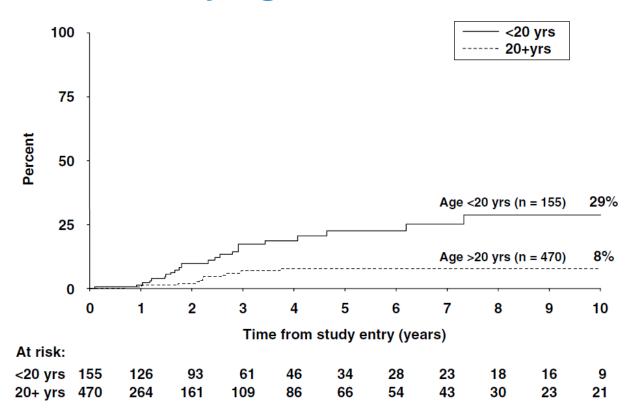
Acute lymphoblastic leukemia in adolescent and young adults: treat as adults or as children?

Nicolas Boissel^{1,2} and André Baruchel^{2,3}

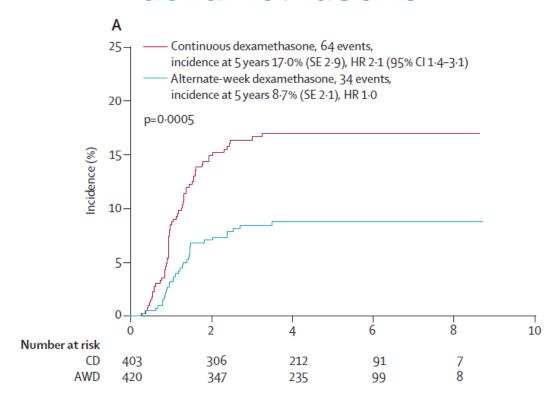

Late effects of treatment in ALL

- Second malignancies
- Osteonecrosis
- Neurocognitive sequelae
- Cardiomyopathy
- Insulin-dependent diabetes (pancreatitis)
- Chronic GvHD
- Chronic immune deficiency (CD19-directed CAR T cells)

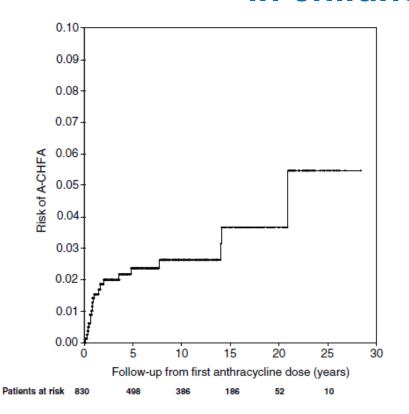
Correspondence: Osteonecrosis in childhood acute lymphoblastic leukemia: a retrospective cohort study of the Italian Association of Pediatric Haemato-Oncology (AIEOP)

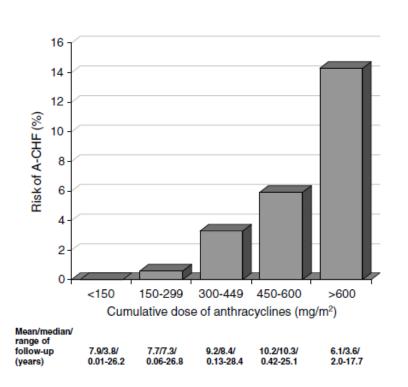

Parasole et al. *Blood Cancer Journal* (2018)8:115

a. Overall incidence in the age groups



Five-year cumulative incidence of ON according to patient's age at ALL diagnosis


Osteonecrosis by age in ALL: UKALL XII study



Osteonecrosis: continuous vs alternate-week dexamethasone

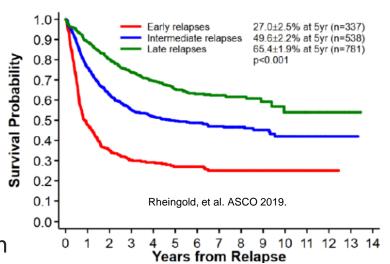
Risk of anthracycline-induced clinical heart failure in childhood cancer

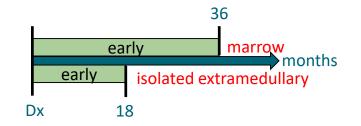
Bispecifics for Pediatric/AYA ALL

Patrick A. Brown, MD

Johns Hopkins University School of Medicine

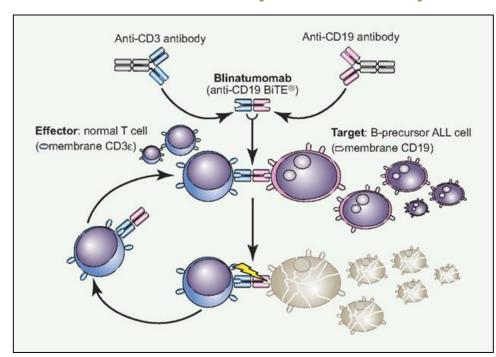
USA


Bispecifics for Pediatric/AYA ALL


Patrick Brown, MD

Associate Professor of Oncology, Johns Hopkins University
Director, Pediatric Leukemia Program, Sidney Kimmel Comprehensive Cancer Center
Vice Chair for Relapse, COG ALL Committee
Chair, NCCN ALL Guidelines Panel

Background

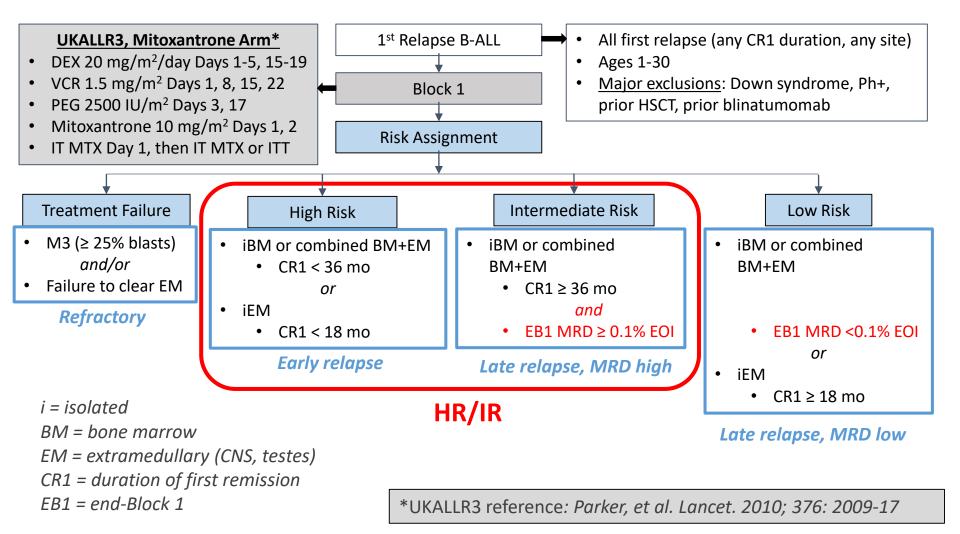

- Poor survival for 1st relapse B-ALL in children, adolescents and young adults (AYA), especially early relapses
- Standard treatment approach
 - Reinduction chemotherapy → 2nd remission
 - Consolidation
 - <u>Early relapse</u>: Intensive chemo → HSCT
 - Goal: MRD-negativity prior to HSCT
 - Late relapse
 - "MRD high": same as early
 - "MRD low": Intensive chemo → maintenance therapy

Blinatumomab (CD19 BiTE)

Adapted from Brown P. Blood. 2018;131:1497-1498

CHILDREN'S ONCOLOGY GROUP

- In multiple relapsed/refractory setting (pediatrics)
 - CR 35%-40%
 - MRD-negative CR 20%–25%


von Stackelberg et al. J Clin Oncol. 2016;34:4381-4389

- In MRD+ setting (adults)
 - 80% MRD clearance
 - 60% subsequent DFS (bridge to HSCT)

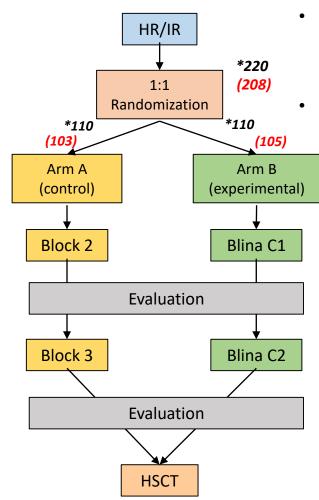
Gokbuget et al. Blood. 2018;131:1522-1531

Objective of COG AALL1331:

To determine if substituting blinatumomab for intensive consolidation chemotherapy improves survival in 1st relapse of childhood/AYA B-ALL

Stratifications

- Risk group (HR vs IR)
- For HR:
 - Site (BM vs iEM)
 - For BM: CR1 duration (<18 vs 18-36mo)


UKALLR3, Block 2*

- VCR, DEX week 1
- ID MTX, PEG week 2
- CPM/ETOP week 3
- IT MTX or ITT

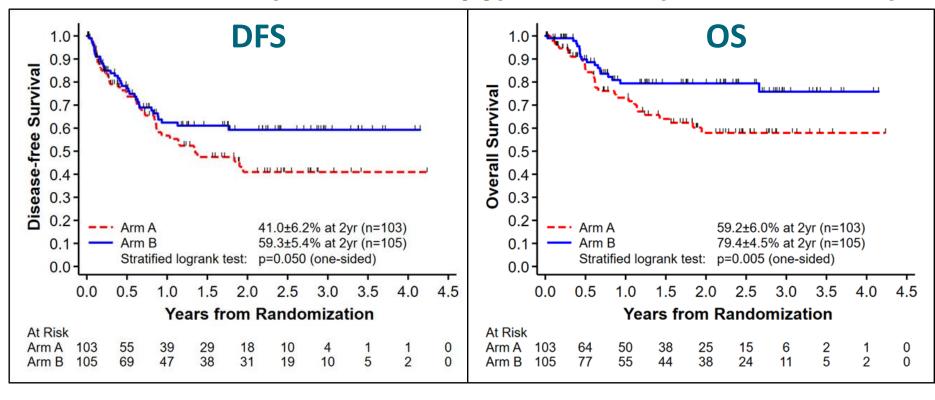
UKALLR3, Block 3*

- VCR, DEX week 1
- HD ARAC, Erwinia Weeks 1-2
- ID MTX, Erwinia Week 4
- IT MTX or ITT

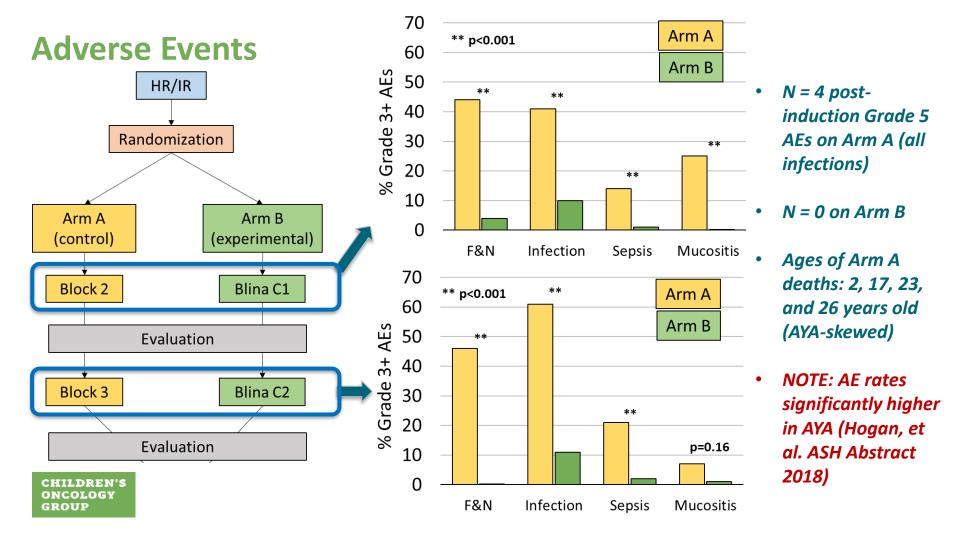
*UKALLR3 reference: Parker, et al. Lancet. 2010; 376: 2009-17

Endpoints

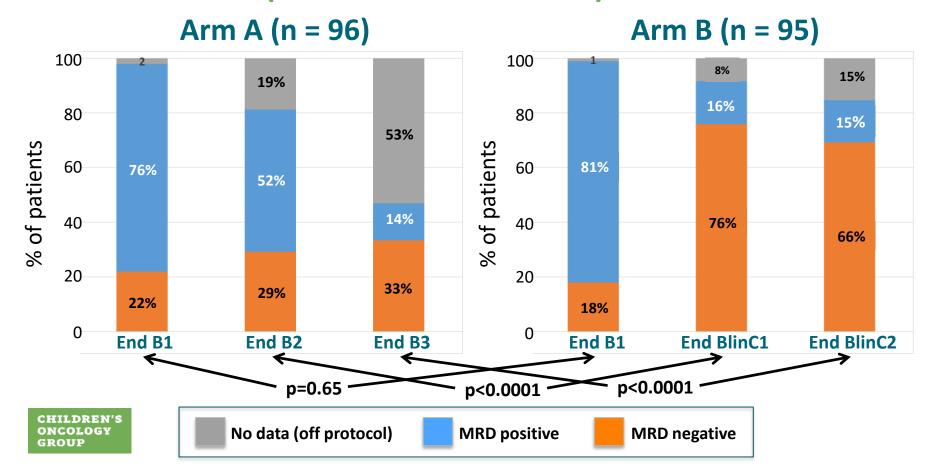
- Primary: DFS
- Other: OS, MRD response, ability to proceed to HSCT

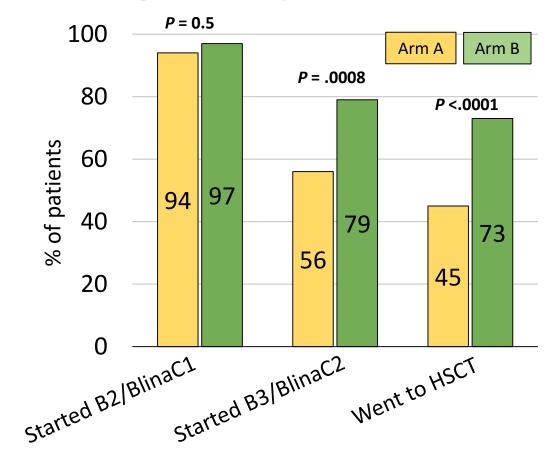

Sample size n=220 (110 per arm)

- Power 85% to detect HR 0.58 with 1-sided α =0.025
- Increase 2 yr DFS from 45% to 63%

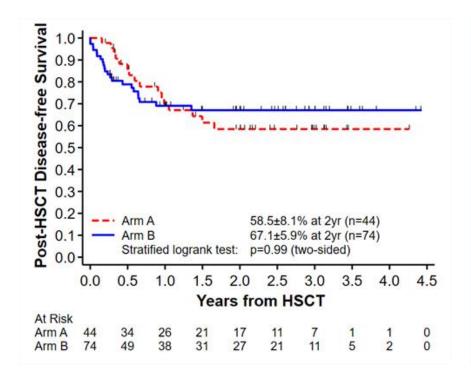

Blina C1 and Blina C2

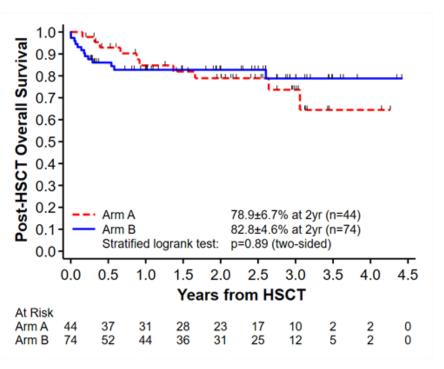
- Blinatumomab 15 ug/m2/day x
 28 days, then 7 days off
- Dex 5 mg/m2/dose x 1 premed (C1 only)
- First patient randomized
 Jan 2015
- Randomization halted Sep 2019 (95% projected accrual)


Survival: Arm A (chemotherapy) vs Arm B (blinatumomab)

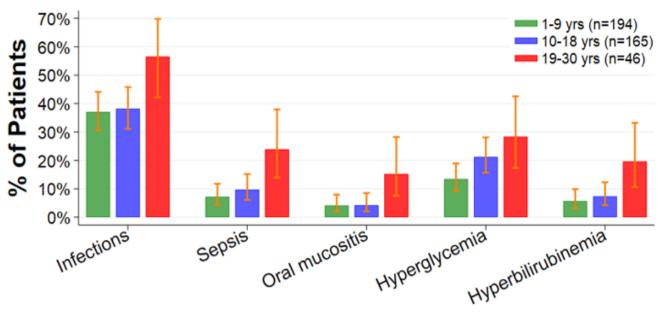


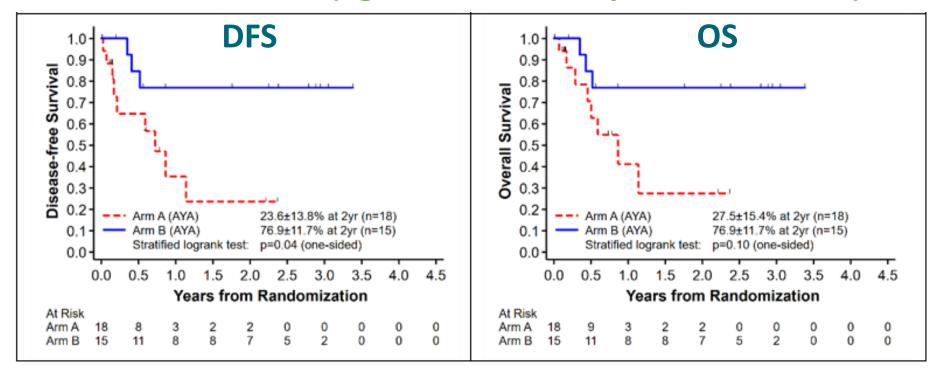
MRD Clearance (for iBM and BM + EM)




Proceeding to Transplant: Arm A vs Arm B

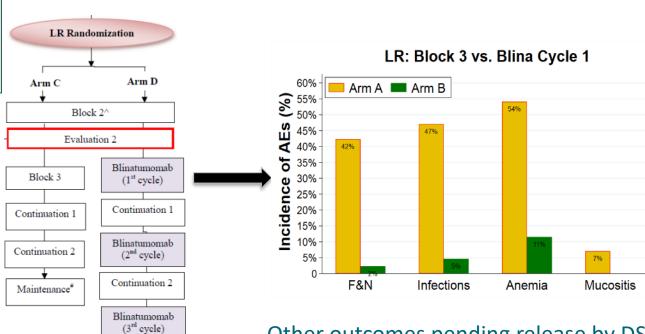
A significant contributor to the improved survival for Arm B (blina) vs Arm A (chemo) in HR/IR relapses may be the ability of blinatumomab to successfully bridge to HSCT


Post-HSCT Survival


Results AYA Patients (ages 18–30 at relapse)

Grade 3-5 Adverse Events Associated with age (p<0.05)

Results AYA Patients (ages 18–30 at relapse; N = 33/16%)


COG AALL1331: LR Randomization

Maintenance*

LR

- BM or combined ≥36 mo. MRD < 0.01% EQL
- IEM ≥18 mo

- Blinatumomab 15 $\mu g/m^2/day \times 28 days$, then 7 days off
- Dex 5 mg/m²/dose × 1 premed

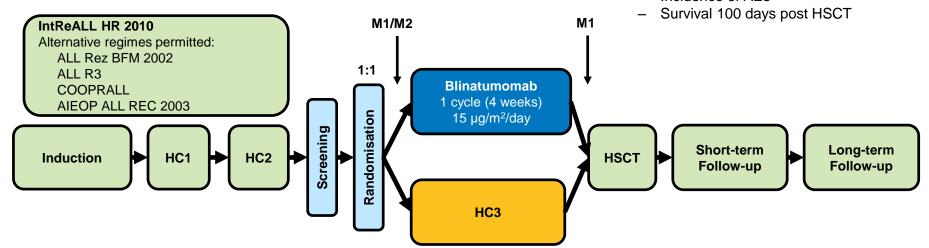
Other outcomes pending release by DSMC

CHILDREN'S ONCOLOGY GROUP

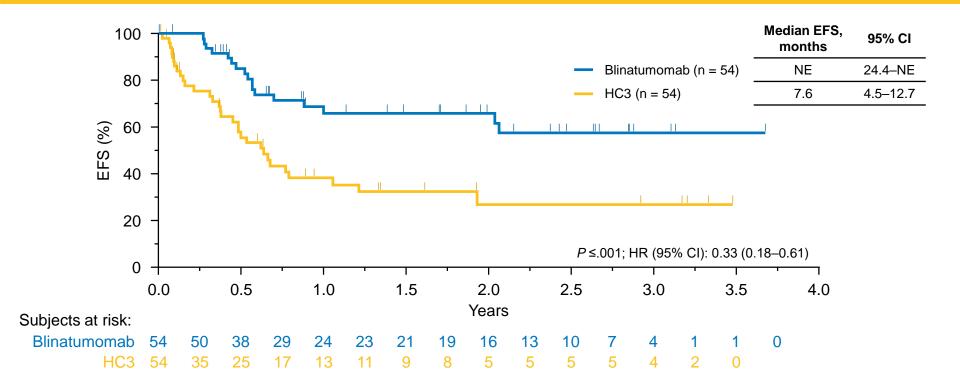
Amgen 20120215: Open-label, randomised, Phase 3 trial: 47 centres, 13 countries

Key eligibility criteria

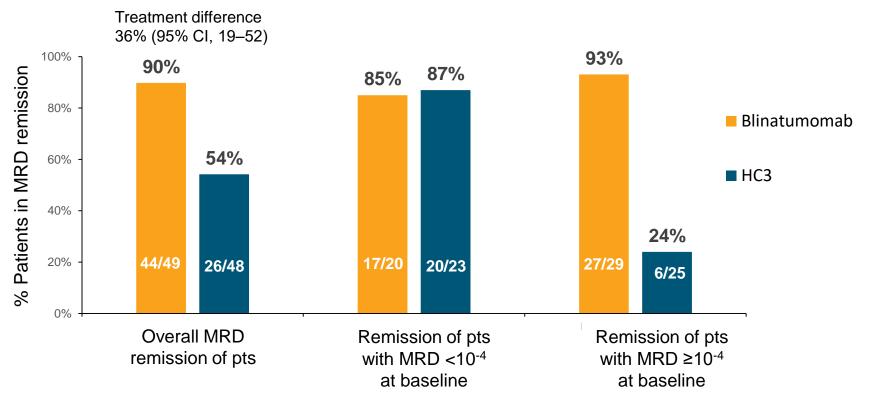
- Age >28 days < 18 years
- HR 1st relapse Ph


 BCP-ALL
- M1 or M2 marrow at randomization
- No CNS disease, unless treated before enrollment
- No clinically relevant CNS pathology

Stratification


- Age: <1 year, 1 to 9 years, >9 years
- BM status at end of HC2
 - M1 with MRD >10⁻³
 - M1 with MRD <10⁻³
 - M2

Endpoints

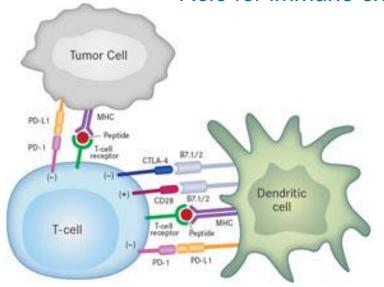

- Primary: EFS
- Secondary
 - OS
 - MRD response (end of blinatumomab or HC3)
 - Cumulative incidence of relapse
 - Incidence of AEs

Superior EFS in the Blinatumomab Arm

Superior MRD Remission by PCR in the Blinatumomab Arm (overall and by baseline* MRD status)

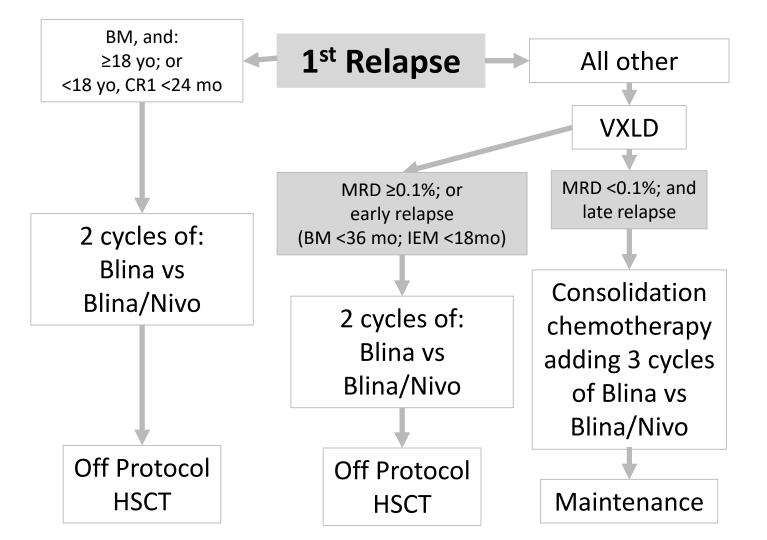
^{*}Baseline: end of HC2 (screening sample before enrollment). PCR, polymerase chain reaction.

Conclusions for Relapse Trials


- For children and AYA patients with HR/IR first relapse of B-ALL, blinatumomab is superior to standard chemotherapy as post-reinduction consolidation prior to HSCT, resulting in
 - Fewer and less-severe toxicities (especially AYA)
 - Higher rates of MRD response
 - Greater likelihood of proceeding to HSCT
 - Improved disease-free and overall survival
- Blinatumomab constitutes a new standard of care in this setting
- Future: Optimizing immunotherapy in relapsed ALL
 - Combination of blinatumomab and checkpoint inhibitors
 - Immunotherapy to replace or augment reinduction chemotherapy

What Happens When Blinatumomab Doesn't Work?

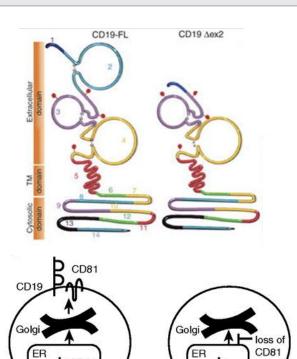
Endogenous T-cell "exhaustion"


Role for immune checkpoint inhibitors (eg, anti–PD-1)?

PD-1	PD-L1	CTLA-4
Nivolumab	Atezolizumab	Ipilimumab
Pembrolizumab	Avelumab	
	Durvalumab	

Reports of efficacy in patients relapsing after blina/CAR T cells

• Feucht, et al. *Oncotarget*. 2016;7(47):76902-76919

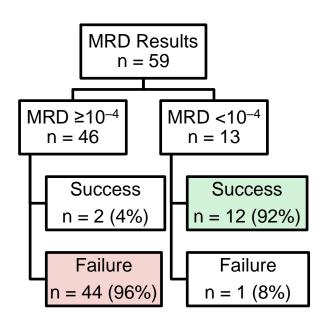


What Happens When Blinatumomab Doesn't Work?

- LATE: Antigen escape
 - CD19 splice variants¹
 - Defective CD19 membrane trafficking²
 - Lineage switching (esp. MLL-r)³

Multiantigen targeting?

NOTE: Incidence of CD19 escape lower with blina than with CD19 CAR, likely reflecting less-potent CD19 selection pressure



resistant pro-B-ALL (patient 3)

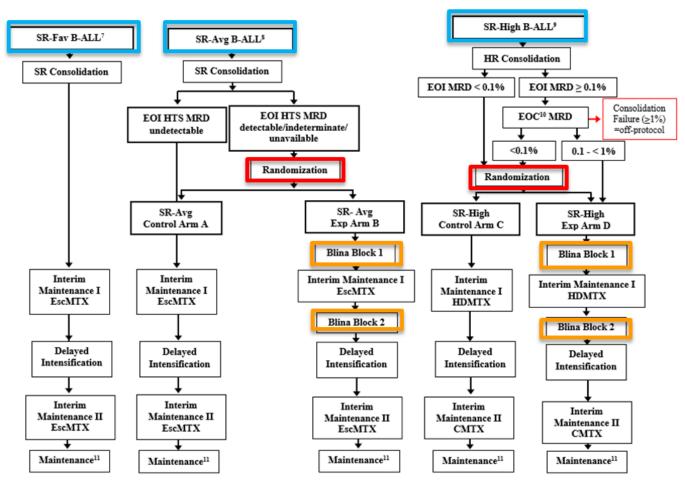
normal B-cell

Can We Predict When Blinatumomab Won't Work?

Overall, Day 15
 MRD results
 predicted best
 response after 2
 cycles with 95%
 accuracy (correctly
 in 56 of 59 patients)

- Study definitions
 - "Success" was defined as complete MRD response in CR (n = 14)
 - "Failure" was defined as anything other than success (n = 50)

CR, complete remissions; MRD, minimal residual disease


Parameter	Accuracy (n/N)	Accuracy (%)
Day 8 PB morphology (clearance of blasts)	19/40	49
Day 15 BM morphology (M1)	54/60	90
Day 29 BM morphology (M1)	42/51	84
Day 15 BM MRD (< 10 ⁻⁴)	56/59	95
Day 29 BM MRD (< 10-4)	42/49	86

NOTE: Day 8 PB is an especially poor predictor of subsequent response

As patients with MRD ≥10⁻⁴ at Day 15 could potentially pursue alternative therapies, such as dose escalation or combination therapies, Day 15 MRD results may allow personalized treatment and improve outcomes in pediatric patients with relapsed/refractory B-ALL

Moving Blinatumomab Into Upfront B-ALL

COG AALL1731: Post-Induction

CHILDREN'S ONCOLOGY GROUP

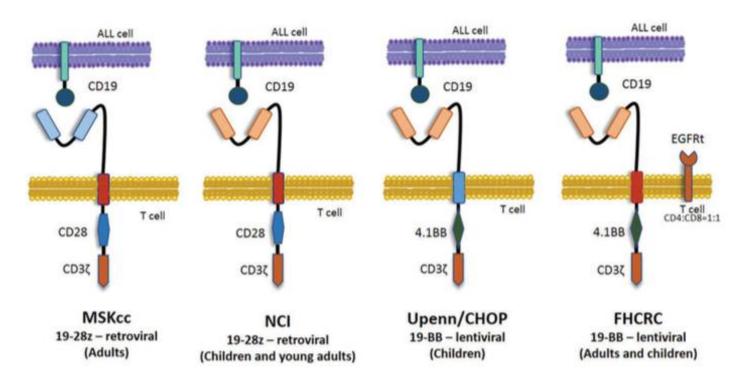
Blinatumomab: Questions and Discussion

- HSCT after MRD clearance with blinatumomab?
- Role of HTS (ClonoSEQ) MRD?
- Ability of checkpoint inhibition to safely enhance blinatumomab response?
- Earlier (pre-treatment) predictive biomarkers of blinatumomab response?
- Risk of prior blinatumomab exposure and CD19 escape after subsequent CD19 CAR T therapy?

CAR T Cells for Pediatric/AYA ALL

Franco Locatelli, MD

University of Rome IRCCS Ospedale Pediatrico Bambino Gesù of Rome Italy


CAR T Cells for Pediatric/AYA ALL

Franco Locatelli, MD
Università Sapienza, Roma
Dept. Pediatric Hematology/Oncology and Cell/Gene Therapy
IRCCS Ospedale Bambino Gesù, Roma, Italy

Published constructs of second-generation CD19 CARs for ALL

CAR design important for persistence and sustained efficacy

Published studies of second-generation CD19 CAR-T cells for R/R ALL

Reference	Treated Patients (n)	CAR Vector	Response + Consolidation
Maude SL, et al.	30	FMC63-41BB-ζ	27 CR; 22 MRD-negative 3 → allogeneic HSCT
N Engl J Med. 2014;371:1507-1517	(18 post-HSCT)	lentivirus	
Lee DW, et al.	20	FMC63-CD28-ζ	13 CR + 1 CRi; 12 MRD-negative
Lancet. 2015;385:517-528	(7 post-HSCT)	retrovirus	10 → allogeneic HSCT
Gardner RA, et al. <i>Blood.</i> 2017;129:3322-3331	43	FMC63-41BB-ζ	41 CR; 41 MRD-negative
	(28 post-HSCT)	lentivirus	11 → allogeneic HSCT
Maude SL, et al. <i>N Engl J Med.</i> 2018;378:439-448	75	FMC63-41BB-ζ	61 CR/CRi; 61 MRD-negative
	(46 post-HSCT)	lentivirus	8 → allogeneic HSCT
Turtle CJ, et al.	30	FMC63-41BB-ζ	29 CR; 25 MRD-negative
J Clin Invest. 2016;126:2123-2138	(11 post-HSCT)	lentivirus	13 → allogeneic HSCT
Park JH, et al.	53	SJC25C1-CD28-ζ	44 CR; 32 MRD-negative
N Engl J Med. 2018;378:449-459	(19 post-HSCT)	retrovirus	17 → allogeneic HSCT

251 patients treated: 85% CR, 76% MRD-negative

ELIANA study design

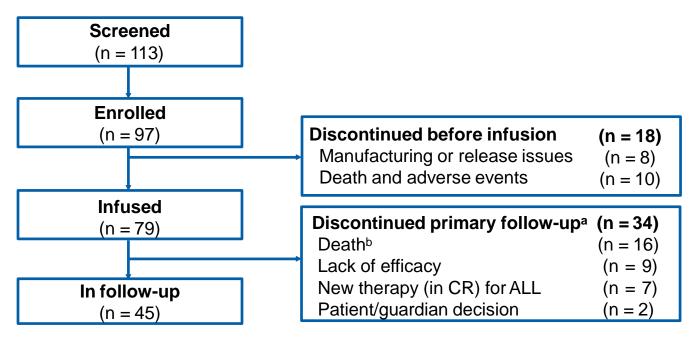
Key Eligibility Criteria

Inclusion

- R/R B-cell ALL, aged 3-21 years^a
- Bone marrow with ≥5% lymphoblasts

Exclusion

- Isolated extra-medullary disease relapse
- Prior CD19-directed or gene therapy


Endpoints

- Primary endpoint: Overall remission rate (CR + CRi) within 3 months
 - 4-week maintenance of remission
 - IRC assessment
- Secondary endpoints
 - MRD status, DOR, OS, EFS, cellular kinetics, safety

Study Treatment

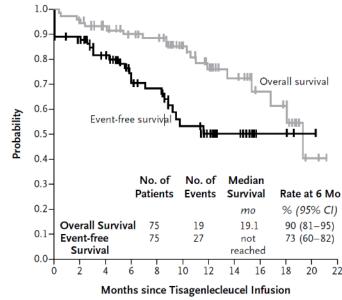
- Lymphodepleting chemotherapy prior to infusion
 - Fludarabine 30 mg/m² IV daily for 4 doses
 - Cyclophosphamide 500 mg/m² IV daily for 2 doses
- Tisagenlecleucel dose range (single infusion)
 - 0.2 to 5.0 × 10⁶ cells/kg for patients ≤50 kg
 - 0.1 to 2.5 × 10 8 cells for patients >50 kg

ELIANA patient disposition

Median time from infusion to data cut-off (13 April 2018) was 24.2 months (range, 4.5-35.1 months)

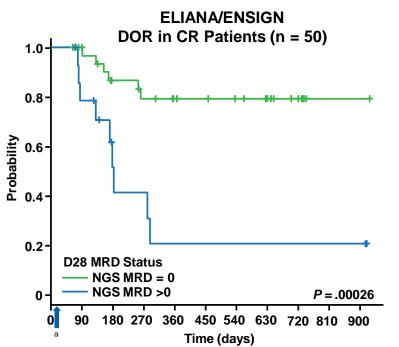
a Patients followed for survival

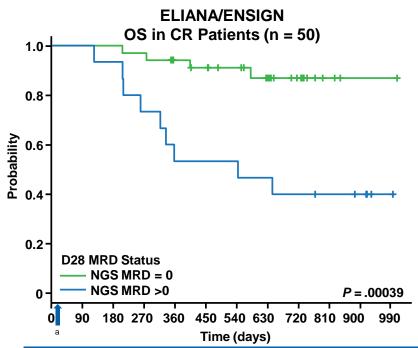
^b One death occurred while the patient was in remission; other deaths occurred after treatment failure or relapse.


Summary of ELIANA study

ORIGINAL ARTICLE

Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia


- 92 patients enrolled, 75 treated
- 73% Grade 3-4 AEs related to CAR T
- 81% → CR/CRi, all MRD negative; 66% in intention-to-treat analysis
- 1-year EFS at 50%, no relapses after this
- Demonstrates feasibility of delivery in multiple centers
- FDA approval for R/R pediatric ALL: August 2017
- Also approved in the EU, Canada, and Switzerland


Event-free and Overall Survival

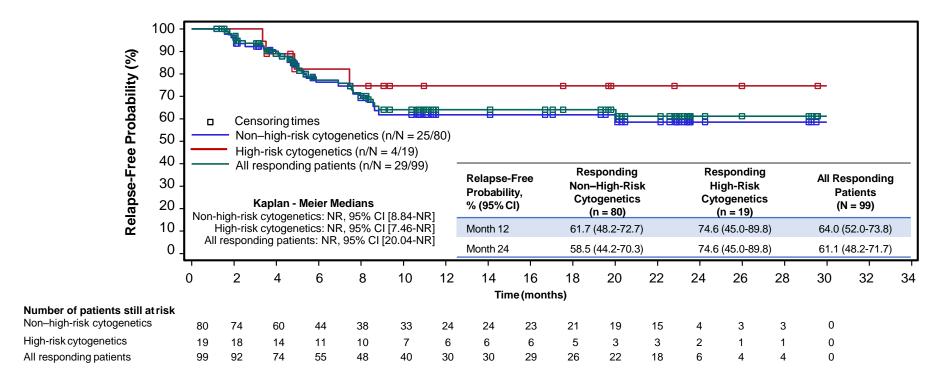
No. at Risk												
Overall survival	75	72	64	58	55	40	30	20	12	8	2	0
Event-free survival	75	64	51	37	33	19	13	8	3	3	1	0

Patients with no MRD detected in D28 bone marrow by NGS had superior outcomes

Pulsipher MA, et al. Molecular Detection of Minimal Residual Disease Precedes Morphological Relapse and Could be Used to Identify Relapse in Pediatric and Young Adult B-Cell Acute Lymphoblastic Leukemia Patients Treated with Tisagenlecleucel. ASH 2018 Abstract 1551

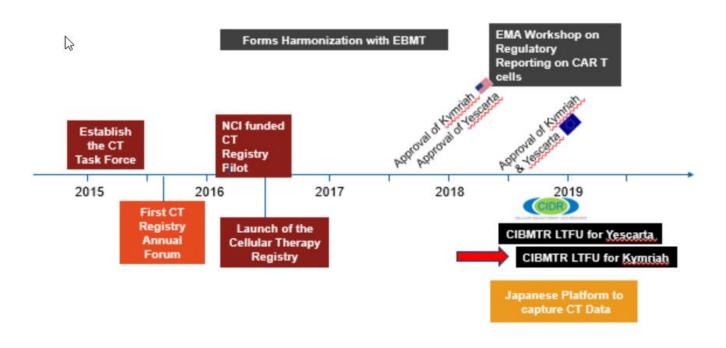
^a Tisagenlecleucel infusion at Day = 1.

Frequency of high-risk cytogenetic abnormalities in ELIANA and ENSIGN


29 of 137 infused patients had high-risk cytogenetic abnormalities

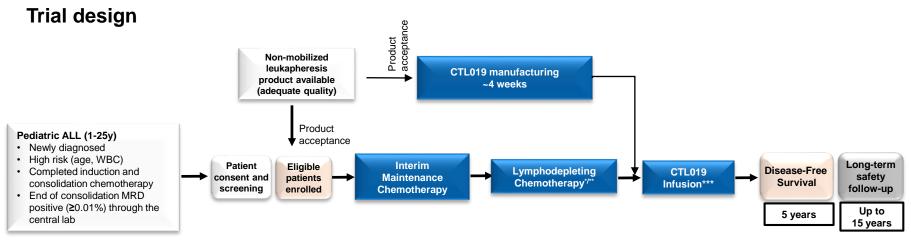
High-Risk Cytogenetic Abnormality	n
Hypodiploidy ^a	3
t(9;22)(q34;q11.2)/BCR-ABL1	5
KMT2A (MLL) rearrangement	4
Intrachromosomal amplification of chromosome 21 (iAMP21)	7
t(17;19)(q23;p13), encoding TCF3-HLF fusion	1
BCR-ABL1-like	6
CRLF2 rearrangement	2
TP53 mutation/deletion	1

High response rate in evaluable patients


	High-Risk Cytogenetics (n = 25)	Non–High-Risk Cytogenetics (n = 104)	All Patients (N = 129)
ORR, n (%)	19 (76.0)	80 (76.9)	99 (76.7)
CR	17 (68.0)	72 (69.2)	89 (69.0)
CRi	2 (8.0)	8 (7.7)	10 (7.8)
Responding patients with MRD-negative disease, a n/N (%)	18/19 (94.7)b	78/80 (97.5) ^c	96/99 (97.0)
HSCT post-infusion while in remission, n (%)	1 (4.0)	9 (8.6)	10 (7.8)

Median RFS was not reached in responding high-risk and non-high-risk cytogenetics subgroups

Development of the Cellular Therapy Registry

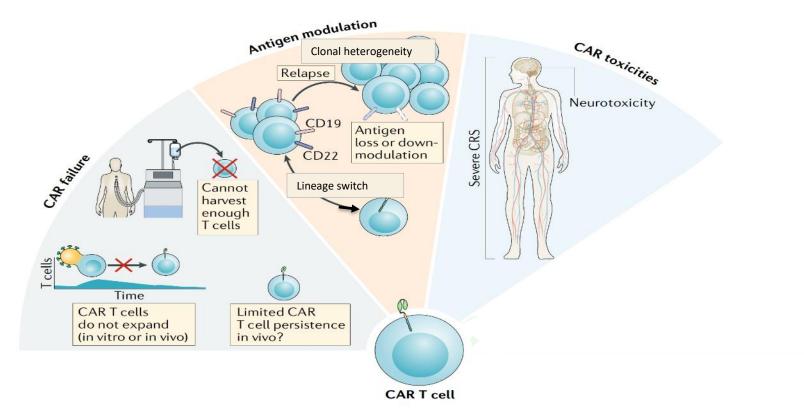


Acute lymphoblastic leukemia

ALL Characteristic	N (%)
No. of patients	144
Disease status at CT	
Primary induction failure	18 (12)
Morphologic CR	50 (35)
Disease relapse	76 (53)
≥5% blast in marrow prior to CT	45 (31)
Extramedullary disease prior to CT	20 (14)
Ph+ ALL	11 (8)
≥3 of lines of prior therapies	70 (49)
Prior allogeneic HCT	48 (33)

- Median time from diagnosis to CT –
 33 months
- CR rate was 87% and among patients with MRD assessment (N = 58), 98% were negative
- DOR at 6m 71%
- EFS at 6m 66%
- OS at 6m 91%

Study of efficacy and safety of tisagenlecleucel in HR B-ALL EOC MRD-positive patients (CASSIOPEIA)

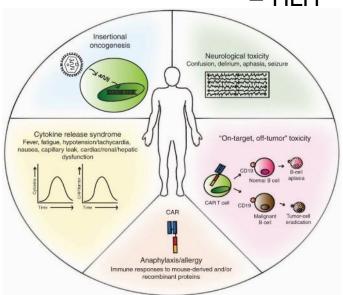

- *Lymphodepleting chemotherapy
- Fludarabine (25 mg/m² IV daily for 4 days)
- Cyclophosphamide (500 mg/m² IV daily for 2 days starting with the first dose of fludarabine)

**Second Infusion: If the patient satisfies certain criteria, a second infusion may be possible. The patient would then restart all visits starting from the LD chemo visit

***Single IV infusion

- ≤50 kg body weight: 0.2 to 5 × 10⁶ tisagenlecleucel transduced cells/kg
- >50 kg body weight: 0.1 to 2.5 × 10⁸ tisagenlecleucel transduced cells

Current limitations of CAR T cells


Peculiar toxicities associated with CD19 CAR T cells

"On-target, off-tumor" toxicities

B cell-aplasia

Non-antigen-specific toxicities

- Cytokine release syndrome (CRS)
- Neurotoxicity
- HLH

Overall safety and AEs of special interest within 8 weeks after infusion

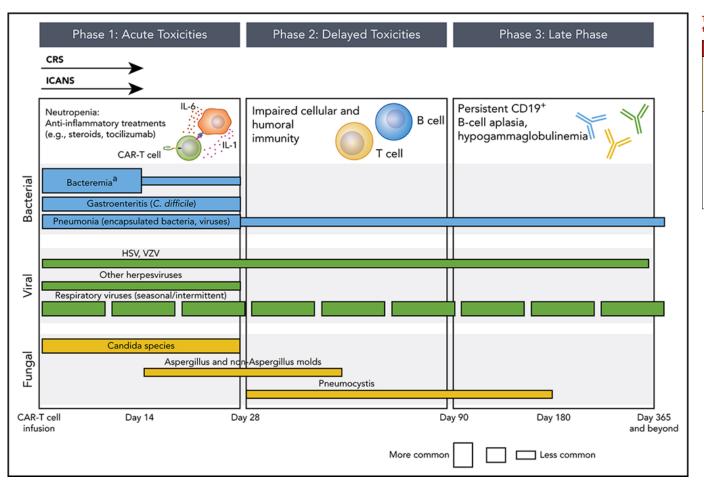
AESI ^a	Patients (N = 79)		
AESI	All Grades, %	Grade 3, %	Grade 4, %
Cytokine release syndrome	77	22	27
Infections	43	20	4
Cytopenias not resolved by day 28	42	18	18
Neurological events	39	13	0
Tumor lysis syndrome	5	5	0

- Majority of AEs occurred in the first 8 weeks after tisagenlecleucel infusion
- No cases of cerebral edema reported

^a Occurring within 8 weeks of tisagenlecleucel infusion.

^b Cytokine release syndrome was graded using the Penn scale. AESI, adverse events of special interest.

Cytokine release syndrome


	Patients Infused (N = 79)
Patients developed CRS, n (%)	61 (77)
Time to onset, median (range), days	3.0 (1-22)
Duration of CRS, median (range), days	8.0 (1-36)
ICU admission, n (%)	38 (48)
Anticytokine therapy, n (%)	31 (39)
Tocilizumab, n (%)	31 (39)
1 dose	18 (23)
2 doses	10 (13)
3 doses	3 (4)
Corticosteroids, n (%)	16 (20)
Hypotension that required intervention, n (%)	42 (53)
High-dose vasopressors, n (%)	19 (24)
Intubation, n (%)	12 (15)
Dialysis, n (%)	8 (10)

CRS was graded using the Penn scale and managed by a protocol-specific algorithm¹

Positive association of CRS grade and neurological event grade

CRS	N	Any-Grade Neurological Events, n (%)	Grade 3 Neurological Events, n (%)
None	18	4 (22)	1 (6)
Grade 1/2	23	7 (30)	1 (4)
Grade 3	17	7 (41)	2 (12)
Grade 4	21	13 (62)	6 (29)

- Grade 3 neurological events were more frequent with grade 4 CRS compared with grade 0-3 CRS (95% CI, –2% to 45%)
- Median onset of any-grade CRS (day 3) preceded median onset of neurological events (day 7)
- Grade 3 or 4 CRS and neurological events occur earlier than grade 1 or 2

Table 1. Infectious diseases screening prior to CD19-targeted CAR-T-cell therapy

Screening for infectious diseases

Required

HIV using the fourth-generation antigen/antibody combination HIV-1/2 immunoassay*

HBsAg, anti-HBs, and anti-HBc*

HCV IgG*

Consider†

HSV-1 and HSV-2 IgG‡

VZV IgG

CMV lgG

HTLV-1 lgG

Toxoplasma gondii IgG

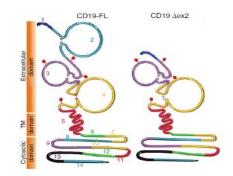
Treponema pallidum (syphilis) treponemal or nontreponemal test M tuberculosis skin test and/or blood interferon-y release assay§

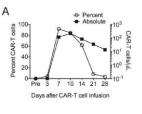
S stercoralis IgG or empiric treatment§

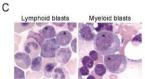
Table 2. Antimicrobial management and infection monitoring in patients with CRS and/or ICANS

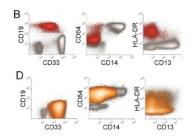
Management and monitoring

- Empiric broad-spectrum antibiotics according to fever and neutropenia guidelines*
- ID consultation should be obtained to guide escalation and de-escalation of antimicrobial therapy, particularly in high-risk patients†

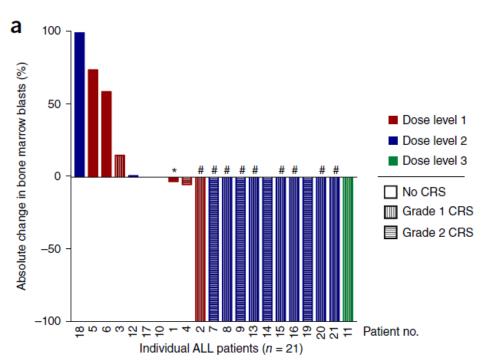

High-risk patients are those who meet any of the below criteria


- o Receiving >1 dose of tocilizumab
- o Requiring >3 days of ≥10 mg dexamethasone per day within a 7-day period
- o Receiving 1 or more doses of methylprednisolone ≥1 g per day o Receiving second-line agents for management of CRS or ICANS (eq. anakinra, siltuximab)
- Antibiotic de-escalation should be addressed on a daily basis with consideration for the type of immunosuppressive therapies that have been administered.
- Consider weekly CMV monitoring with serum polymerase chain reaction testing in high-risk patients who are CMV seropositive‡
- Consider using mold-active azole prophylaxis with posaconazole in high-risk patients


Mechanisms of leukemia escape after CAR T-cell therapy


Tumor evasion systems in BCP-ALL: CD19-negative relapses

- ➤ Loss of CAR-recognized epitope as a result of alternative exon splicing forms of the CD19 gene where exon 2 was lost (Sotillo et al. Cancer Discov. 2015)
- ➤ Altered trafficking of CD19 protein to the cell membrane of blast cells (Braig et al. *Blood.* 2016)
- ➤ Myeloid switch and loss of CD19 in patients with mixed-phenotype leukemia and MLL rearrangement (Gardner et al. Blood. 2016)
- ➤ Induction of resistance to CAR T-cell therapy by transduction of a single leukemic B cell (Ruella et al. Nat Med. 2018)

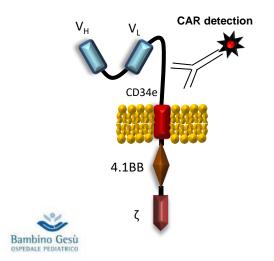

Characteristics of remission and relapse

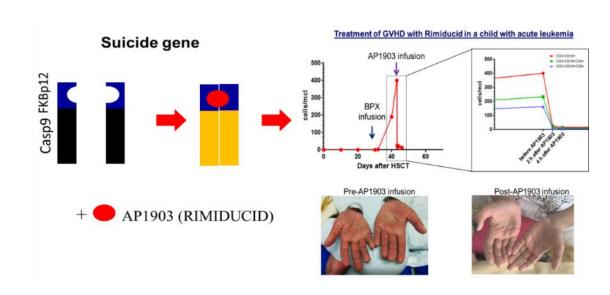
- Relapses tended to occur early (within the first year)
- Most relapses were CD19-negative:

CD19-Negative	CD19-Positive	Unknown CD19 Status
14/19 (73.7% of relapses)	3/19 (15.8% of relapses)	2/19 (10.5% of relapses)

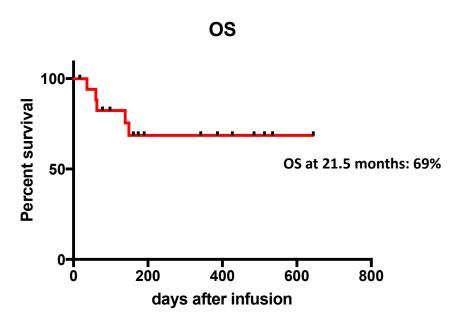
- All CD19-negative relapses occurred in the context of persistent B-cell aplasia
- One CR patient with B-cell recovery at 12 months is still in ongoing CR for 27 months at the time of data cut-off

CD22.CAR



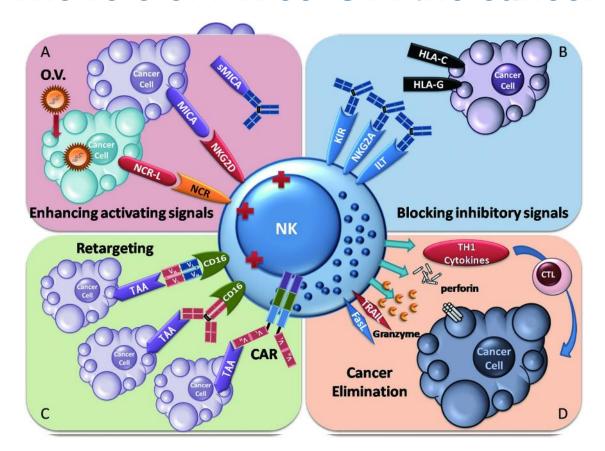

- Twenty-one children/young adults treated with CD22.4-1BB CAR T cells
- Antileukemia activity is dose-dependent
- CR obtained in 73% (11/15) of patients receiving ≥1×10⁶ CD22-CAR T cells/kg, including 5 of 5 patients with CD19dim or CD19- B-ALL
- Eight patients relapsed (reduced CD22 surface site density in 7 of them)

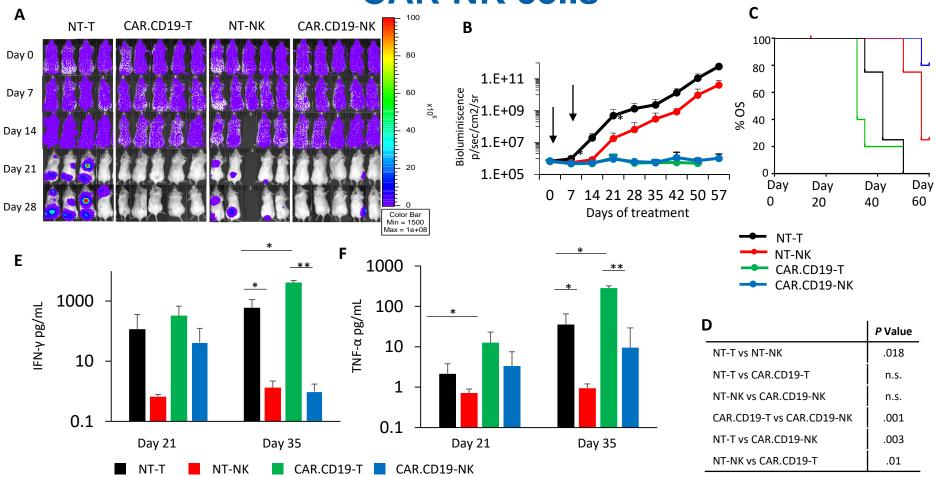
CAR.CD19 strategy at OPBG: Second-generation CAR targeting CD19


CAR.CD19-4.1BB-ζ

Outcome of ALL patients treated with CD19-CAR T cells at OPBG

▶ Fourteen out of the 17 (82%) patients with Bcp-ALL infused obtained CR with MRD negativity after DP infusion




Role of CAR T cells in AYA

- Commercially available CAR T-cell products are approved for patients until 25 years of age
- No data are available on safety and efficacy outcome of CAR T cells in AYA as compared with children below the age of 13 years
- Considering the relevant toxicities and the risk of treatment-related fatality observed in AYA with intensive chemotherapy protocols and HSCT, CAR T cells could represent an attractive option to be considered for relapsed/refractory patients

The role of NK cells in the cancer

CAR NK cells

Quintarelli C, et al. Leukemia. 2020.

Questions to the Experts

Rupert Handgretinger, MD
Children's University Hospital and
Department of Hematology/Oncology
Germany

Thank you to all participants!

And thank you to Amgen and Adaptive Biotechnologies for their sponsorship

- > Please complete the evaluation form using the provided link
- To obtain a copy of the meeting slides and access other educational materials, please visit the GLA website at: <u>www.globalleukemiaacademy.com</u>
 - Meeting materials will be available in approximately 1 week
- If you have a question for any of our experts that was not answered today, you can submit it through the GLA website at: https://globalleukemiaacademy.com/ask-the-expert/

