

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 23–24 October 2020

Welcome and meeting overview

Elias Jabbour and Franco Locatelli

S APTITUDE HEALTH

Meeting co-chairs

Elias Jabbour, MD University of Texas MD Anderson Cancer Center Houston, TX, USA

Rob Pieters, MD, PhD

Princess Máxima Center for Pediatric Oncology University of Utrecht, The Netherlands

Josep Ribera, MD

Catalan Institute of Oncology University Hospital Germans Triasi Pujol Badalona, Spain

Philippe Rousselot, MD, PhD

University of Versailles Saint-Quentin-en-Yvelines, France

Dieter Hoelzer, MD, PhD University of Frankfurt, Germany

Patrick Brown, MD Johns Hopkins University Baltimore, MD, USA

Franco Locatelli, MD, PhD University of Rome, IRCCS Ospedale Pediatrico Bambino Gesù, Italy

Global Leukemia Academy

Objectives of the program

Understand current treatment patterns for ALL including incorporation of new technologies Uncover when genomic testing is being done for ALL, and how these tests are interpreted and utilized Understand the role of stem cell transplantation in ALL as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring ALL Gain insights into antibodies and bispecifics in ALL: what are they? When and how should they be used? Where is the science going?

Discuss the evolving role of ADC therapies in ALL Review promising novel and emerging therapies in ALL

Explore the impact of COVID-19 on current patient treatment

Virtual plenary sessions (Day 1)

Time CET	Title	Speaker/Moderator	
16.00-16.10	Welcome and meeting overview	Elias Jabbour, Franco Locatelli	
16.10-16.25	Review of prognostic value of MRD in ALL	Elias Jabbour	
16.25-16.40	How and when to check for MRD in ALL, including CR1 and CR2	Josep-Maria Ribera	
16.40-16.55	Genetic variants in ALL – Ph+ and Ph-like	Philippe Rousselot	
16.55–17.15	AYA ALL patients – what is the current treatment approach for this diverse patient population?	<i>Moderator</i> : Franco Locatelli <i>Presenter</i> : Rob Pieters	
17.15–17.40	Bispecific T-cell engagers as post-reinduction therapy improves survival in pediatric and AYA B-ALL	<i>Moderator:</i> Franco Locatelli <i>Presenter:</i> Patrick Brown	
17.40-18.00	Break		
18.00–18.45	 Panel discussion on the role of HSCT Pros and cons of transplantation (10 min) Role of transplant in MRD+ population (10 min) Discussion and voting (25 min) 	<i>Moderator</i> : Eli as Jabbour <i>Presenters:</i> Patrick Brown Josep-Maria Ribera All faculty	
18.45 - 19.25	Debate on CD19-targeted approaches • CAR T (10 min) • Bis pecifics (10 min) • Dis cussion and voting (20 min)	<i>Moderator</i> : Franco Locatelli <i>Presenters:</i> Josep-Maria Ribera Elias Jabbour <i>All faculty</i>	
19.25 – 19.55	 Emerging data and the management of ALL patients during COVID-19 Presentation (10 min) Panel discussion (20 min) 	<i>Moderator</i> : Franco Locatelli <i>Presenter:</i> Elias Jabbour <i>All faculty</i>	
19.55 - 20.00	Session close	Elias Jabbour, Franco Locatelli	

Virtual breakout – adult ALL patients (Day 2)

Time CET	Title	Speaker
18.00 - 18.15	 Session open Educational ARS questions for the audience 	Elias Jabbour
18.15 – 18.35	 Optimizing first-line therapy in adult and older ALL – integration of immunotherapy into frontline regimens Presentation (15 min) Q&A (5 min) 	Elias Jabbour
18.35 - 18.55	 Current treatment options for relapsed ALL in adult and elderly patients Presentation (15 min) Q&A (5 min) 	Dieter Hoelzer
18.55 – 19.45	 Case-based panel discussion Management of long- and short-term toxicities and treatment selection in adult and elderly patients Case 1 (15 min) Case 2 (15 min) Discussion (20 min) 	<i>Case 1</i> : Philippe Rousselot <i>Case 2</i> : Josep-Maria Ribera <i>Faculty panel</i> : E. Jabbour, D. Hoelzer, J.M. Ribera, P. Rousselot
19.45 – 20.00	 Session close Educational ARS questions for the audience 	Elias Jabbour

Virtual breakout – pediatric ALL patients (Day 2)

Time CET	Title	Speaker
18.00 – 18.15	 Session open Educational ARS questions for the audience 	Franco Locatelli
18.15 – 18.45	 First-line treatment of pediatric ALL Presentation (15 min) Q&A (15 min) 	Rob Pieters
18.45 – 19.15	 Current treatment options for relapsed ALL in children, including HSCT and COVID- 19 considerations Presentation (15 min) Q&A (15 min) 	Franco Locatelli
19.15 – 19.45	 Bispecific T-cell engagers for pediatric ALL Presentation (15 min) Q&A (15 min) 	Patrick Brown
19.45 – 20.15	 Case-based panel discussion Management of long- and short-term toxicities and treatment selection in pediatric patients Overview of long-term toxicities (10 min) Patient case presentation (10 min) Discussion (10 min) 	Rob Pieters Patrick Brown <i>Faculty panel:</i> R. Pieters, F. Locatelli, P. Brown
20.15 – 20.30	 Session close Educational ARS questions for the audience 	Franco Locatelli

Introduction to the voting system

Elias Jabbour

Which languages do you speak? (multiple-choice)

- a) English
- b) German
- c) Spanish
- d) French
- e) Russian
- f) Mandarin
- g) Arabic

How many patients with ALL are you currently following?

- a) 0
- b) 1–5
- **c)** 6–15
- d) 16–20
- <mark>e)</mark> ≥21

How do you assess for minimal residual disease (MRD)?

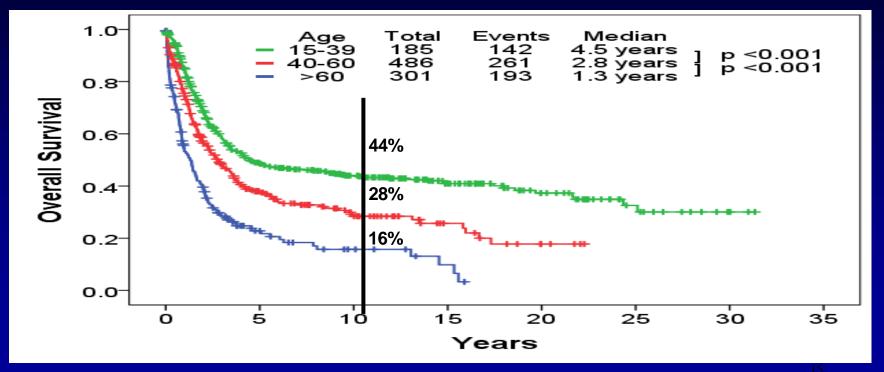
- a) We do not check for MRD
- b) Multicolor flow
- c) Molecular PCR
- d) Next-generation sequencing platform

Review of prognostic value of MRD in ALL

Elias Jabbour

Review of Prognostic Value of MRD in ALL

Elias Jabbour, MD Professor of Medicine Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX


Autumn 2020

Conflict of Interest Disclosure

- Research grants
 - Pfizer, Takeda, Amgen, AbbVie, Novartis
- Consultancy and advisory roles
 - Pfizer, Takeda, Amgen, AbbVie, BMS

Survival of 972 Adults With Ph– ALL

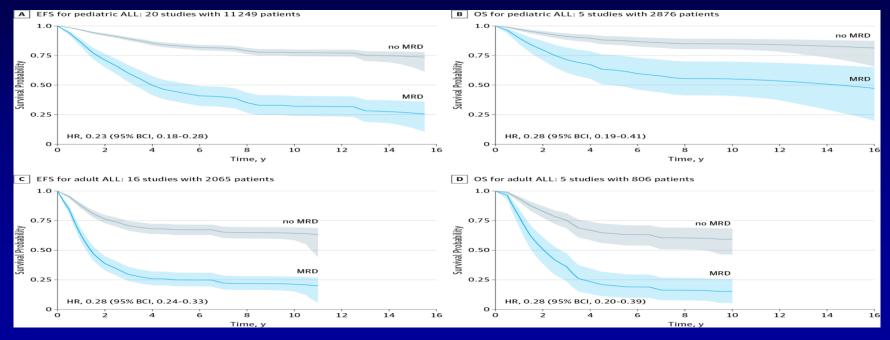
• 972 pts Rx 1980–2016; median F/U 10.4 years

Minimal (measurable) Residual Disease

- Concept first described 40 years ago
- Main methods are flow cytometric detection of leukemic immunophenotype (LIP), detection of ALL fusion transcripts, and detection of antigen receptor rearrangements commonly to 10⁻⁴ (1:10,000 cells)
- Timing of testing varies widely
- Important interaction with leukemic subtype and genomic alterations
- Role of more-sensitive tests, and with newer treatment approaches less clear

When do you assess for MRD?
a) Monthly
b) At CR
c) At 3 months from induction
d) At CR and 3 months from induction, and every 3 months thereafter
e) I never check for MRD

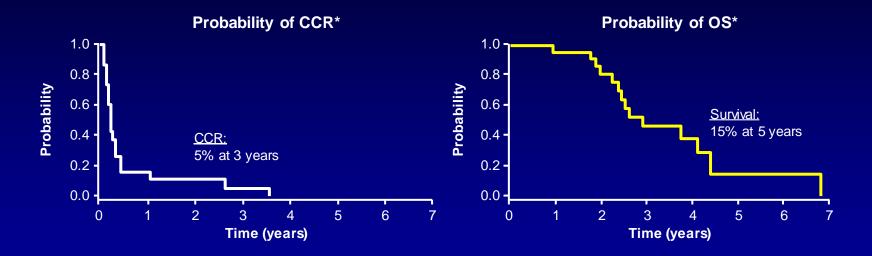
How to Define the Risk?


- → Can be defined **BEFORE** treatment
- ➔ And/or redefined DURING treatment
 - MRD, which can possibly better define transplant candidates
 - Steroid pretreatment

Treatment of ALL Before the MRD Era: High CR Rates but Relapse Is Common

Study	Ν	Median Age, Year (range)	Ph+,%	T Cell, %	CR, %	DFS , %
MRC/ECOG E2993	1826	31 (15-65)	19	20	91	38 at ≥3 yr
CALGB 19802	163	41 (16-82)	18	-	78	35 at 3 yr
GIMEMA ALL 0288	778	27.5 (12.0-60.0)	22	22	82	29 at 9 yr
GMALL 05/93	1163	35 (15-65)	24	24	83	35-40 at 5 yr
GOELAMS 02	198	33 (15-59)	22	21	86	41 at 6 yr
HyperCVAD	288	40 (15-92)	17	13	92	38 at 5 yr
JALSG-ALL93	263	31 (15-59)	22	21	78	30 at 6 yr
LALA-94	922	33 (15-55)	23	26	84	36 at 5 yr

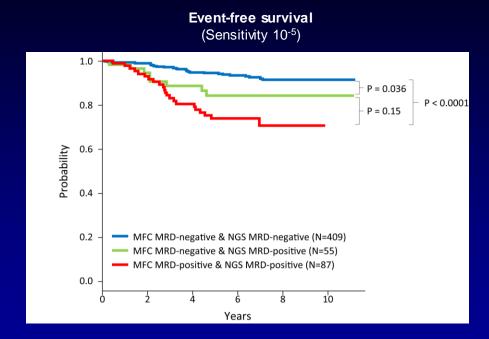
MRD in ALL


- Meta-analysis of 39 studies (pediatric and adult), including 13,637 patients with all subtypes
- Prognostic impact of MRD clearance consistent across therapies, MRD method, timing, level of cutoff, and subtypes

Berry DA. JAMA Oncol. 2017;3(7):e170580.

Molecular Relapse (MRD– → MRD+) Is Predictive of Cytologic Relapse in Patients in CR1

Probability of continuous CR and survival in n = 24 adult ALL patients in first CR but with molecular relapse

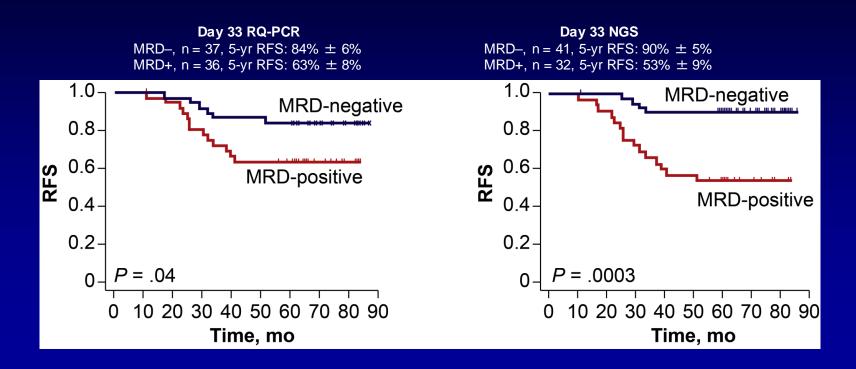

Conversion from MRD– to MRD+ preceded hematologic relapse by a median 2.6 months and predicted poor survival

*Patients with SCTin CR1 excluded. Gökbuget N, et al. *Blood.* 2012;120:1868-1876.

MRD Methods

Method	Sensitivity	Advantages	Disadvantages	
Flow cytometry for "difference from normal"	~10 ⁻⁴	 Fast Relatively inexpensive Potential to detect phenotypic shifts 	 Confounders: increased benign B-cell precursors during marrow recovery; potential phenotypic shifts Requires significant technical expertise Limited standardization (though attempts in progress) 	
RQ-PCR for IGH/TCR gene rearrangements	~10 ⁻⁴ to 10 ⁻⁵	 Sensitive Well standardized with consensus guidelines 	 Time consuming and labor intensive Requires significant technical expertise May not detect small subclones at diagnosis Expensive 	
RQ-PCR for recurrent gene fusions	~10 ⁻⁴ to 10 ⁻⁵	 Sensitive Uses standard primers utilized for diagnostic purposes 	 Applicable to <50% of ALL cases Limited standardization 	
Next-generation sequencing	~10 ⁻⁶	 Very sensitive Fast (uses consensus primers) Potential to track small subclones and clonal evolution 	 Requires complex bioinformatics Minimal clinical validation Expensive 	

NGS Identified Patients With Improved EFS



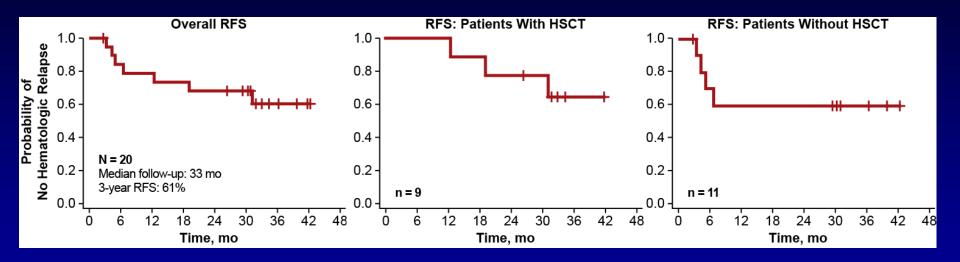
EFS was significantly worse in the NGS MRD+/flow cytometry MRD– group than patients who were MRD– by both methods (P = .036). Six patients were identified as NGS MRD– and MFC MRD+.

NGS, next-generation sequencing; MFC, multiparameter flow cytometry. Wood B, et al. *Blood.* 2018; 131(12):1350-1359.

Comparison: NGS With RQ-PCR

Prognostic value of d+33 MRD (pediatric ALL, BFM-based treatment)

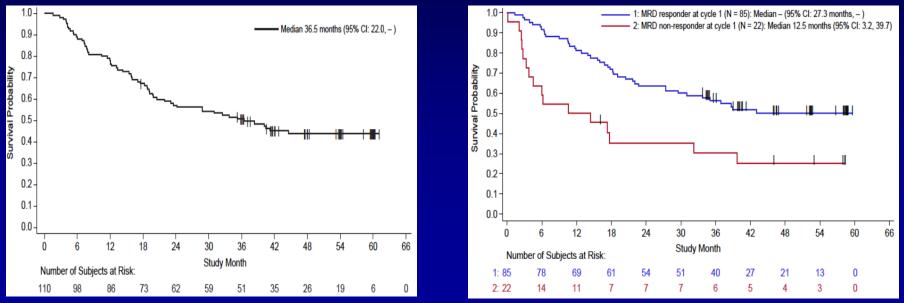
Next-Generation Sequencing vs FMC MRD in ALL

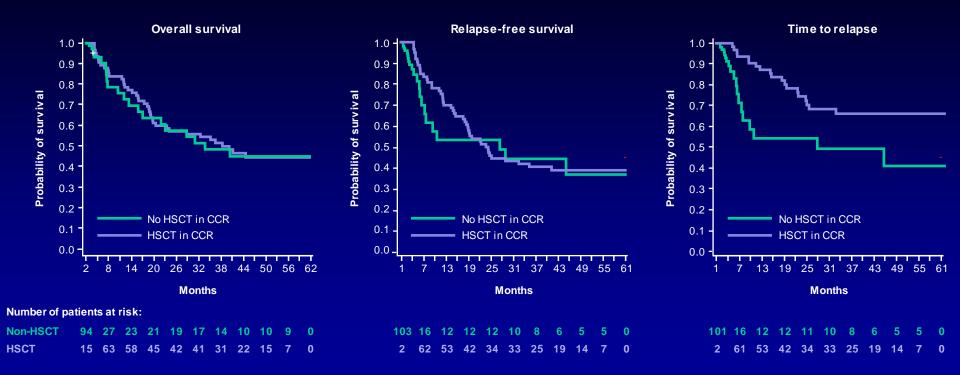

- FDA accepted MRD negativity as Rx endpoint in ALL, regardless of methodology
- Blinatumomab FDA approved (April 2018) for Rx of MRD+ ALL in CR1-CR2 on the basis of JAMA Oncology meta-analysis (Don Berry) and German single-arm trial results
- NGS detects MRD at 10⁻⁶; 4- to 8-color FCM detects MRD at 10⁻⁴
- In adult ALL, MRD >0.1% at CR and >0.05%-0.01% 2-3 mo in CR predictive of worse survival on chemoRx
- NGS may predict better ongoing studies at MDACC of outcome at MRD <10⁻⁶ vs 10⁻⁶–10⁻⁴ vs >10⁻⁴

Postremission Rx of ALL According to FCM MRD

- 307 pts age 15–60 yr with pre-B ALL
- ORR 91%; 83% after induction 1
- If MRD >0.1% at end of induction (week 5), >0.01% at midconsolidation (week 17): chemoRx then alloSCT, otherwise chemoRx alone
- ORR 277/307 = 81%; 94 (31%) assigned to alloSCT and 190 (62%) chemoRx

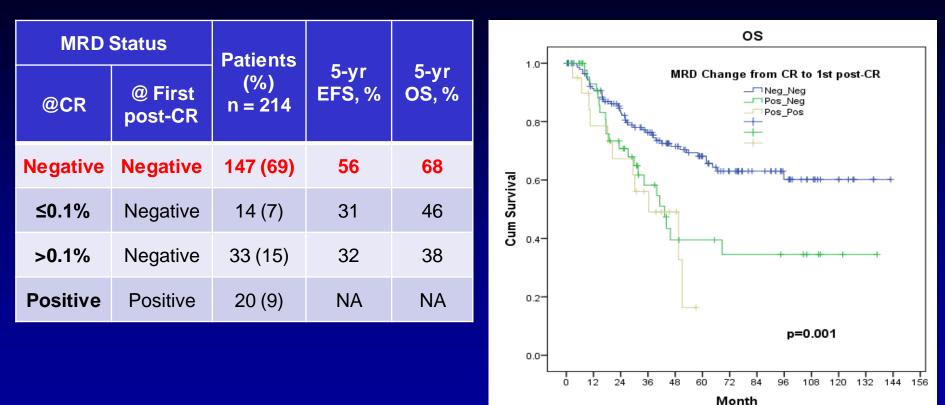
	5-yr CIR, %	5-yr OS, %
Overall	44	48
AlloSCT	37	38
ChemoRx	48	55
MRD <0.1 at CR and <0.01 at consolidation	42	66
MRD <0.01 at CR	17	90

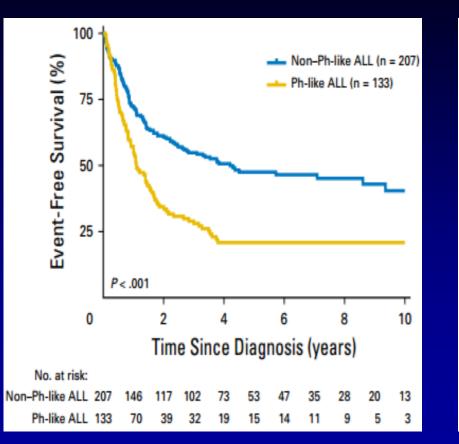

Blinatumomab in MRD+ BCP-ALL: MT103-202 Trial

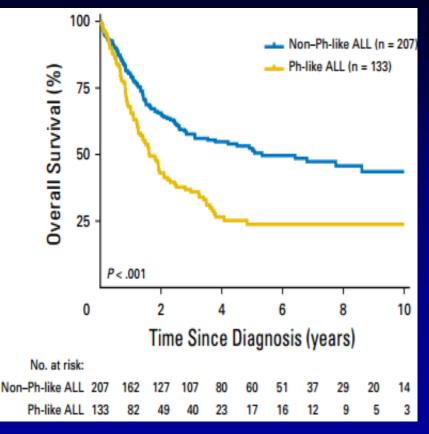

Topp MS, et al. Blood. 2012;120:5185-5187.

Blinatumomab for MRD+ ALL in CR1/CR2

- 113 pts Rx. Post-blina MRD-88/113 = 78%
- 110 evaluated (blasts <5%, MRD+); 74 received alloSCT. Median FU 53 mo</p>
- Median OS 36.5 mo; 4-yr OS 45%; 4-yr OS if MRD– 52%
- Continuous CR 30/74 post-alloSCT (40%); 12/36 without SCT (33%)

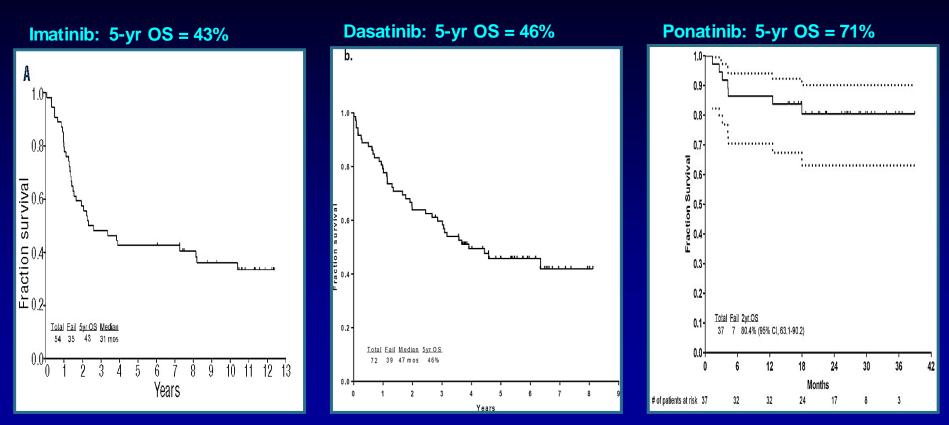

Outcomes by HSCT Use in CCR: Simon-Makuch Analyses – Landmark of 2 Months


Landmark of 2 months for overall survival and 40 days for other analyses was used to ensure non-zero number of patients in the HSCT group. CCR, continuous complete remission; HSCT, hematopoietic stem cell transplantation.


Goekbuget N, et al. Slides presented at: 60th ASH Annual Meeting & Exposition of the American Society of Hematology; December 1-4, 2018; San Diego, CA.

Dynamics of MRD: Outcome

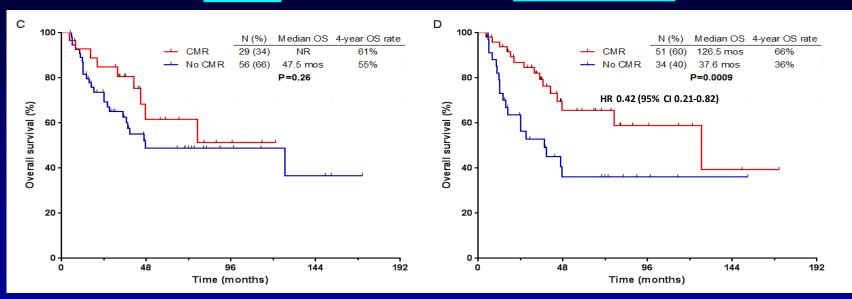
Ph-Like ALL: Survival and EFS



Ph-Like ALL: Higher MRD+ Rate

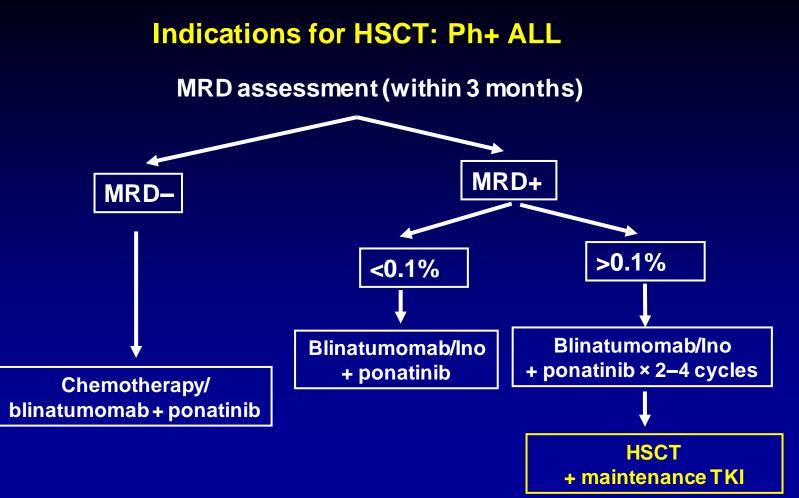
	B-ALL C			
	Ph-like	Ph+	B-other	Dvoluo
Ν	56	46	53	<i>P</i> value
CR/CRp	50 (89)	43 (93)	50 (94)	.57
MRD at CR				
Positive	23 (70)	15 (44)	4 (13)	<.001
Negative	10 (30)	19 (56)	27(87)	

TKI for Ph+ ALL

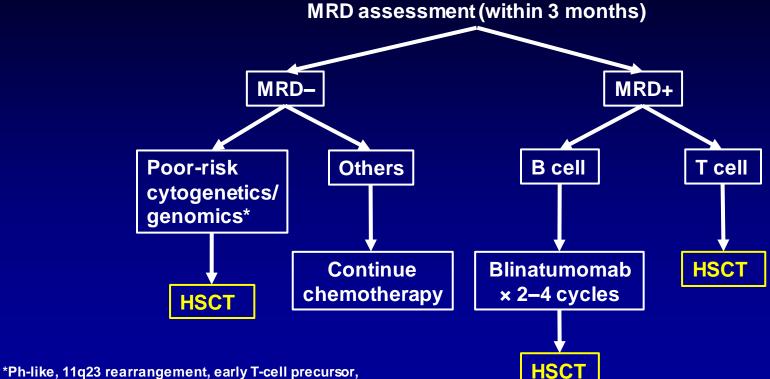


Daver. Haematologica. 2015; Ravandi. Cancer. 2015; Jabbour. Lancet Oncol. 2015; Jabbour. Lancet Hematol. 2018.

CMR in Ph+ ALL: OS for CMR vs Others


At CR

At 3 months


MVA for OS CMR at 3 months (HR 0.42 [95% CI: 0.21-0.82]; P = .01)

Short. Blood. 2016;128(4):504-507.

Short. Blood. 2016;128(4):504-507; Sasaki. Blood. 2019;134:abstract 1296; Samra. Blood. 2019;134:abstract 1296.

Indications for HSCT: Ph– B-ALL and T-ALL

low hypodiploidy, complex cytogenetics.

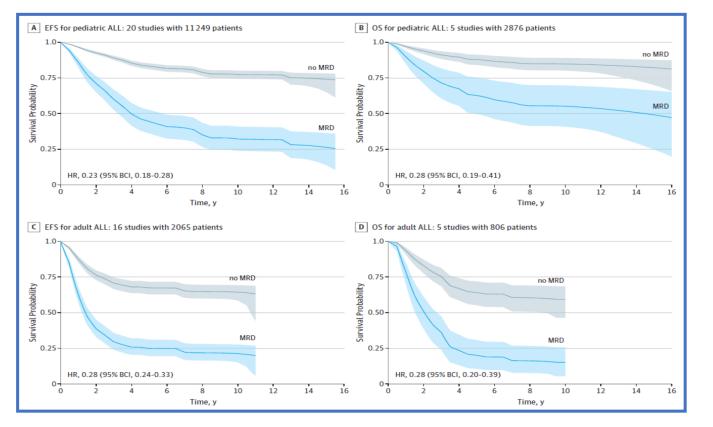
Short NJ, et al. Am J Hematol. 2019;94(2):257-265.

SO . . . MRD in ALL

- Despite achievement of CR with induction and consolidation, up to 60% of patients with ALL may still be MRD+
- In adult ALL, MRD+ in CR is predictive of worse survival on chemoRx
- FDA accepted MRD negativity as Rx endpoint in ALL, regardless of methodology
- Blinatumomab FDA approved (April 2018) for Rx of MRD+ ALL in CR1– CR2
- No clear benefit for alloSCT after conversion to MRD- with blina, particularly in CR1
- Maintenance blina post-alloSCT?
- Role of Ino? CAR T cells in MRD+ ALL?

How and when to check for MRD in ALL, including CR1 and CR2

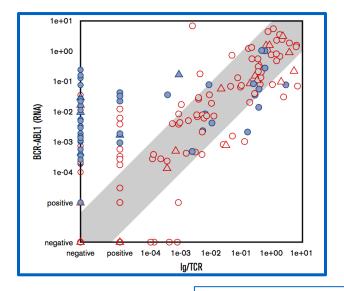
Josep-Maria Ribera

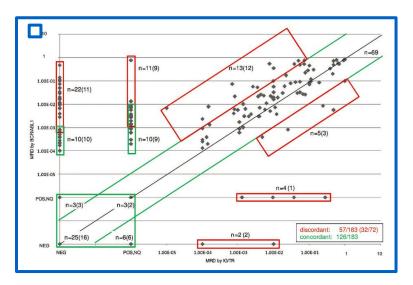


Disclosures

- Amgen: speaker and advisory boards honoraria, research support, clinical trials
- Pfizer: speaker and advisory boards honoraria, clinical trials
- Shire: speaker and advisory boards honoraria
- Ariad: speaker and advisory boards honoraria, clinical trials
- Takeda: speaker and advisory boards honoraria, clinical trials
- Novartis: speaker and advisory boards honoraria

Negative MRD is associated with longer EFS and OS in childhood and adult ALL



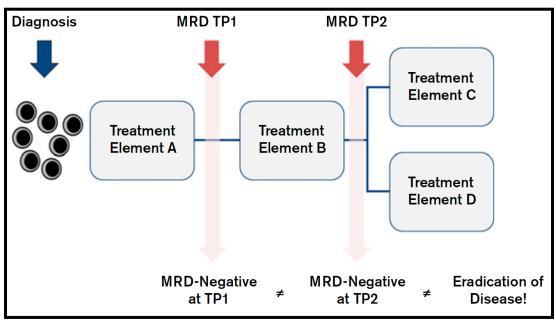

Meta-analysis of 20 pediatric ALL trials >11,000 patients

Meta-analysis of 16 adult ALL trials >2,000 patients

Berry DA, et al. JAMA Oncol. 2017;3:e170580.

Discordance between MRD methods: The case of Ph+ ALL

In patients with discordant MRD results, *BCR*-ABL1 fusion was detected in


- Non-ALL B cells (15% to 83%)
- T cells (12% to 21%)
- Myeloid cells (15% to 80%)

Hovorkova L, et al. Blood. 2017;129:2771-2781.

Nagel I, et al. Blood. 2017;130:2027-2031.

Cazzaniga G, et al. Haematologica. 2018;103:107-115.

Importance of time points in MRD assessment

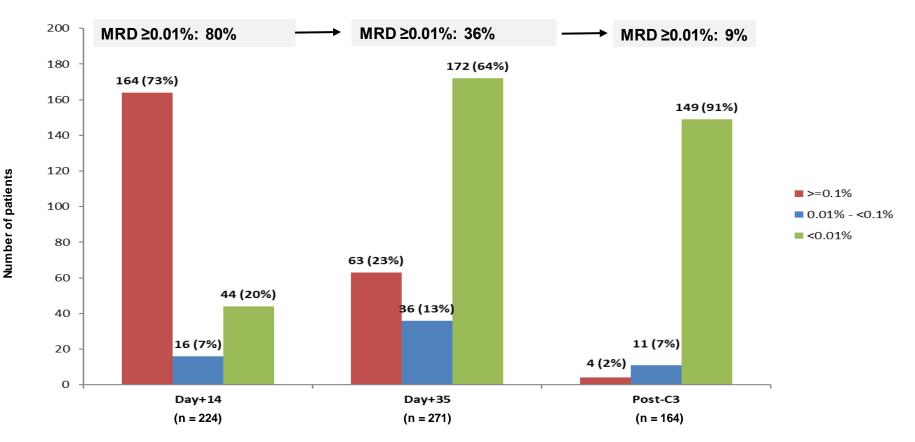
- Negative MRD at TP1: useful for recognizing patients with low risk of relapse
- **Positive** MRD at **TP2**: useful for recognizing patients with high risk of relapse

Brüggemann M, Kotrova M. Blood Adv. 2017;1:2456-2466. Reproduced with permission: ©2017 American Society of Hematology

What is known

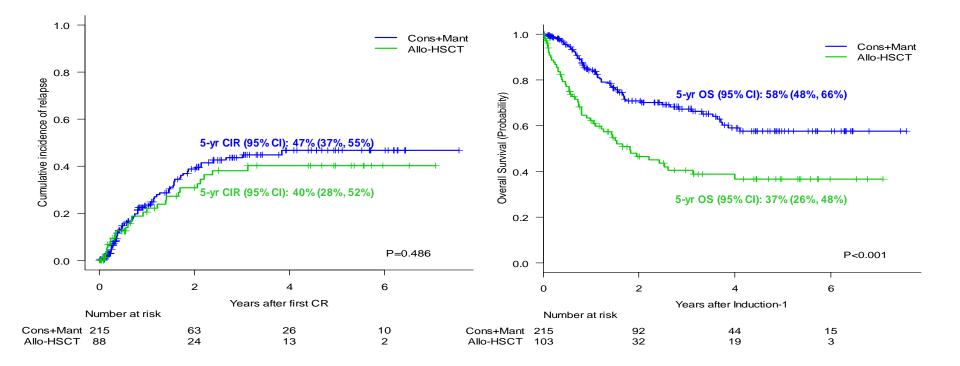
✓ Adolescents and adults (15–60 yr) with SR, Ph– ALL

- Good MRD response after induction/consolidation: no alloHSCT
- Poor MRD response: alloHSCT better


✓ Adolescents and adults (15–60 yr) with <u>HR, Ph– ALL</u>

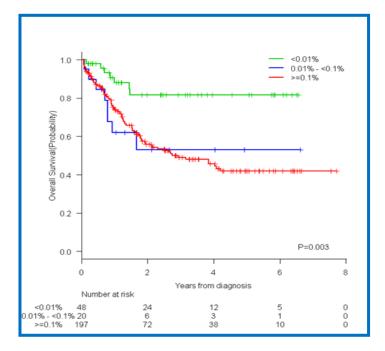
- Poor MRD response after induction/consolidation: alloHSCT better
- Good MRD response: can we spare alloHSCT?

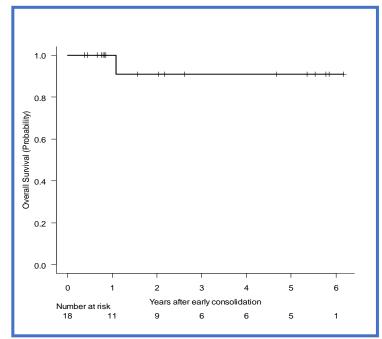
Prospective studies with indication for HSCT on the basis of MRD data (adult Ph– ALL)


Trial	Risk groups	MRD assessment	Randomization assignment	References
NILG	SR and HR	PCR	No Allo(auto)HSCT in MRD+ pts	Bassan R. <i>Blood.</i> 2009;113:4153-4162
PETHEMA HR03	HR	4-color flow	No AlloHSCT in poor early cytologic responders or MRD+ pts	Ribera JM. <i>J Clin Oncol.</i> 2014;32:1595-1604
NILG 10/07	SR and HR	PCR	No Allo(auto)HSCT in MRD+ pts	Bassan R. ASH 2016. Abstract 176
PETHEMA HR11	HR	8-color flow	No AlloHSCT in MRD+ pts	Ribera. ASH 2019. Abstract 826
GMALL 08/2013	SR and HR	PCR	Yes AlloHSCT vs chemo in MRD– HR pts AlloHSCT in MRD+ pts	Ongoing: NCT02881086

MRD level according to time points: ALL HR11 trial (high-risk patients only)

Ribera JM, et al. ASH 2019. Abstract 826 and manuscript submitted.

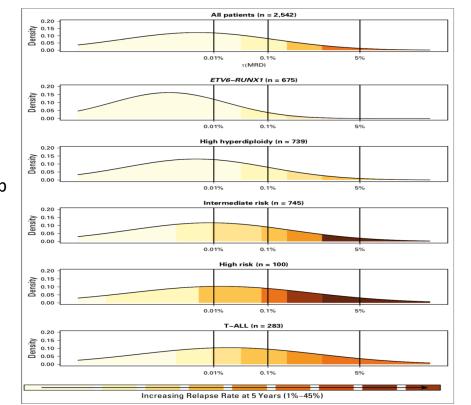

CIR and OS for HR-ALL patients assigned to chemotherapy vs alloHSCT according to MRD level (analysis by intention to treat)


Ribera JM, et al. ASH 2019. Abstract 826 and manuscript submitted.

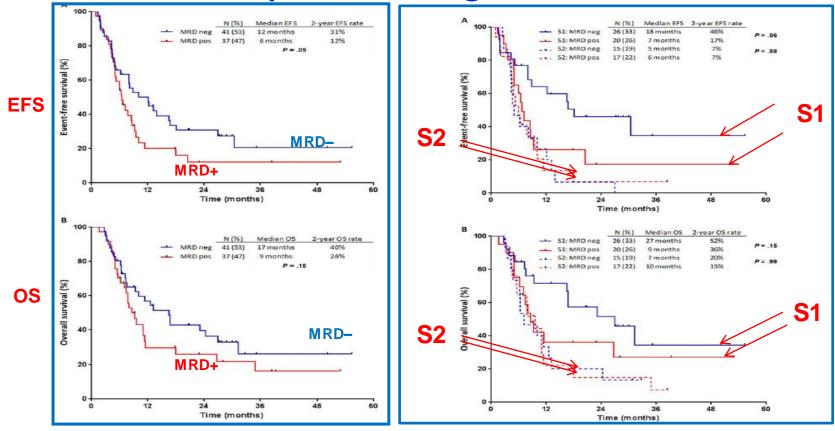
The importance of early MRD response

OS according to MRD on d14

OS according to MRD <0.01% on d14 and end-induction and end-consolidation

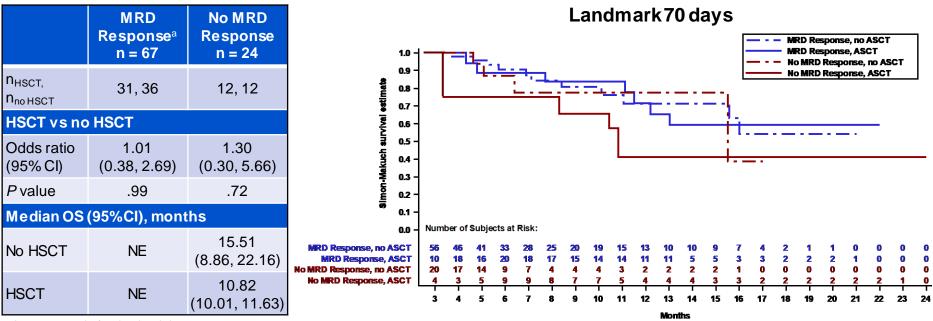

Ribera JM, et al. Blood. 2020 (manuscript submitted).

Value of MRD according to genetic subgroups


• The value of MRD may depend on

- Response kinetics
- Existence of resistant subclones
- Pediatric UKALL2003 study
 - The risk of relapse was proportional to the MRD level within each genetic risk group
 - However, absolute relapse rate that was associated with a specific MRD value varied significantly by genetic subtype

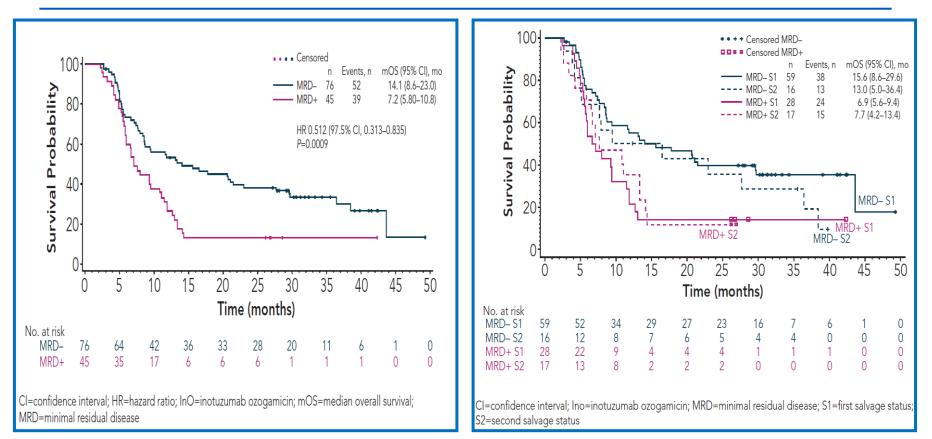
Integration of genetic subtype/subclone-specific MRD could allow a more refined risk-stratification


MRD in R/R ALL beyond CR1 under rescue CHT: Impact of salvage status

Jabbour E, et al. Cancer. 2017;123: 294-302.

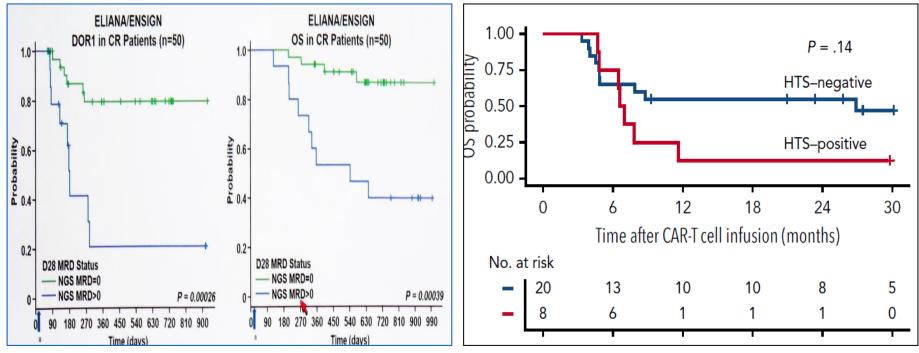
MRD in R/R ALL under blinatumomab: OS by MRD response ± HSCT

Simon-Makuch estimates for overall survival



^aLast response before landmarkday 70.

Landmarkat day 70 was used to ensure adequate number of HSCT patients at the earlier time points. MRD status is also at day 70.


Jabbour E, et al. Biol Blood Marrow Transplant. 2018;24:S25-S118.

MRD in R/R ALL under InO: OS by MRD response ± HSCT

Jabbour E, et al. Leuk Res. 2020;88:106283.

Early MRD assessment after CAR T and outcome

Median OS 26.9 vs 6.8 months

Hay K, et al. *Blood*. 2019;133:1652-1663.

Conclusions: MRD in CR1 and CR2

How to assess

- Each methodology has pros and cons
- Select the methodology with more experience
- Use MRD within specific trials
- Do not exchange the method of MRD assessment within a trial

When to assess

- In CR1: After induction **and** after consolidation (or before HSCT) are the critical time points
- In CR2: At the time of CR2 and before HSCT (if treated with Blin or InO) or after CR if treated with CAR T

• And . . .

• Do not forget to study the genetic background of ALL in addition to MRD

- MRD assessment by fusion transcripts is especially useful in ALL with . . .
 - a. IKZF1 mutation
 - b. MYC rearrangements
 - c. BCR-ABL1 rearrangement
 - d. TEL-AML1 rearrangement
 - e. None of the above

- The MRD level considered for MRD response by consensus is . . .
 - a. 0.1%
 - b. 0.01%
 - c. 0.001%
 - d. 0.0001%
 - e. 0.00001%

Genetic variants in ALL – Ph+ and Ph-like

Philippe Rousselot

Disclosures

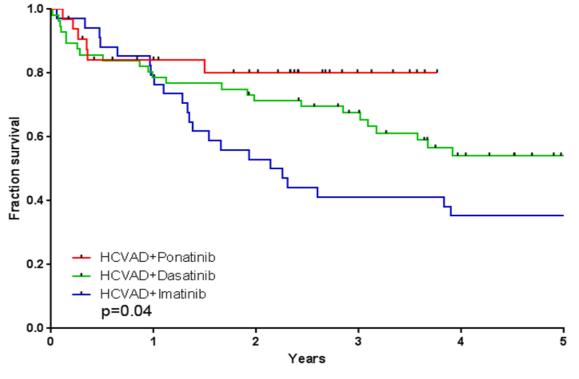
> Research grants: Pfizer, Incyte

> Advisory boards: Amgen, Pfizer

> Travel grant: Pfizer

Initial therapy: similar high CR rates

Outcom	es of ne	wly diagnosed pa	atients with Ph+ ALL: Ch	emotherapy and	a TKI con	nbination	
Clinical Trial (year†)	N	Age, median [Range]	Chemotherapy	TKI, mg/day	CR,%		
Imatinib							
Yanada (2006) ⁵⁴	80	48 [15-63]	JALSG ALL202	IM 600	96		
Wassmann (2006) ⁸	45	41 [19-63]	GMALL	IM 400	96		
Fielding (2014) ⁹	175	42 [16-64]	UKALLXII/ECOG2993	IM 400 - 600	92		
ol 1 (2015) ¹²	135	49 [18-59]	Low int. induction	IM 800	98		
Chalandon (2015) ¹²	133	45 [21-59]	High int. induction	IM 800	91		Imatinib: 94% CR
Bassan (2010)55	59	45 [20-66]	NILG	IM 600	92		
Daver (2015) ¹⁰	54	51 [17-84]	HyperCVAD	IM 400 - 800	93		
De Labarthe (2007) ⁵⁶	45	45 [16-59]	GRAAPH 2003	IM 600 - 800	96		
Lim (2015) ¹¹	87	41 [16-71]	Multiagent Chemo	IM 600	94		
Nilotinib							
Kim (2015) ²²	90	47 [17-71]	Multiagent Chemo	NIL 800	91		Nilotinib: 91% CR
Dasatinib							
Foa (2011) ²⁹	53	54 [24-76]	Prednisone	DAS 100-140	93		
Ravandi (2015)57	72	55 [21-80]	HyperCVAD	DAS 100	96		Dasatinib: 92% CR
Ravandi (2015) ⁵⁸	94	44 [20-60]	HyperCVAD	DAS 70-100	88		
Ponatinib							
Jabbour (2015) ^{34,35}	64	48 [21-80]	HyperCVAD	PON 30-45	100		Ponatinib: 100% CR


Ph+ ALL, Philadelphia chromosome-positive acute lymphoblastic leukemia; TKI, tyrosine kinase inhibitor; N, number of patients; m, month; mg, milligram; CR, complete remission;CMR, complete molecular response rate at CR or approximately 3-month of therapy; n/a, not available; SCT in CR1, stem cell transplant in first CR; OS, overall survival; IM, imatinib; Int., intensity; DAS, dasatinib; NIL, nilotinib; PON, ponatinib; JALSG, Japan Adult Leukemia Study Group; GMALL, German Multicenter Study Group for ALL; UKALLXII, UNIted Kingdom ALL XII; Hyper-CVAD, hyperfarctionated cyclophosphamide, vincristine, dexamethasone, and daunorubicin alternating with cytarabine and methotrexate; NILG, Northern Italy Leukemia Group; GRAAPH, Group for Research in Adult Philadelphia chromosome-positive ALL † publication year

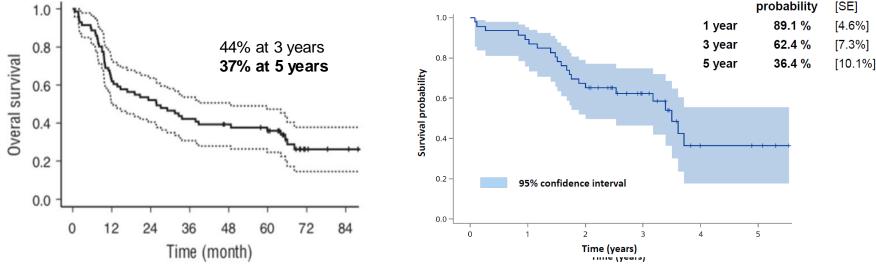
Courtesy of M Yilmaz.

Yilmaz M, et al. Clin Adv Hematol Oncol. 2018;16(3):216-223.

Relapse-free survival and OS Summary from MDACC: HCVAD + TKIs

Global Leuk Academy

Courtesy of E Jabbour.

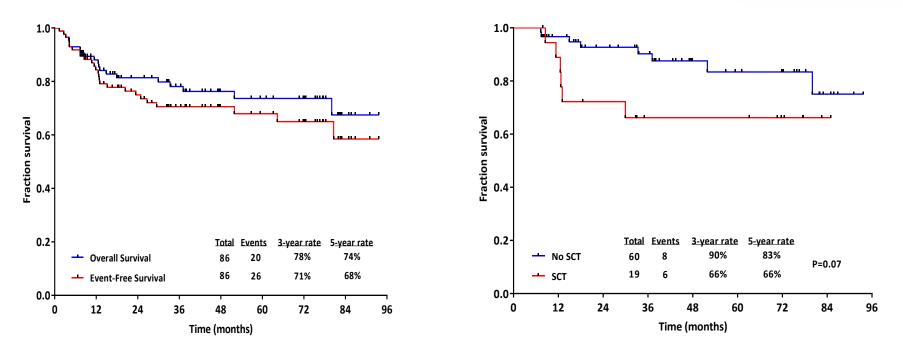

EWALL studies in aged patients (>55 y) EWALL backbone

EWALL-01

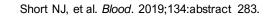
- Dasatinib 140 mg/d then 100 mg/d
- CR: 67/71 = 94%
- MRD2: 60% MR4 and 20% de MR5
- Transplant rate: 10%

EWALL-02

- Nilotinib 800 mg/d
- CR: 68/72 = 94%
- MRD1: 79% MR4 and 38% de MR5
- Transplant rate: 39%

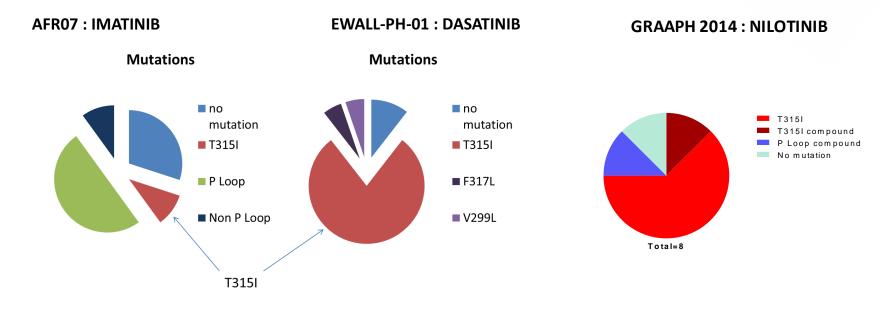

Global Leukemia Academy

Rousselot P, et al. Blood. 2016;128(6):774-782; Ottmann OG, et al. Blood. 2018;132:abstract 31.


Hyper-CVAD + ponatinib in Ph+ ALL: Outcome

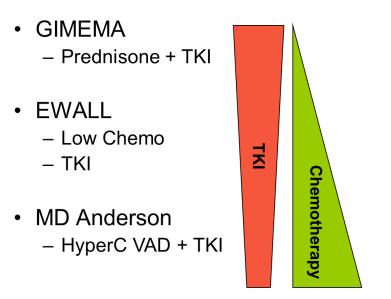
EFS and OS

Impact of allo-SCT: 6-mo landmark



Global Leukemia Academy

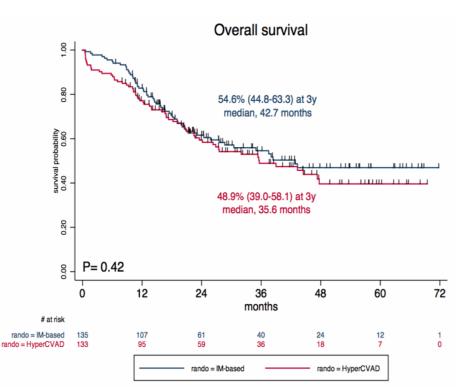
Best TKI for BCR-ABL tk domain mutations


Mutations analysis in relapse

Global Leukemia Academy

Rousselot P, et al. *Blood*. 2016;128(6):774-782.

What is the best chemotherapy schedule for initial therapy?


Minimum

Maximum

Global Leukemia Academy

Personal communication from Dr Rousselot.

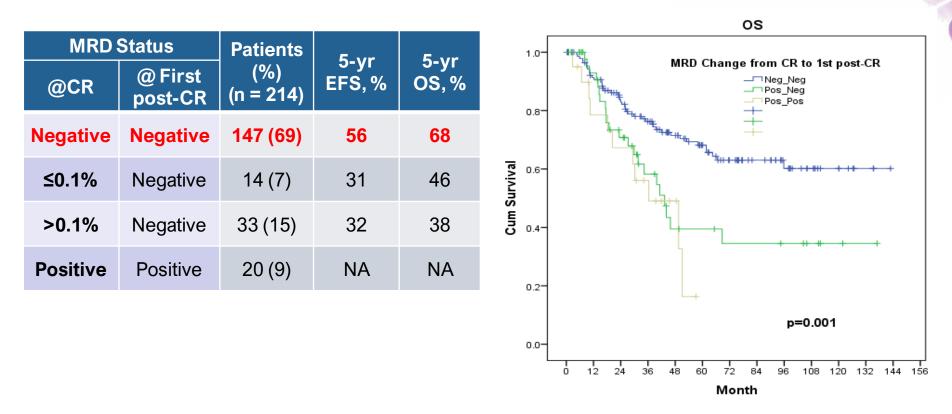
High-intensity vs low-intensity chemotherapy for induction – GRAAPH 2005

	IM-based (n= 135)	IM-HyperCVAD (n=133)	р	Total (n=268)
CR	133 (98.5%)	121 (91.7%)	0.006	254 (94.8%)
Courses to CR				
one	132 (97.8%)	118 (88.7%)	0.003	250 (93.2%)
two	1 (0.7%)	3 (2.2%)	-	4 (1.5%)
Resistance after 2 cycles	1 (0.7%)	3 (2.2%)	0.35	3 (1%)
D60 mortality	1 (0.7%)	9 (6.7%)	0.01	10 (3.7%)

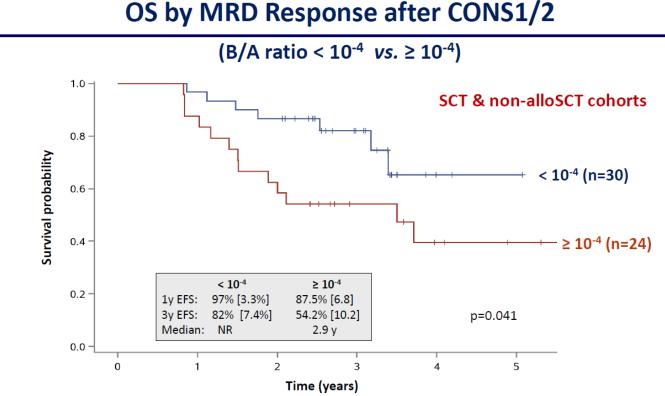
Global Leukemia Academy

Chalandon Y, et al. Blood. 2015;125:3711.

Two evolving strategies to treat Ph+ ALL

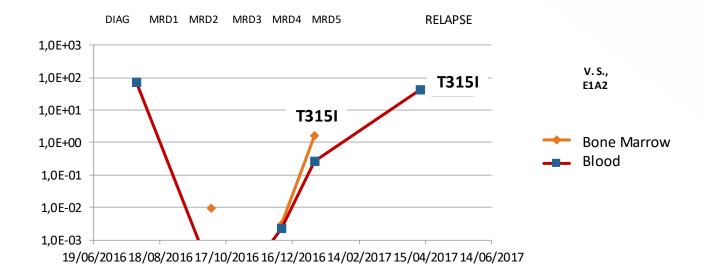

Parameter	Hyper-CVAD + Ponatinib	TKIs With Minimal ChemoRx
% CR	90-100	90-100
% CMR	80	20
Allo-SCT required	Only if no CMR	In all
Outcome p190 vs p210	Same	P190 better
% 3-yr survival/DFS	70-80	40-50

A third strategy? Minimal chemo first followed by intensive consolidations


Jabbour E, et al. Lancet Oncol. 2015;16:1547; Chiaretti S, et al. Blood. 2015;126:abstract 81.

Dynamics of MRD: Outcome

Global Leukemia Academy

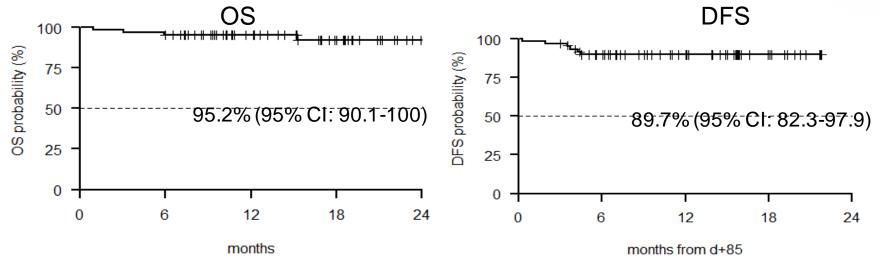

EWALL-02: Low intensity chemo and nilotinib

Global Leukemia Academy

Ottmann OG, et al. Blood. 2018;132:abstract 31.

GRAAPH2014 004-1016-V-S (nilotinib)

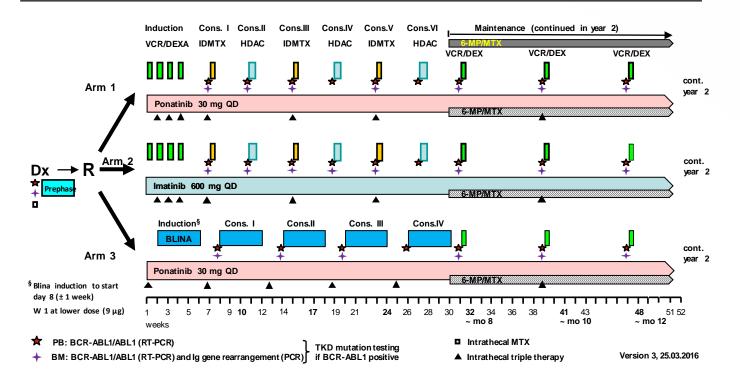
• T315I 25% at MRD5


- Relapse 3 months later with T315I at 100%
- No mutation detected at diagnosis

Courtesy of JM Cayuela.

Dasatinib-blinatumomab in Ph+ ALL

- > 63 pts, median age 54 yr (24–82)
- > Dasatinib 140 mg/D × 3 mo; add blinatumomab × 2–5
- > 53 post–dasa-blina × 2 molecular response 32/53 (60%), 22 CMR (41%)
- > MRD ↑ in 15, 6 *T315I*
- > 12-mo OS 96%; DFS 92%



Global Leukemia Academy

Chiaretti S, et al. Blood. 2019;134:abstract 615.

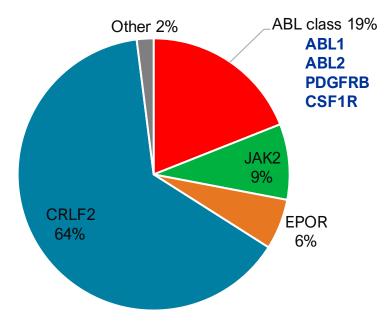
EWALL PH03: Study design

Patients aged 55y or older

Global Leukemia Academy

https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-003350-25/GB

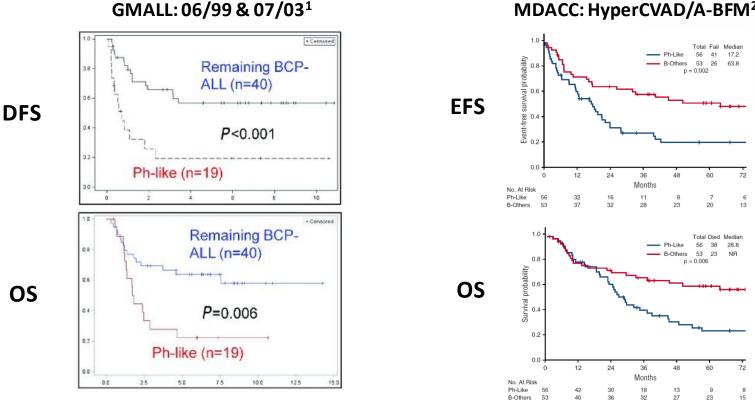
BCR-ABL+ like ALL


GRAALL-2014 BCP-ALL: Oncogenetics (N = 188)

Academy Courtesy of E Clappier.

Ph-like BCP-ALL

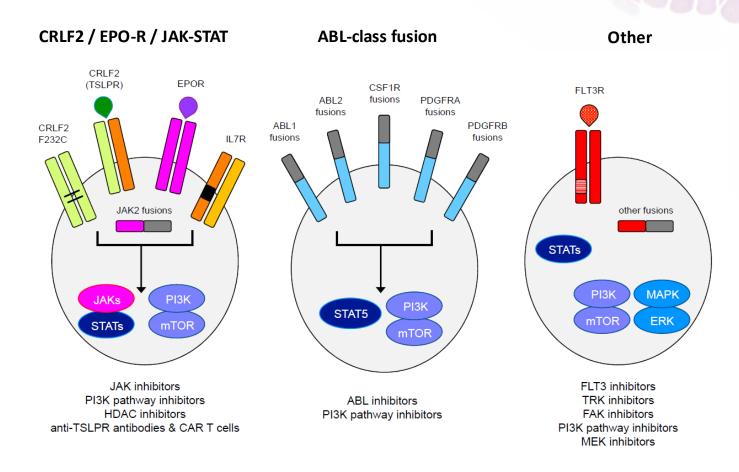
Relative frequency of Ph-like ALL alterations in children, adolescents, and adults



Summary data from 5 recent clinical studies (n = 2506 cases) depict the most common ABL class and CRLF2/JAK pathway-associated translocations occurring in children and adults with Ph-like ALL.

Global Leukemia Academy

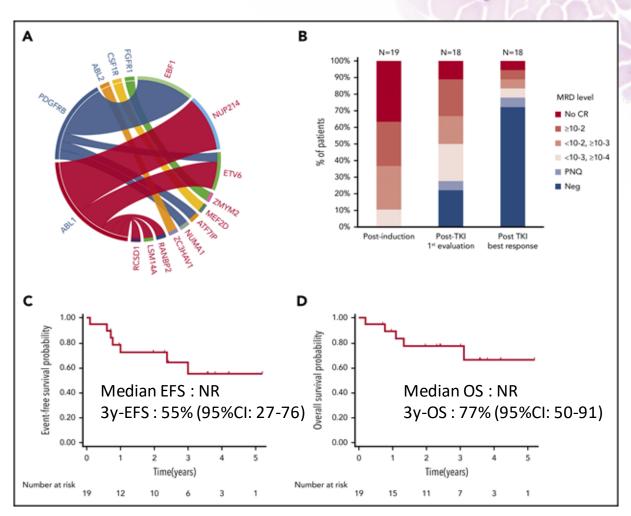
Adapted from Harvey RC and Tasian SK. Blood Adv. 2020. Hunger SP, Mullighan CG. Blood. 2015;125(26):3977-3987; Harvey RC, Tasian SK. Blood Adv. 2020;4(1):218-228.


Ph-like ALL outcome in adults

MDACC: HyperCVAD/A-BFM²

Global Leukemia Academy

1. Herold T, et al. Haematologica. 2017;102:130-138; 2. Jain N, et al. Blood. 2017;129:572-581.



Global Leukemia Academy

Tasian SK, et al. Blood. 2017;130(19):2064-2072.

Ph-like ALL with targetable ABL-family gene

French TKI experience

Global Leukemia Academy

Tanasi I, et al. Blood. 2019;134(16):1351-1355.

Conclusions

- > Best TKI for induction: all equivalent
- > Best TKI for overall survival: a trend for 2G TKIs and ponatinib
- > Best chemo regimen: room for a decrease in intensity, at least during induction
- > MRD monitoring
 - BCR-ABL and Ig/TCR
 - MRD negativity of better prognostic
 - MRD discrepancy: unknown significance
- > Relapses: new treatment modalities but median OS = 6 months
- > Future
 - Chemo-free regimens
- > BCR-ABL-like
 - Not so few patients
 - Personalized therapy?

Acknowledgements

> Molecular Biology (France)

- JM Cayuela, S Hayette, MM Coudé
- E Clappier

> All the GRAALL PIs

- Hervé Dombret and investigators from the GRAALL, France

> EWALL PIs

Global Leukemia

- Oliver G Ottmann, A. Giagounidis, Nicola Gökbuget, Dieter Hoelzer, GMALL, Germany
- Andre Delannoy GRAALL, Belgium
- Renato Bassan, Allessandra Crescimanno, Maurizio Musso, Carlo Gambacorti, Italy
- Josep Ribera PETHEMA, Spain
- Jerzy Holowiecki, Sebastian Giebel PALG, Poland
- Michael Doubek, Cyril Salek, Jiri Mayer, Czech Republic
- Andreea Delia Moicean, RWGALS, Romania
- Hervé Dombret and investigators from the GRAALL, France

UFR Simone Veil - Santé CAMPUS DE SAINT-QUENTIN-EN-YVELINES

AYA ALL patients – what is the current treatment approach for this diverse patient population?

Rob Pieters

Treatment of adolescents/young adults (AYA) with ALL

Rob Pieters Chief Medical Officer **Disclosures**

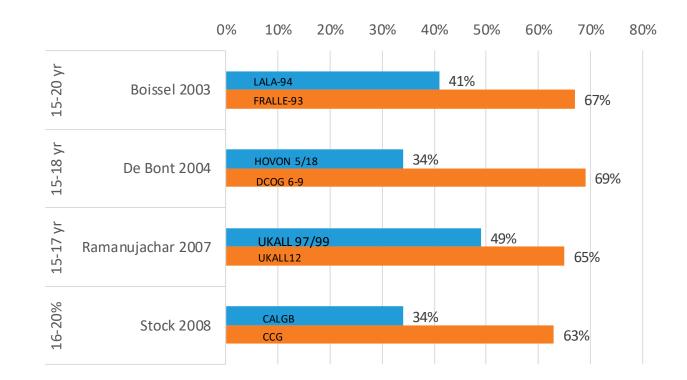
No conflict of interest

Which assertion is NOT correct for AYA ALL patients?

- a) Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- b) Treatment within a clinical trial leads to a worse outcome
- c) AYA patients experience more toxicity than young children
- d) BCR-ABL-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

Inferior outcome for AYA patients; why?

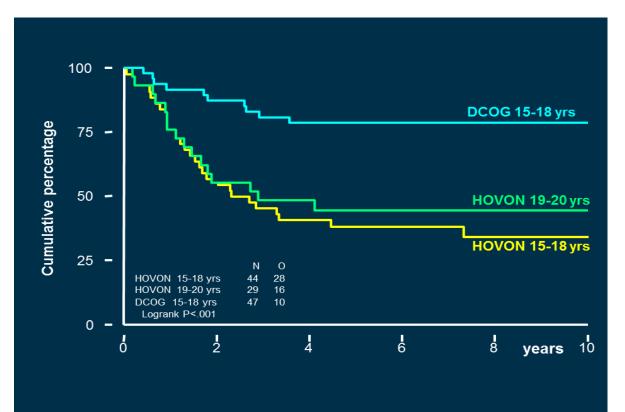
- Role of "pediatric-" vs "adult"-inspired treatment protocols
- Site of treatment
- Trial enrollment
- Toxicity profile
- Biology/genetics of the leukemia
- Adherence


Pediatric vs adult treatment protocols

Princess máxima center pediatric oncology

- More intensive use of
 - Glucocorticoids
 - Vincristine
 - Asparaginase
 - Methotrexate
 - 6-mercaptopurine
- Less intensive use of
 - Anthracyclines
 - Cyclophosphamide
- Less frequent use of alloSCT
- Prolonged maintenance, delayed intensification, CNS-directed therapy

Retrospective comparison of 5-yr EFS in AYA patients treated on pediatric and adult protocols

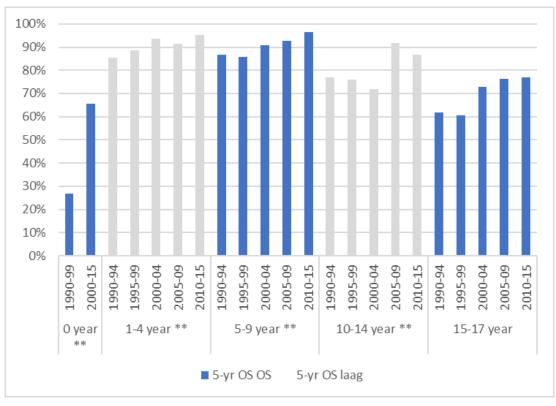


Boissel N, et al. J Clin Oncol. 2003;21(5):774-780; De Bont JM, et al. Leukemia. 2004;18(12):2032-2035; Ramanujachar R, et al. Pediatr Blood Cancer. 2007;48(3):254-261; Stock W, et al. Blood. 2008;112(5):1646-1654.

Adolescent ALL on pediatric DCOG vs adult HOVON protocol in the Netherlands

De Bont JM, et al. Leukemia. 2004;18(12):2032-2035.

Adolescent ALL on pediatric DCOG vs adult HOVON protocol in the Netherlands

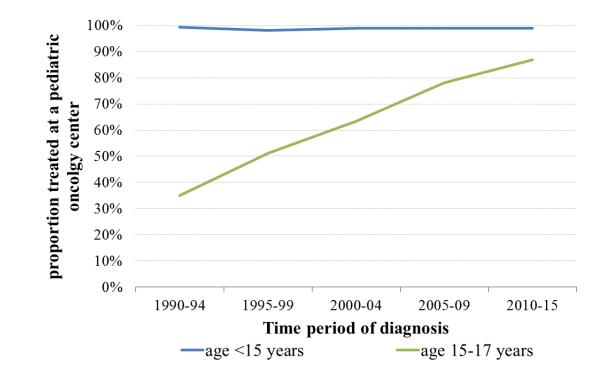


5 yrs actuarial probabilities

	CR	OS (sd)	EFS (sd)	DFS (sd)	pREL (sd)	TRM (sd)
DCOG 15-18 yrs (n=47)	98%	79% (±6)	69% (±7)	71% (±7)	27% (±7)	4% (±3)
HOVON 15-18 yrs (n=44)	91%	38% (±7)	34% (±7)	37% (±8)	55% (±8)	25% (±7)
HOVON 19-20 yrs (n=29)	90%	44% (±9)	34% (±9)	38% (±10)	50% (±10)	21% (±8)
p-value	0.24	0.0001	<0.0001	0.0002		

De Bont JM, et al. Leukemia. 2004;18(12):2032-2035.

5-year overall survival by age group over time in the Netherlands

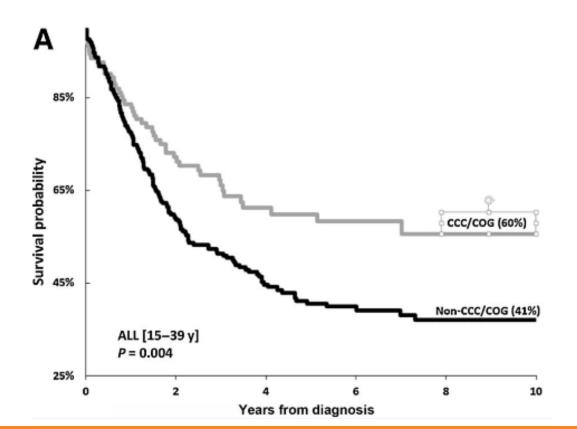


Reedijk AMJ, et al. Leukemia. 2020. doi: 10.1038/s41375-020-01024-0. Online ahead of print.

Proportion of patients with ALL treated at a pediatric oncology center in the Netherlands

Reedijk AMJ, et al. Leukemia. 2020. doi: 10.1038/s41375-020-01024-0. Online ahead of print.

Multivariate analysis of risk of death: Patients 15–17 years with ALL in the Netherlands between 1990 and 2015



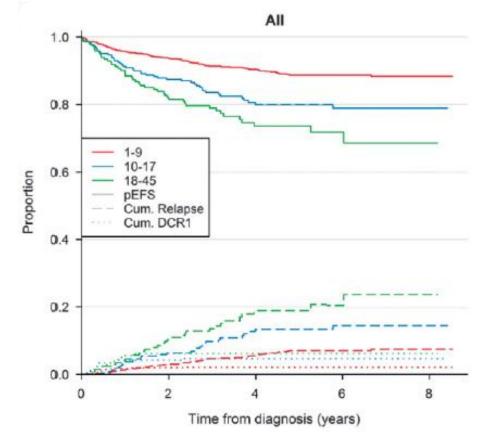
		Hazard Risk	95% CI	95% CI	P Value
	1990–1994	Reference			
	1995–1999	0.97	0.50	1.91	.94
Period	2000–2004	0.67	0.32	1.42	.30
	2005–2009	0.64	0.30	1.37	.25
	2010–2015	0.80	0.38	1.68	.56
Sex	Male	Reference			
Sex	Female	1.45	0.89	2.37	.14
Immunophenotype	Precursor B-cell	Reference			
	Precursor T-cell	1.59	0.97	2.62	.07
Site of treatment	Outside pediatric oncology center	Reference			
Site of treatment	Pediatric oncology center	0.32	0.20	0.53	<.01

Reedijk AMJ, et al. Leukemia. 2020. doi: 10.1038/s41375-020-01024-0. Online ahead of print.

Survival in patients 15-39 years with ALL by treatment site in North-America

Wolfson J, et al. Cancer Epidemiol Biomarkers Prev. 2017;26(3):312-320.

Outcomes in older adolescents treated in recent pediatric trials



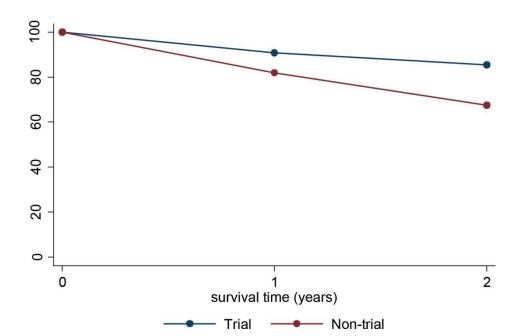
Trial	No. of Patients	Age Range, y	Early Death, %	Death in CR, %	HSCT, %	EFS		OS	
						Y	%	Y	%
CCG 1961	262	16–21	2	3	4	5	72	5	78
DFCI 9101/9501	51	15-18	4	2	NR	5	78	5	81
Total therapy XV	45	15-18	0	7	11	5	86	5	88
UKALL 2003	229	16-24	NR	6	6.1	5	72	5	76
FRALLE 2000	186	15-19	2	2	12	5	74	5	80
DCOG ALL-10	57	15-18	NR	NR	NR	5	79	5	82

Adapted from Boissel N, Baruchel A. Blood. 2018;132(4):351-361. and Pieters R, et al. J Clin Oncol. 2016;34(22):2591-2601.

EFS, relapse and death in first remission by age

Toxicity by age

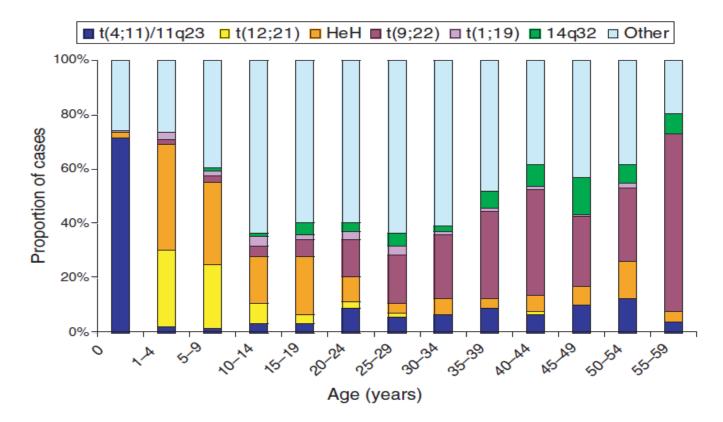
Y/N (%) OR (95% CI) P

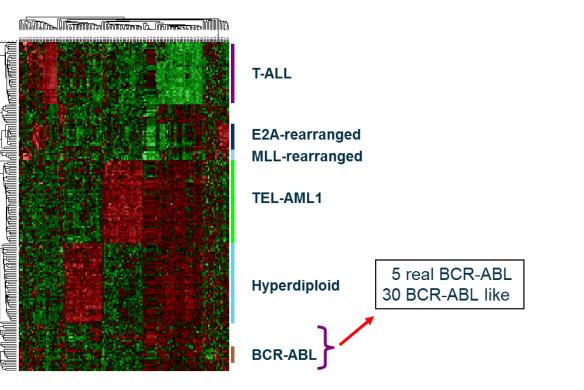

Intensive care w/wo assisted ventilation

mitensive	care w/wo assis				
1-9	145 / 864 (14.4%)	1.0 (1.0- 1.0)			
10-17	54 / 208 (20.6%)	1.3 (0.9- 1.9)	0.14		
18-45	40 / 172 (18.9%)	1.1 (0.7-1.6)	0.68		
Anaphyl	atic reaction to as				
1-9	146 / 863 (14.5%)				
10-17	25 / 237 (9.5%)	0.6 (0.4-0.9)	0.016		
18-45		0.3 (0.1-0.5)	< 0.001		
	Fungal infection				
1-9	98 / 911 (9.7%)	1.0 (1.0- 1.0)			
10-17	32 / 230 (12.2%)	0.9 (0.6-1.4)	0.68		
18-45	28 / 184 (13.2%)	0.9 (0.5-1.4)	0.54		
	Peripheral paralysis				
1-9	100 / 909 (9.9%)	1.0 (1.0- 1.0)			
	30 / 232 (11.5%)	1.3 (0.8-2.1)	0.21		
18-45	20 / 192 (9.4%)	1.1 (0.7-1.9)	0.61		
Pancreat		(
1-9	60 / 949 (5.9%)	1.0 (1.0- 1.0)			
10-17	29 / 233 (11.1%)	2.2 (1.3-3.5)	0.001		
18-45	24 / 188 (11.3%)	2.4 (1.4-4.0)	0.001		
Hyperlip					
1-9	72/937 (7.1%)	1.0 (1.0- 1.0)			
10-17	26 / 236 (9.9%)	1.7 (1.0-2.8)	0.027		
18-45	15 / 197 (7.1%)	1.3 (0.7-2.3)	0.37		
	(()			

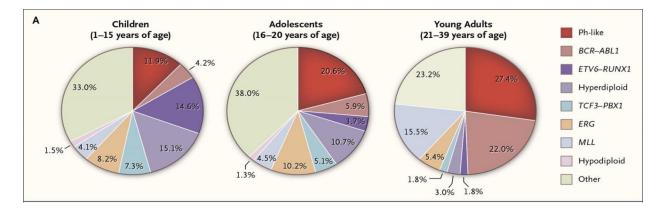
Thrombo 1-9		1.0 (1.0- 1.0)	
10-17 18-45	40 / 222 (15.3%) 37 / 175 (17.5%)	5.0 (3.1-8.2) 6.0 (3.6-10.1)	<0.001 <0.001
Osteone		0.0 (3.0-10.1)	-0.001
		10/10 10	
1-9	23 / 986 (2.3%)	1.0 (1.0- 1.0)	
10-17	35 / 227 (13.4%)	8.0 (4.6-14.1)	<0.001
18-45	18 / 194 (8.5%)	5.3 (2.7-10.3)	<0.001
Seizures			
1-9	38 / 971 (3.8%)	1.0 (1.0- 1.0)	
10-17	16 / 246 (6.1%)	1.7 (0.9-3.1)	0.086
18-45	5/207 (2.4%)	0.7 (0.2-1.6)	0.39
PCP	••••••	•••• (••= •••)	0.00
1-9	29 / 980 (2.9%)	1.0 (1.0- 1.0)	
10-17	11/251 (4.2%)	1.3 (0.6- 2.6)	0.48
18-45	13 / 199 (6.1%)	1.8 (0.9- 3.7)	0.089
	137 199 (0.176)	1.0 (0.9- 3.7)	0.009
PRES	27 / 070 / 2 70/)	10/10 10	
1-9	37 / 972 (3.7%)	1.0 (1.0- 1.0)	0.00
10-17	9 / 253 (3.4%)	0.8 (0.4- 1.7)	0.60
18-45	5 / 207 (2.4%)	0.5 (0.2- 1.3)	0.18

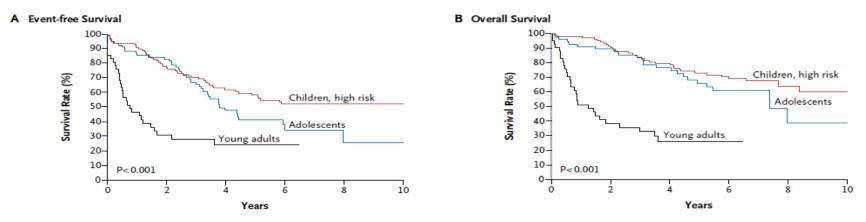
Two-year relative survival in 15–24-year-old ALL patients (n = 503) by trial status




Hough R, et al. BMJ Open. 2017;7(10):e017052.

Distribution of cytogenetic subtypes of ALL by age


Discovery of BCR-ABL-like ALL within B-other group



Princess máxima center pediatric oncology

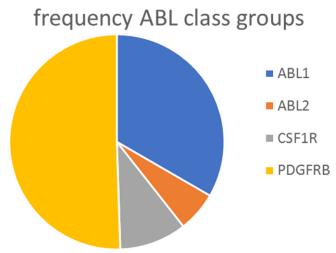
Ph-like ALL: Prevalence and outcomes

Roberts KG, et al. N Engl J Med. 2014;371:1005-1015; Graubert TA. N Engl J Med. 2014;371:1064-1066 (courtesy of Mignon Loh).

Frequency of identified tyrosine kinase fusion genes in BCR-ABL-like ALL and remaining B-other ALL

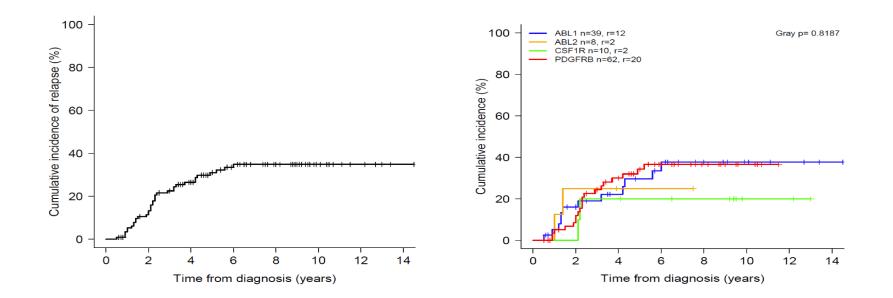
larker	<i>BCR-ABL1-</i> like (n=77)	Remaining B-other (n=76))
ABL1/ABL2 fusion	3.9%	0%	—
ZMIZ1-ABL1	1		
FOXP1-ABL1	1		
RCSD1-ABL2	1		12% with ABL-1 class fusions
PDGFRB fusion	5.2%	0%	Targetable with TKI e.g. imatinib/dasatin
EBF1-PDGFRB	4		
CSF1R fusion	2.6%	0%	
SSBP2-CSF1R	2		
JAK2 fusion	6.5%	0%	
PAX5-JAK2	3		6% with JAK2 fusions
BCR-JAK2	1		Targetable with ruxolitinib ????
TERF2-JAK2	1		
<i>CRLF2</i> high expression*	15.6%	15.8%	
PAR1 deletion**	10.5%	10.7%	

Outcome of ABL-class ALL treated without tyrosine kinase inhibitors (TKI): a Ponte di Legno group analysis

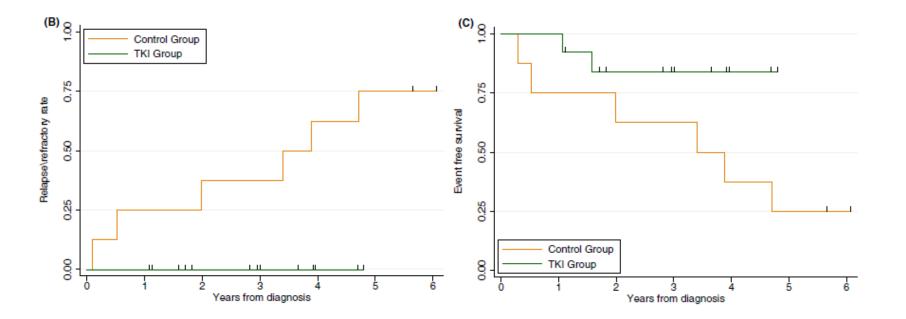


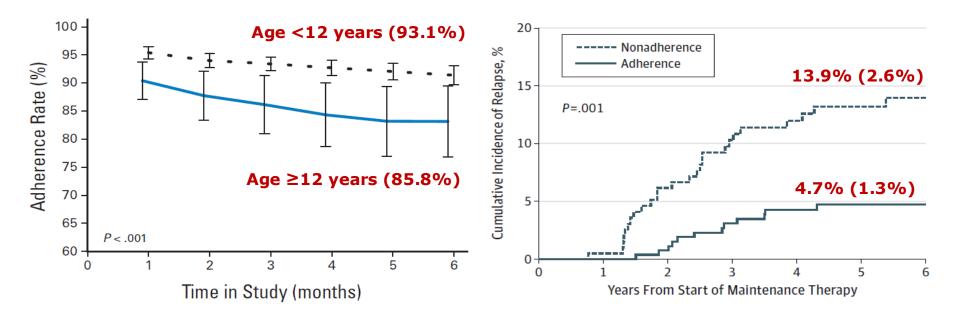
• 122 cases

PDGFRB (52%) ABL1 (33%) CSF1R (8%) ABL2 (7%)


- Recent protocols (2000-2018)
- Not treated with TKI
- 10 study groups

Europe:	DCOG/AIEOP/BFM/UK-ALL/COALL
Asia:	JACLS/Ma-Spore/ANZCHOG/TCCSG
North-America:	SJCRH/COG


Cumulative incidence of relapse in ABL-class patients


Outcome of ABL-class ALL treated with or without imatinib

Moorman AV, et al. Br J Haematol. 2020; doi: 10.1111/bjh.17093. Online ahead of print.

Low adherence to oral 6MP significantly increases relapse risk

Center pediatric oncology

Bhatia S, et al. J Clin Oncol. 2012;30:2094-2101 and JAMA Oncol. 2015;3:287-295 (courtesy of Mignon Loh).

AYA conclusions

- Outcome improved but still inferior to those in younger children
- Pediatric-inspired protocols better than adult-inspired protocols
- Treatment within trials better outcome
- Higher toxicity in AYA than in younger children, but manageable
- Higher incidence of unfavorable biology/genetics
- Higher incidence of non-adherence of patients (and doctors?)

After listening to the presentation, which assertion is NOT correct for AYA ALL patients?

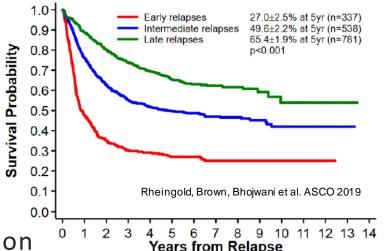
- a) Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- b) Treatment within a clinical trial leads to a worse outcome
- c) AYA patients experience more toxicity than young children
- d) BCR-ABL-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

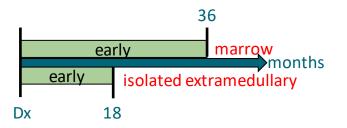
Thank you

Bispecific T-cell engagers as post-reinduction therapy improves survival in pediatric and AYA B-ALL

Patrick Brown

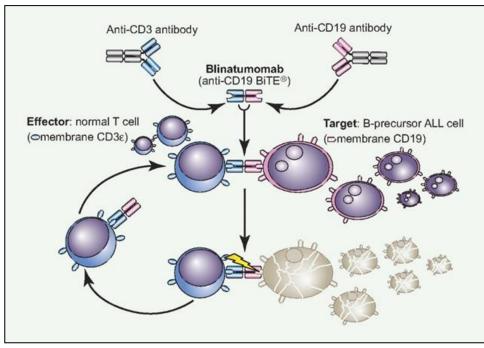
A Randomized Phase 3 Trial of Blinatumomab Vs. Chemotherapy As Post-Reinduction Therapy in High and Intermediate Risk (HR/IR) First Relapse of B-ALL in Children and AYAs Demonstrates Superior Efficacy and Tolerability of Blinatumomab


A Report from Children's Oncology Group Study AALL1331


<u>Patrick A. Brown</u>, Lingyun Ji, Xinxin Xu, Meenakshi Devidas, Laura Hogan, Michael J. Borowitz, Elizabeth A. Raetz, Gerhard Zugmaier, Elad Sharon, Lia Gore, James A. Whitlock, Michael A. Pulsipher, Stephen P. Hunger, Mignon L. Loh

Background

- Poor survival for first relapse B-ALL in children, adolescents and young adults (AYA), especially early relapses
- Standard treatment approach
 - Reinduction chemotherapy -> 2nd remission
 - Consolidation
 - <u>Early relapse</u>: Intensive chemo -> HSCT
 - Goal: MRD-negativity prior to HSCT
 - <u>Late relapse</u>
 - "MRD high": same as early
 - "MRD low": Intensive chemo -> maintenance therapy



Brown PA, et al. Blood. 2019;134(suppl_2):LBA-1.

CHILDREN'S ONCOLOGY GROUP

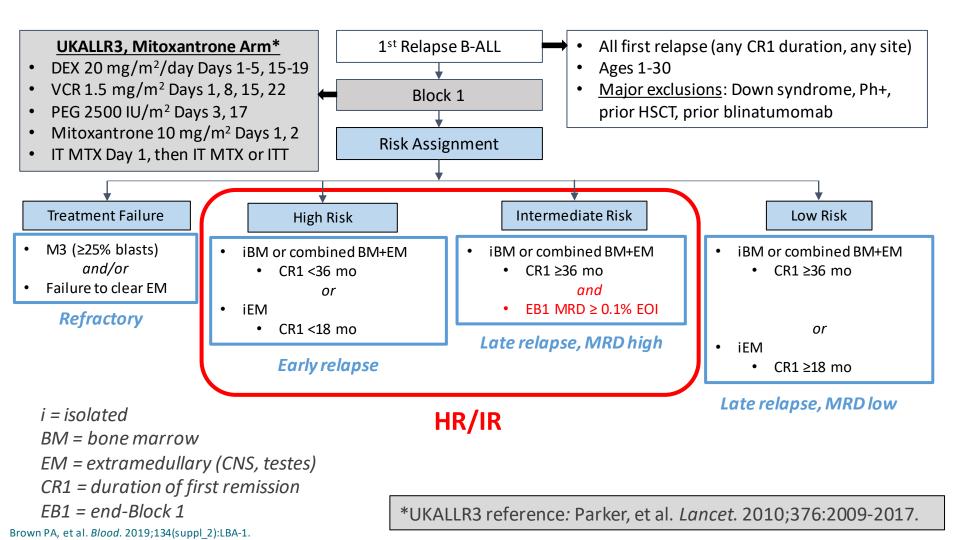
Blinatumomab (CD19 BiTE)

Adapted from *Brown P. Blood.* 2018; 131: 1497–1498

CHILDREN'S ONCOLOGY GROUP

Brown PA, et al. Blood. 2019;134(suppl_2):LBA-1.

- In multiply relapsed/refractory setting (pediatrics)
 - CR 35%-40%
 - MRD-negative CR 20%–25%


von Stackelberg et al. JCO. 2016; 34:4381-4389

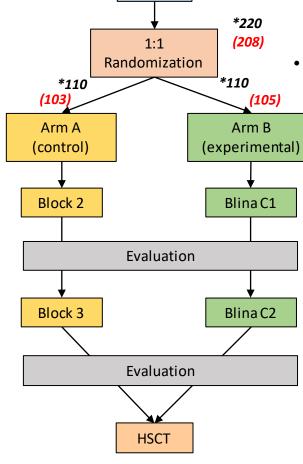
- In MRD+ setting (adults)
 - 80% MRD clearance
 - 60% subsequent DFS (bridge to HSCT)

Gokbuget et al. Blood. 2018; 131: 1522-1531

Objective of COG AALL1331:

To determine if substituting blinatumomab for intensive consolidation chemotherapy improves survival in 1st relapse of childhood/AYA B-ALL

Stratifications


- Risk group (HR vs IR)
- For HR:
 - Site (BM vs iEM)
 - For BM: CR1 duration (<18 vs 18-36mo)

UKALLR3, Block 2*

- VCR, DEX week 1
- ID MTX, PEG week 2
- CPM/ETOP week 3
- IT MTX or ITT

UKALLR3, Block 3*

- VCR, DEX week 1
- HD ARAC, Erwinia Weeks 1-2
- ID MTX, Erwinia Week 4
- IT MTX or ITT

HR/IR

- <u>Endpoints</u>
 - Primary: DFS
 - Other: OS, MRD response, ability to proceed to HSCT
- <u>Sample size n=220 (110 per arm)</u>
 - Power 85% to detect HR 0.58 with 1-sided α =0.025
 - Increase 2 yr DFS from 45% to 63%

Blina C1 and Blina C2

- Blinatumomab 15 μg/m²/day × 28 days, then 7 days off
- Dex 5 mg/m²/dose × 1 premed (C1 only)
- First patient randomized Jan 2015
- Randomization halted Sep 2019 (95% projected accrual)

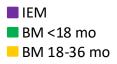
*UKALLR3 reference: Parker, et al. Lancet. 2010;376:2009-2017.

Early Closure Recommended by DSMC

- Scheduled review by DSMC Sep 2019 using data cut-off 6/30/2019 (~60% of projected events)
- <u>Despite the monitoring threshold for DFS not being crossed</u>, the DSMC recommended
 - Permanent closure of accrual to HR/IR randomization
 - Immediate cross-over to experimental Arm B for patients still receiving therapy
- DSMC recommendation based on
 - The difference in <u>DFS and OS</u> between arms
 - The profound difference in **toxicity** between arms
 - The highly significant difference in <u>MRD</u> clearance rates between arms

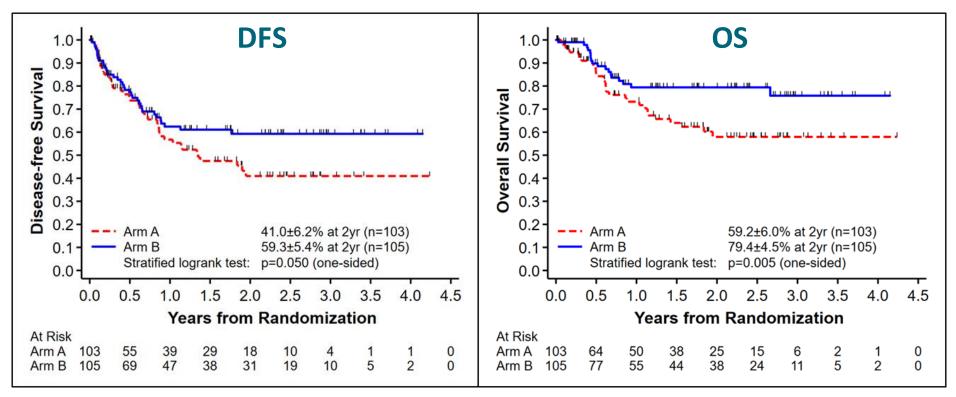
CHILDREN'S ONCOLOGY GROUP

Baseline Characteristics


		Arm A (n=103)	Arm B (n=105)
	Age at enrollment (years)		
	Median (range)	9 (1-27)	9 (1-25)
	1-9	55 (53%)	55 (52%)
	10-17	30 (29%)	35 (33%)
16% AYA 🔶	18-30	18 (18%)	15 (14%)
	Sex		
	Female	49 (48%)	48 (46%)
	Male	54 (52%)	57 (54%)
	NCI Risk Group at Diagnosis		
	High Risk	60 (58%)	59 (56%)
	Standard Risk	43 (42%)	46 (44%)
	Cytogenetic Groups at Diagnosis		
\rightarrow	Favorable (Tri 4/10, ETV6-RUNX1)	16 (18%)	21 (23%)
	KMT2A-rearranged	9 (10%)	7 (8%)
	Hypodiploidy	1 (1%)	0
'S	Other	65 (71%)	63 (69%)
	None	12	14

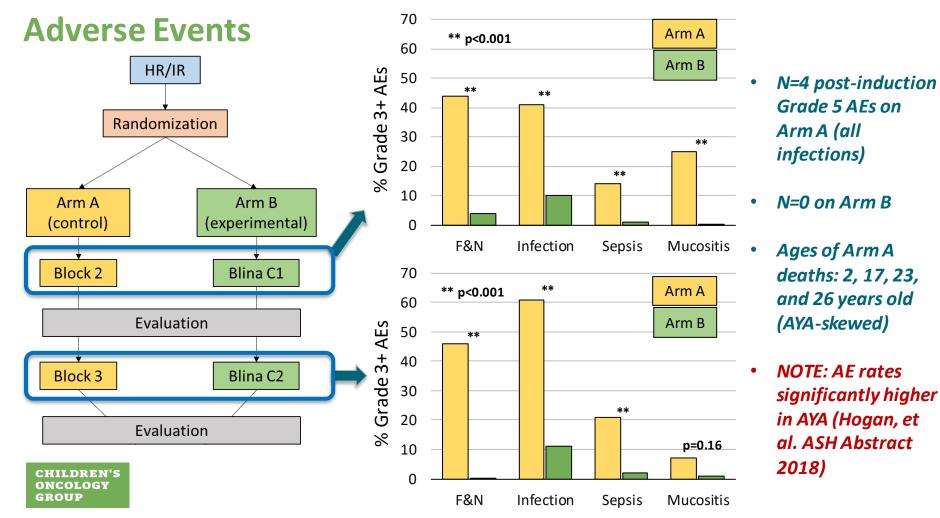
CHILDREN'S ONCOLOGY GROUP

Randomization Stratification Factors


Stratification Factors	Arm A (n=103)	Arm B (n=105)
Risk Group Assignment after Block 1		
Intermediate Risk (late BM relapse, MRD high)	34 (33%)	36 (34%)
High Risk (early relapse)	69 (67%)	69 (66%)
High Risk Subsets		
 Marrow, CR1 <18 months (very early) 	18 (26%)	18 (26%)
Marrow, CR1 18-36 months (early)	41 (59%)	41 (59%)
IEM, CR1 <18 months	10 (14%)	10 (14%)

CHILDREN'S ONCOLOGY GROUP

Survival: Arm A (chemotherapy) vs Arm B (blinatumomab)



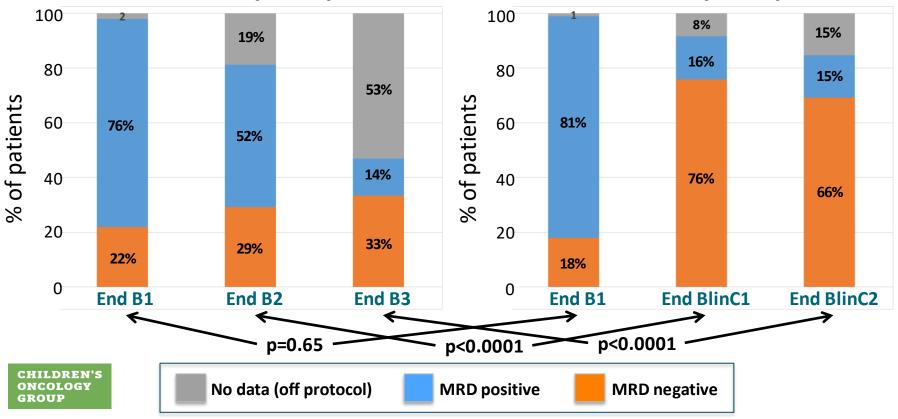
Median follow up 1.4 years

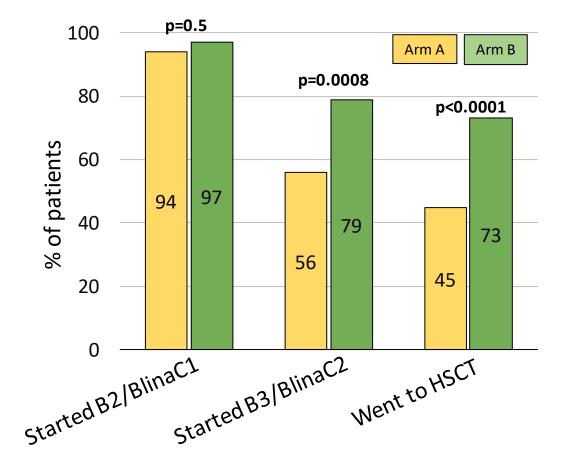
Brown PA, et al. Blood. 2019;134(suppl_2):LBA-1.

CHILDREN'S

ONCOLOGY GROUP

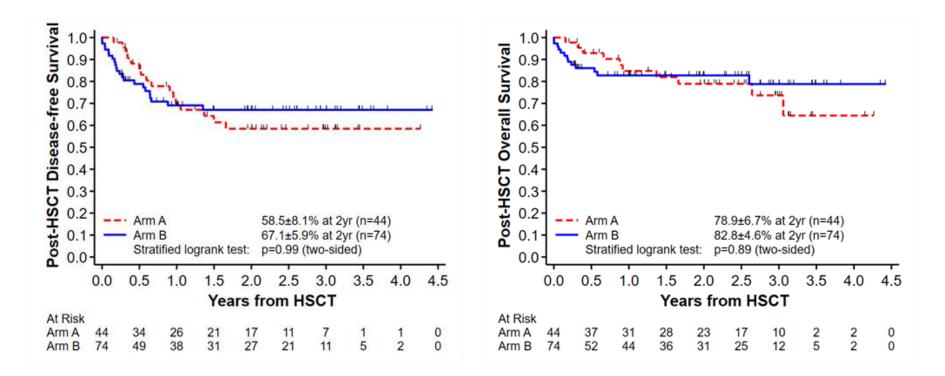
Blinatumomab-Related AEs on Arm B


	Blina C1 (n=99)		Blina C2 (n=83)	
Blinatumomab-related AEs	Any grade (%)	Grade 3-4 (%)	Any grade (%)	Grade 3-4 (%)
Cytokine Release Syndrome	22%	1%	1%	0%
Neurotoxicity	18%	3%	11%	2%
Seizure	4%	1%	0%	0%
Other (Encephalopathic)	14%	2%	11%	2%


MRD Clearance (for iBM and BM+EM)

Arm A (n=96)

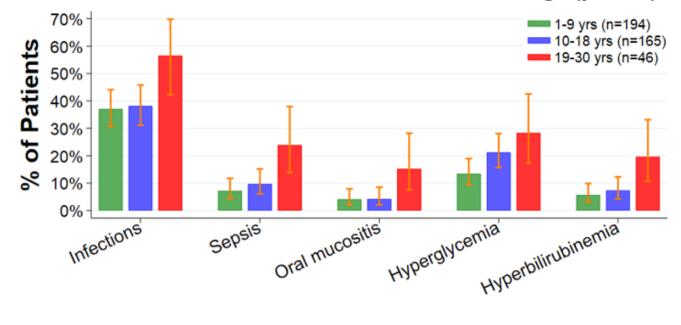
Arm B (n=95)


Drop Out/HSCT Rates: Arm A vs Arm B

A significant contributor to the improved outcomes for Arm B (blina) vs Arm A (chemo) in HR/IR relapses may be the ability of blinatumomab to successfully bridge to HSCT

Brown PA, et al. Blood. 2019;134(suppl 2):LBA-1.

Post-HSCT Survival

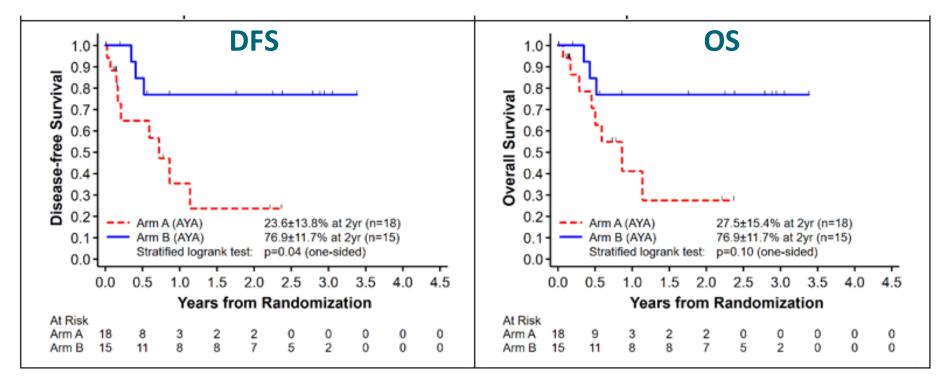

CHILDREN'S ONCOLOGY GROUP

Baseline Characteristics

		Arm A (n=103)	Arm B (n=105)
	Age at enrollment (years)		
	Median (range)	9 (1-27)	9 (1-25)
	1-9	55 (53%)	55 (52%)
	10-17	30 (29%)	35 (33%)
16% AYA 🔶	18-30	18 (18%)	15 (14%)
	Sex		
	Female	49 (48%)	48 (46%)
	Male	54 (52%)	57 (54%)
	NCI Risk Group at Diagnosis		
	High Risk	60 (58%)	59 (56%)
	Standard Risk	43 (42%)	46 (44%)
	Cytogenetic Groups at Diagnosis		
	Favorable (Tri 4/10, ETV6-RUNX1)	16 (18%)	21 (23%)
	KMT2A-rearranged	9 (10%)	7 (8%)
_	Hypodiploidy	1 (1%)	0
''S	Other	65 (71%)	63 (69%)
	None	12	14

CHILDREN'S ONCOLOGY GROUP

Results AYA Patients (Ages 18-30 at Relapse)



Grade 3-5 Adverse Events Associated with age (p<0.05)

CHILDREN'S Oncology Group

Hogan LB, et al. *Blood*. 2018;132(Suppl_1):1382.

Results AYA Patients (Ages 18-30 at Relapse)

Median follow up 1.4 years

Brown PA, et al. Blood. 2019;134(suppl_2):LBA-1.

CHILDREN'S

ONCOLOGY GROUP

Conclusions

- For children and AYA patients with HR/IR first relapse of B-ALL, blinatumomab is superior to standard chemotherapy as post-reinduction consolidation prior to HSCT, resulting in
 - Fewer and less-severe toxicities (especially AYA)
 - Higher rates of MRD response
 - Greater likelihood of proceeding to HSCT
 - Improved disease-free and overall survival
- Blinatumomab constitutes a new standard of care in this setting
- Future: Optimizing immunotherapy in relapsed ALL
 - Combination of blinatumomab and checkpoint inhibitors
 - Immunotherapy to replace or augment reinduction chemotherapy
 - CAR T cells to replace or augment HSCT

CHILDREN'S ONCOLOGY GROUP

Which of the following is NOT true of blinatumomab relative to chemotherapy as post-reinduction therapy for HR/IR first relapse of pediatric ALL? (multiple choice)

- a) Lower rate of clearance of residual disease
- b) Lower rate of serious adverse events
- c) Lower rate of relapse
- d) Higher rate of proceeding to HSCT

AALL1331 Study Committee

- Chair: Pat Brown
- Vice Chair: Jim Whitlock
- Stats: Lingyun Ji, Mini Devidas
- Heme/Onc
 - Lia Gore
 - Laura Hogan
 - Terzah Horton
 - Stevie "Nix" Hunger
 - Kala Kamdar
 - Mignon Loh
 - Jen McNeer
 - Maureen O'Brien
 - Mike Pulsipher
 - Sue Rheingold
 - Teena Bhatla
 - Sarah Tasian
 - Richard Tower

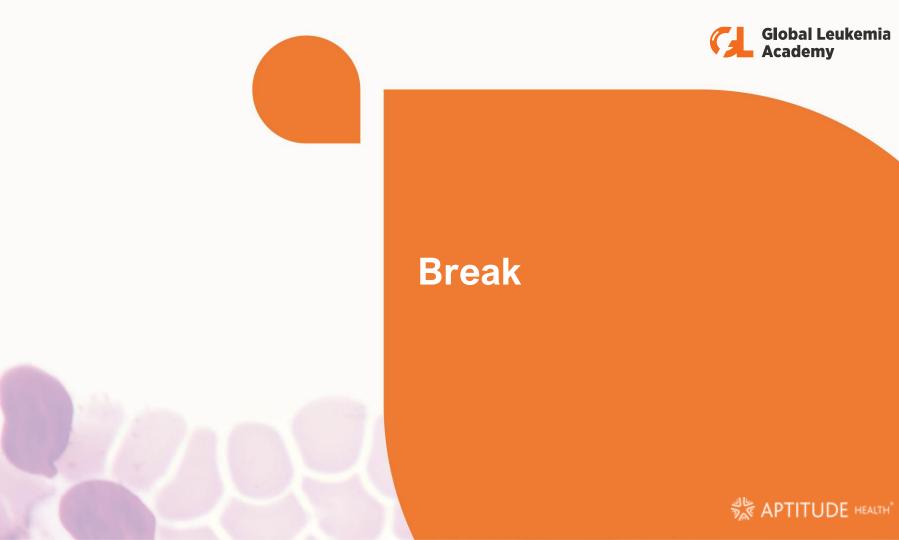
- Lab/Path
 - Mike Borowitz
 - Andrew Carroll
 - Fady Mikhail
 - Julie Gastier-Foster
- Rad Onc: Stephanie Terezakis
- Pharmacy
 - Brooke Bernhardt
 - Olga Militano
- CRA: Christopher Henchen
- Nursing
 - Deb Schissel
 - Susan Zupanec
- Research Coordinator: Susan Conway, Don Sortillon, Naira Setrakian
- Protocol Coordinator: Rachel Vasquez

Brown PA, et al. Blood. 2019;134(suppl_2):LBA-1.

CHILDREN'S

ONCOLOGY GROUP

Funding


- NCTN Operations Center Grant U10CA180886
- NCTN Statistics & Data Center Grant U10CA180899
- St. Baldrick's Foundation
- Blinatumomab provided by Amgen via Collaborative Research and Development Agreement (CRADA) with NCI/CTEP

Discussion

Panel discussion on the role of HSCT

Do patients have access to stem cell transplant in your region?

- a. Yes
- b. No
- c. It depends on their financial situation

What proportion of your patients with newly diagnosed ALL are transplant eligible?

- a. 0%–20%
- b. 21%–40%
- **c.** 41%–60%
- d. 61%–80%
- e. 81%-100%

What proportion of your transplant-eligible patients will receive transplant?

- a. 0%–20%
- b. 21%–40%
- **c.** 41%–60%
- d. 61%–80%
- e. 81%-100%

Pros and cons of transplantation

Patrick Brown

THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER

National Comprehensive Cancer Network®

Pros and Cons of Transplantation

Patrick Brown, MD

Associate Professor of Oncology, Johns Hopkins University Director, Pediatric Leukemia Program, Sidney Kimmel Comprehensive Cancer Center Vice Chair for Relapse, COG ALL Committee Chair, NCCN ALL Guideline Panel

Define "transplantation"

> Allogeneic hematopoietic stem cell transplantation

- > Possible allogeneic donors
 - Related
 - HLA identical sibling
 - Haploidentical relative
 - Unrelated
 - HLA "matched" living donor
 - Umbilical cord blood
- > Possible stem cell sources: bone marrow, PBSC
- > Other variables: prep regimen, GVHD ppx, graft processing, post-HSCT relapse prevention, etc

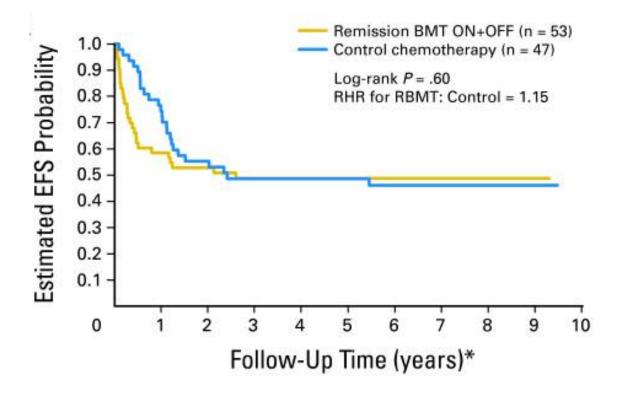
Pros and cons: Compared to what?

> Typical comparator is continued systemic therapy (multiagent chemotherapy, TKI, immunotherapy, etc)

Putative Pros	Putative Cons
 Improved survival Median survival, or proportion of "cures"? Competing events: relapse vs TRM 	 Increased toxicity Short term: Infection, aGVHD, VOD Long term: Infection, cGVHD, growth, fertility, SMN, endocrine
 Shorter duration of treatment On paper, yes but what about chronic medical issues? 	More resource-intensive
	Age and comorbidity limitations
	Limited access / need for travel

Global Leukemia Academy

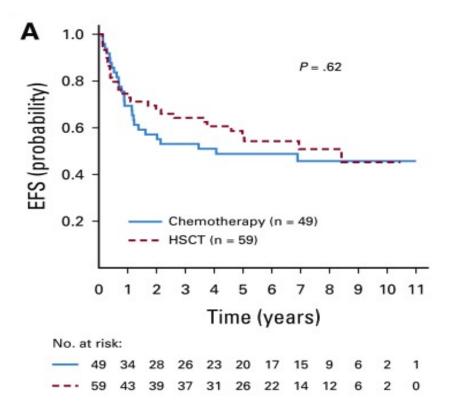
Personal communication from Dr Brown.


Does transplant improve survival in ALL?

- > Yes and no (maybe)
- > Depends on a multitude of complicated factors
 - Patient-related
 - Age (infant; child; AYA; adult; elderly)
 - Comorbidities
 - Disease-related
 - Timing: CR1 vs CR2+
 - Genetic subset (Ph+, hypodiploid, etc)
 - MRD response to induction/reinduction
 - MRD status at time of transplant
 - Treatment-related
 - Evolving effectiveness of non-transplant therapy (eg, TKI, immunotherapy)
 - Relative effectiveness of various transplant strategies (eg, TBI vs non-TBI prep)

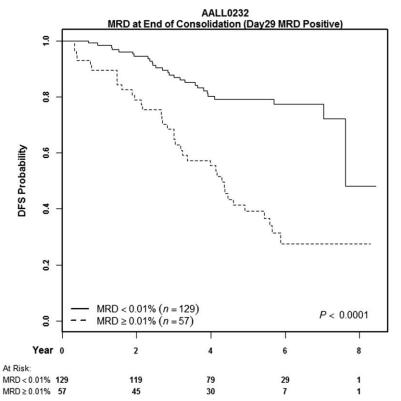
Global Leukemia

Personal communication from Dr Brown.


Infant ALL, CR1

Global Leukemia Academy

Dreyer ZE, et al. J Clin Oncol. 2011;29(2):214-222.


Hypodiploid ALL, CR1

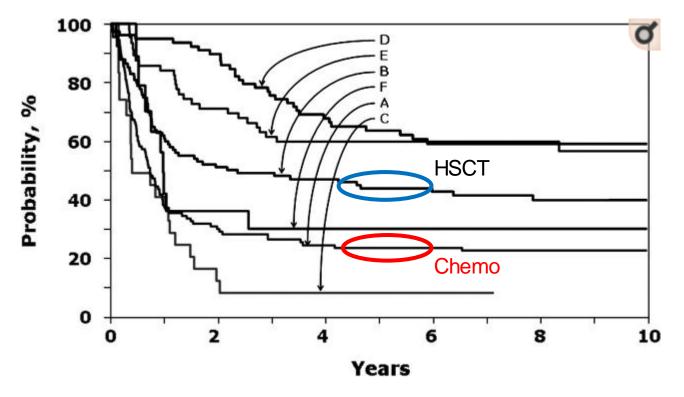
McNeer JL, et al. J Clin Oncol. 2019;37(10):780-789.

End-consolidation MRD+, CR1

Patients with HR B-ALL treated on AALL0232

MRD determined by multiparameter flow cytometry

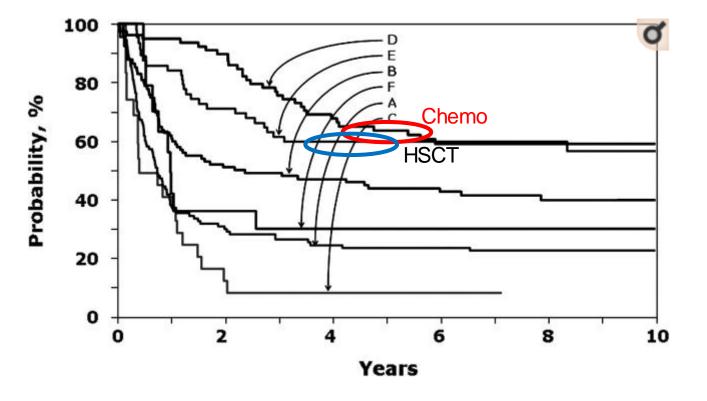
Day 29 MRD >0.1%


5-year DFS by EOC MRD MRD <0.01%: 79% ± 5% MRD ≥0.01%: 39% ± 7%

CAR T cells? Blina? HSCT?

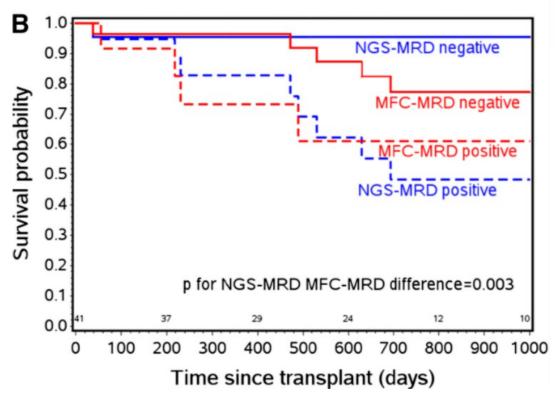
Global Leukemia Academy

Borowitz MJ, et al. Blood. 2015;126:964-971.

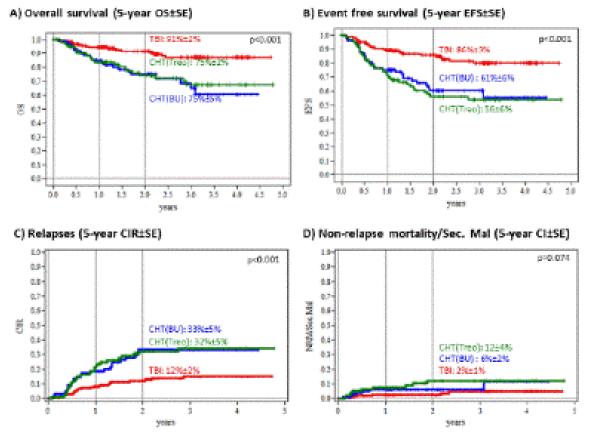

CR2, early relapse

Global Leukemia Academy

Eapen M, et al. *Blood.* 2006;107(12):4961–4967.


CR2, late relapse

Global Leukemia Academy


Eapen M, et al. *Blood.* 2006;107(12):4961–4967.

MRD status pre-transplant

Pulsipher MA, et al. *Blood.* 2015;125(22):3501–3508.

TBI vs chemo prep

Peters C, et al. EHA 2020. Abstract: 294922;S102.

Summary

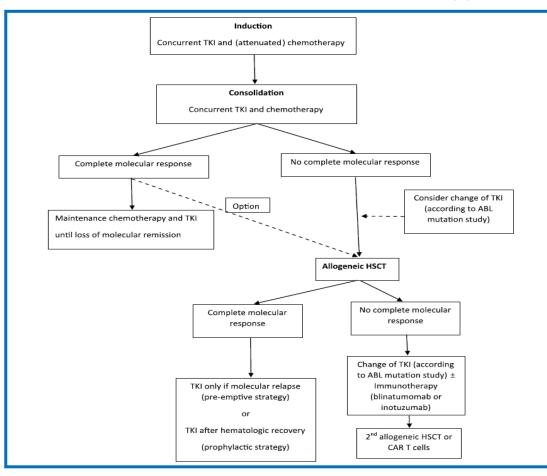
- > Transplant in ALL is currently widely accepted therapy for high-risk CR2 (ie, early first relapse), preferably after achieving MRD negative status
- > However, this may change based on evolving experience with immunotherapy (especially CAR T-cell products with potential for long-term persistence and blinatumomab)
- > All other indications for transplant in ALL are controversial and evolving
 - Ph+ in CR1: questionable benefit of transplant in TKI era
 - Adult ALL in CR1: questionable benefit of transplant given enhance efficacy of pediatricinspired regimens
 - All other high-risk CR1 (late MRD+, hypodiploid, KMT2A-r, etc): poor outcomes, but no data showing transplant better than alternative
- > Prospective, randomized clinical trials are desperately needed!

Role of transplant in MRD+ population

Josep-Maria Ribera

One simple answer:

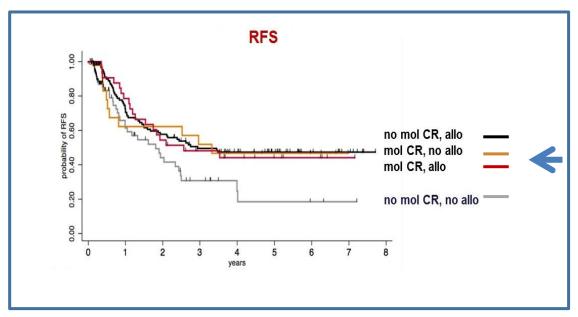
Yes, always


However...things are not so simple!

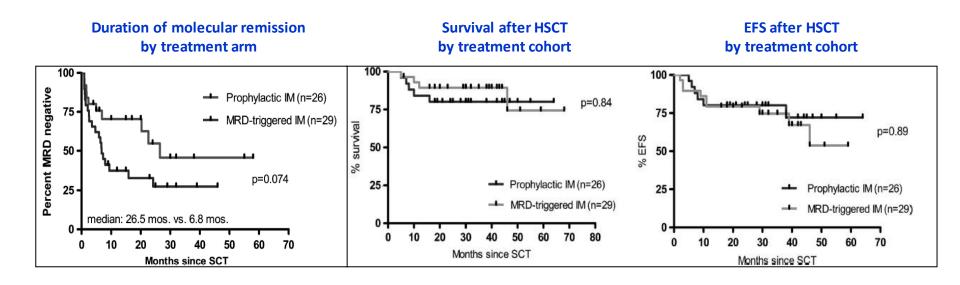
Aspects to be considered

- **Patient**: fitness, comorbidities, feasibility of HSCT
- **Type of ALL**: Ph-positive or -negative
- ALL status
 - CR1 or CR ≥1
 - Previous HSCT
- MRD characteristics: persistent positivity or MRD reappearance
- MRD level
- Possibility of effective therapies (targeted therapies, immunotherapy) in MRD+ status

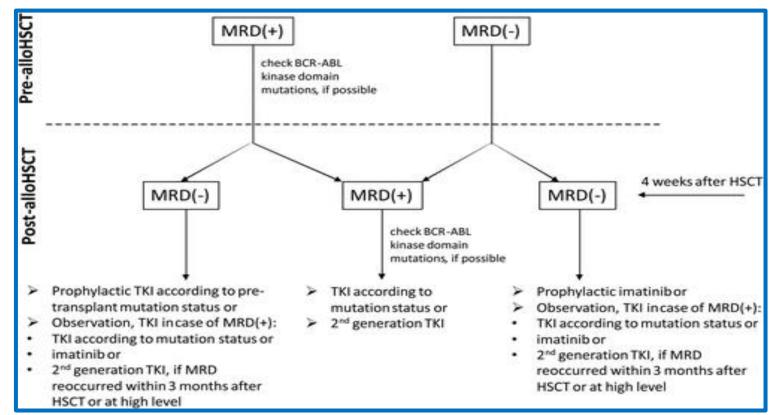
HSCT in MRD+, Ph+ ALL


Indication of HSCT in Ph+ ALL: "Standard" approach

Ribera JM, et al. Ther Adv Hematol. 2018;9:357-368.

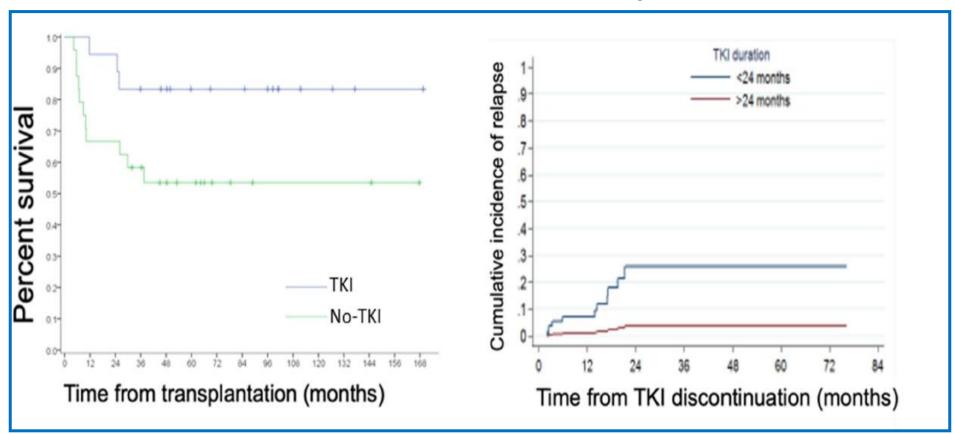

MRD after consolidation can modulate the HSCT indication

- Time-dependent analysis; Simon-Makuch plots; t0, MRD2 assessment
- HR, 1.02 [95% CI, 0.47–2.21]; *P* = .96 in molecular CR patients
- HR, 0.62 [95% CI, 0.40–0.96]; *P* = .034 in patients with detectable MRD2

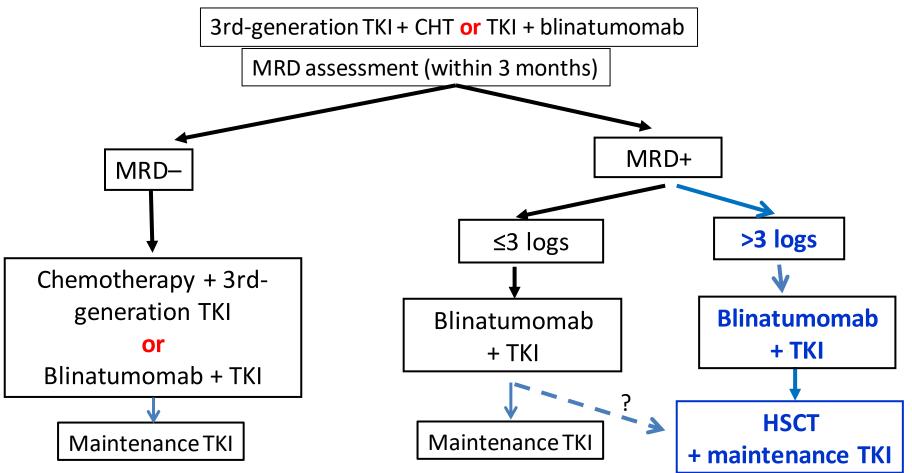


Chalandon Y, et al. *Blood*. 2015;125:3711-3719 and supplementary appendix.

Prophylactic vs MRD-triggered imatinib after allogeneic HSCT

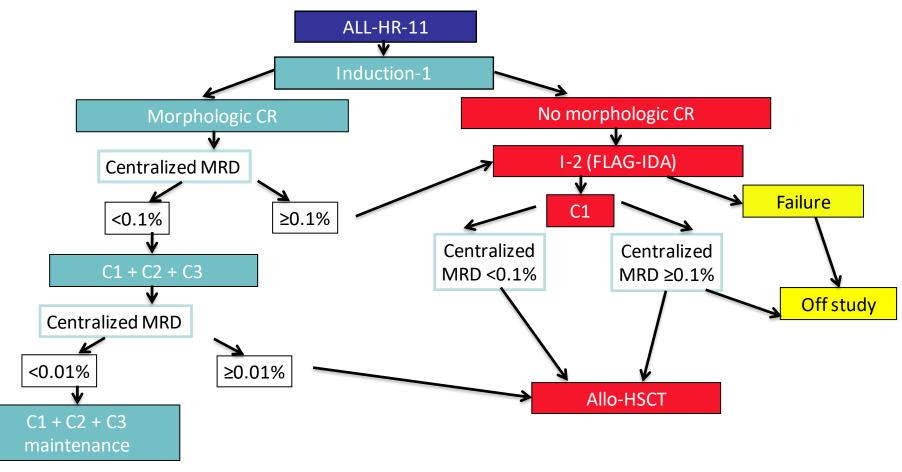


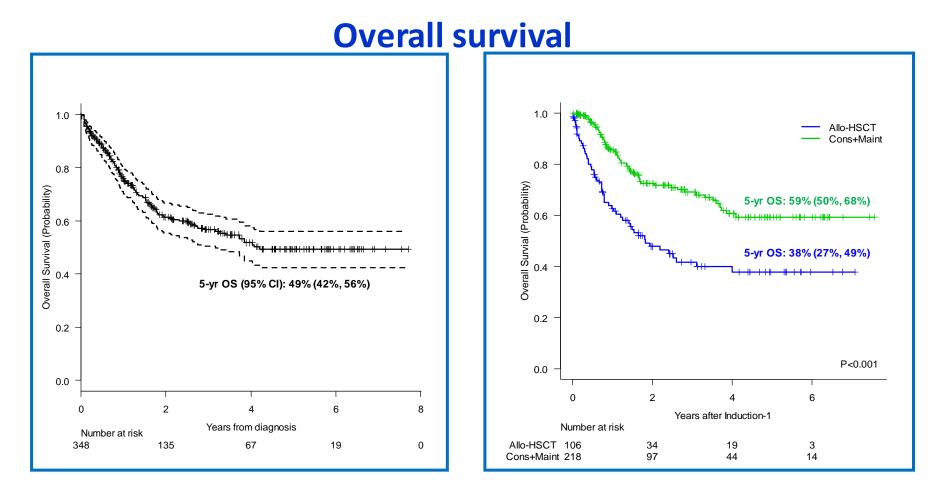
TKI to prevent relapse after allogeneic HSCT: EBMT position statement


Giebel S, et al. Cancer. 2016;122:2941-2951.

TKI after alloHSCT: MDACC experience

Saini N, et al. Blood. 2020;136:1786-1789.

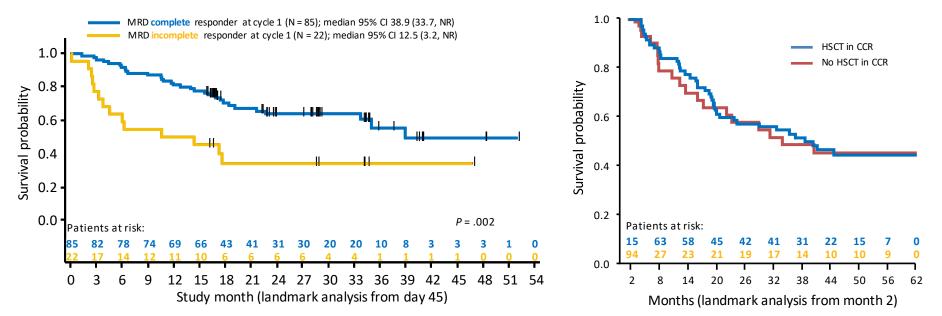

Indications for HSCT in Ph+ ALL: "Improved" approach


Personal communication from Dr Ribera.

HSCT in MRD+, Ph– ALL

HSCT in Ph- ALL: "Standard" approach (PETHEMA ALLHR11)

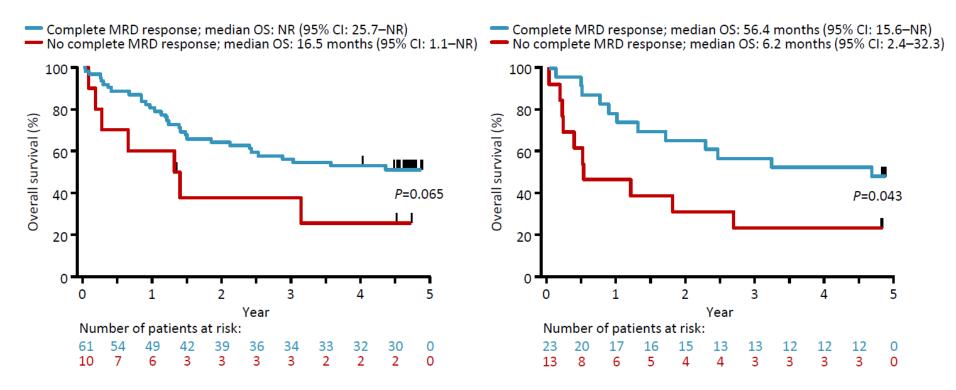

Personal communication from Dr Ribera.



Ribera JM, et al. Blood. 2020 (in press).

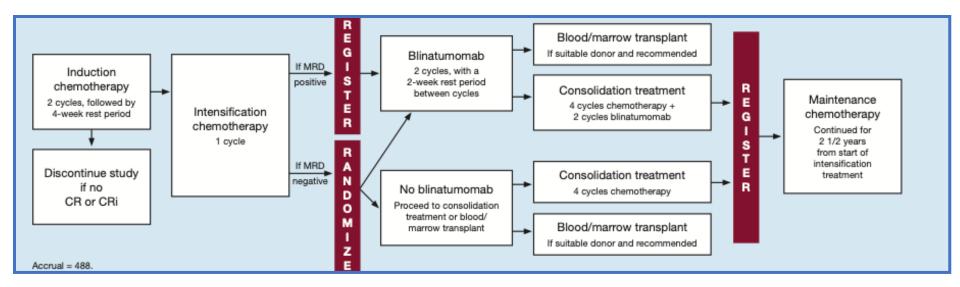
Indication in CR1 after clearance of MRD with immunotherapy: Data from BLAST trial

Overall survival according to MRD response¹



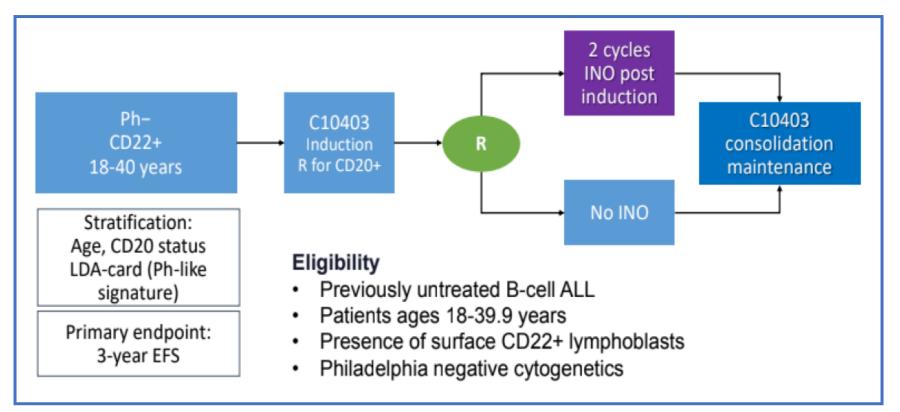
1. Gökbuget N, et al. *Blood*. 2018;131:1522-1531; 2. Gökbuget N, et al. ASH 2018. Abstract 554 and oral presentation. https://clinicaltrials.gov/ct2/show/NCT02003222

BLAST trial: Overall survival

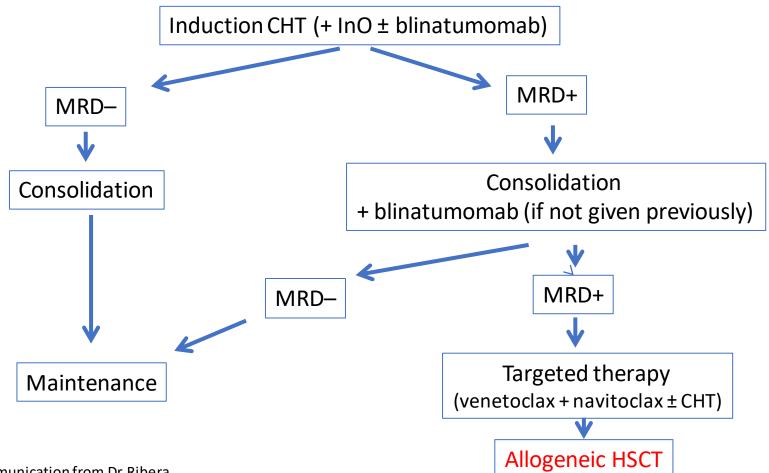

According to complete MRD response, in patients with/without HSCT in CCR

Patients with HSCT in continuous CR (starting at day of HSCT) Patients without HSCT in continuous CR (starting at Day 45, after MRD assessment)

Gökbuget N, et al. EHA 2019; Abstract S1619 and oral presentation.


A phase III randomized trial of blinatumomab for BCR-ABL– BCP ALL in adults (ECOG ACRIN 1910)*

*Accrual completed.


https://clinicaltrials.gov/ct2/show/NCT02003222

Inotuzumab in AYA with BCP ALL (phase 3 Alliance 041501 trial)

Trial ongoing https://clinicaltrials.gov/ct2/show/NCT03150693

Indications for HSCT in Ph– ALL: "Improved" approach

Personal communication from Dr Ribera.

Concluding remarks

- MRD is an essential tool to guide therapy in ALL
- MRD+ status is a general indication for allogeneic HSCT
- The introduction of immunotherapy ± targeted therapies in CR1 will decrease the frequency of MRD positivity and could modulate the general indication of allogeneic HSCT in MDR+ patients
- MRD+ beyond CR1 should be managed with immunotherapy ± targeted therapies and should be followed by alloHSCT

Panel discussion on the role of HSCT: Discussion and voting

In your practice, what is the most important factor for deciding ineligibility for HSCT?

- a. Age ≥65 years
- b. Frailty
- c. Comorbidities

Do you think that MRD can guide your decision on HSCT?

- a. Yes, as patients who achieve MRD negativity are on the way to cure and do not require HSCT
- b. No, as HSCT is the SOC today and should be part of the treatment algorithm of patients independently of MRD
- c. I do not know

What are the factors influencing the increased probability of relapse post-HSCT?

- a. Disease status
- b. Chemosensitivity at the time of transplantation
- c. Development of graft-vs-host disease
- d. All of the above
- e. None of the above

Debate on CD19-targeted approaches

Josep-Maria Ribera and Elias Jabbour

APTITUDE HEALTH

What is your preferred ALL treatment choice in salvage if these therapies were made available in your country?

- a. CAR T therapies
- b. Bispecifics

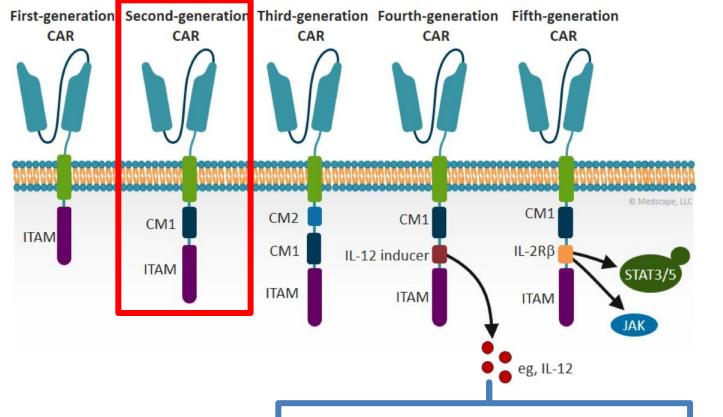
Do you think that children and young adults with active nonbulky CNS disease can safely be treated with CD19 CAR T cells?

a. Yes

- b. No
- c. I do not know

What advantages do you see in bispecifics vs CAR T cells?

- a. Readily available off the shelf
- b. Dosing can be easily interrupted in case of toxicity
- c. Can be combined with chemotherapy
- d. I do not know


CD19 CAR T

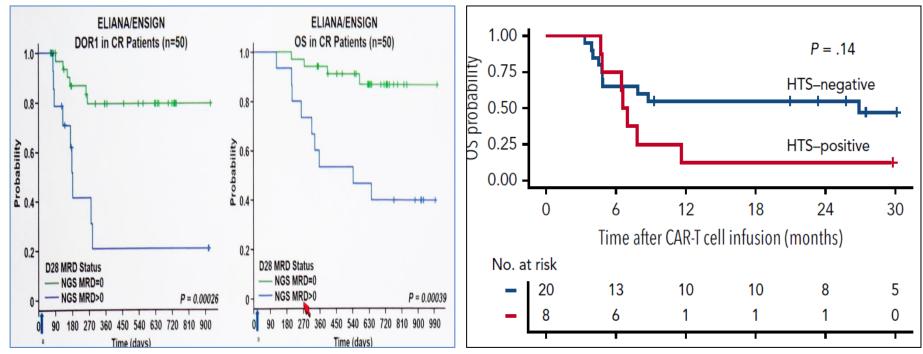
Josep-Maria Ribera

Differences in CAR T Cell Therapies

Tokarew N, et al. Br J Cancer. 2019;120:26-37.

Possibilities of improvement in efficacy

CD19 CAR T: Main results in R/R ALL


Author, reference	Institution	Costimulatory domain	Age (median, range)	Infused N	ORR %	CRS, %	Neurotoxicity, %	05
Maude et al. ¹⁵	UPenn	4-1BB	14years (5–60)	30	90%	100% (severe, 27%)	43%	78% at 6 months
Davila et al. ¹⁶	MSKCC	CD28	50 years (NA)	16	88%	severe, 44%	Gr 3/4, 25%	NA
Lee <i>et al</i> . ¹⁷	NCI	CD28	15years (5–27)	21	67%	76% (Gr 3/4, 29%)	29% (Gr 3/4, 5%)	52% at 12 months
Turtle et al. ¹⁸	FHCRC	4-1BB	40years (20–73)	30	93%	83%	50% (Gr 3/4, 50%)	NA
Gardner et al. ¹⁹	SCRI	4-1BB	12 years (1-25)	43	93%	93% (Gr 3/4, 23%)	49% (Gr 3/4, 21%)	69.5% at 12 months
Maude et al. ²⁰	Novartis	4-1BB	11 years (3–23)	75 ¹	81%	77%	40% (Gr 3/4, 13%)	76% at 12 months
Park et al. ²¹	MSKCC	CD28	44 years (23–74)	53²	83%	85% (Gr 3/4, 26%)	48% (Gr 3/4, 42%)	median, 12.5 months

Ribera JM, et al. Ther Adv Hematol. 2020;11:1-15.

Second-generation CD19 CAR T in R/R adult ALL: Facts

- Limited experience, short-term results
- High CR rate (80%–90%), MRD– in 60%–80%
- Short duration of response (median 8–18 mo)
- Better results in patients with low tumor mass, promising in MRD+ patients
- Need for subsequent alloHSCT unclear, with good results in some series
- Early MRD assessment by high-throughput sequencing predicts outcome
- Prognostic factors in MRD– CR patients identified
- Major concerns: durability, CD19– relapses

Early clearance of the leukemic clone by HTS associated with better outcome

Median OS 26.9 vs 6.8 months

Pulsipher MA, et al. ASH 2018. Abstract 1551.

Hay K, et al. Blood. 2019;133:1652-1663.

CD19 CAR-T cells in relapsed/refractory adult ALL

CAR: CD19 4-1BB

59 pts apheresis

53 infused

Patient characteristics

Median age: 39 (20–76) years

21% Ph+

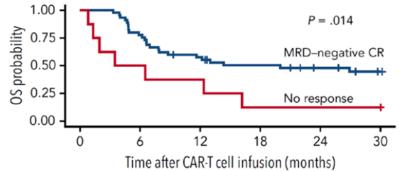
43% prior SCT

26% bridging

Disease at lymphodepletion:

64% (N=34) morphological BM relapse (≥5%)

- 13 extramedullary


4% (N=2) extramedullary only

- 32% (N=17) MRD pos
 - 3 extramedullary

85% in CR and MRD neg after infusion

Hay KA, et al. Blood 2019;133:1652-63.

Overall survival after infusion

Prognostic factors for EFS

	Multivariable analysis		
Variable	HR	95% CI	P
LDH prelymphodepletion (per 100 U/L increment)	1.39	1.11-1.73	.004
Platelets prelymphodepletion (per 50 000/µL increment)	0.74	0.53-1.03	.069
Fludarabine added to lymphodepletion	0.25	0.15-0.78	.003
HCT after CAR T-cell therapy	0.39	0.13-1.15	.088

EFS, event-free survival.

Challenges in CAR T for BCP ALL

- Broad and immediate availability
- Manufacturing failure
- Persistence
- CD19– relapses
- Need for subsequent alloHSCT
- Indication outside BCP ALL
- Economic issues

B-cell aplasia (BCA) and relapse

Table 1. Relapse rates in subjects who did not receive HSCT post-CAR T treatment

Relapse	CD19⁺, <i>n</i> (%)	CD19⁻, <i>n</i> (%)	No relapse	Ν
longBCA	2 (22.2)	4 (44.4)	3 (33.3)	9
mediumBCA	2 (50.0)	0 (0)	2 (50.0)	4
shortBCA	6 (75.0)	2 (25.0)	0 (0.0)	8

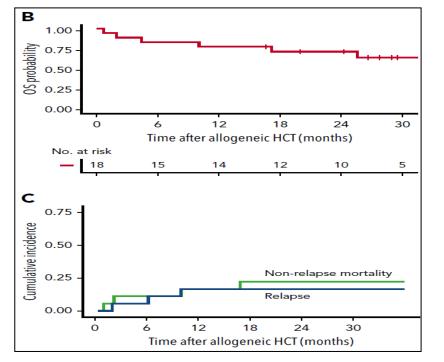
Finney OC, et al. J Clin Invest. 2019;129:2123-2132.

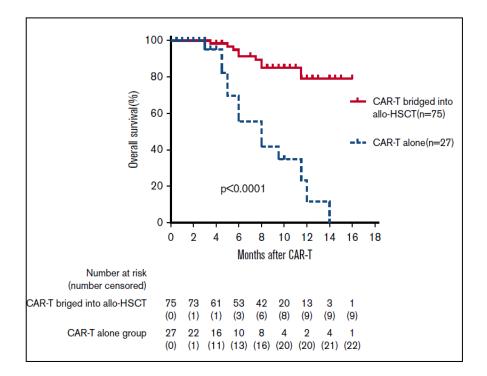
Tumor antigen escape from CAR T-cell therapy

MINI REVIEW

Table 1. A summary of antigen escape in CD19 CAR trials for ALL

Trial	Population	CD19 CAR construct	Relapse rate	CD19-negative relapse rate
Children's Hospital of Philadelphia phase I	Pediatric	FMC63-4-1BB-ζ	36% (20/55)	24% (13/55)
Novartis phase II (ELIANA)	Pediatric	FMC63-4-1BB-ζ	33% (20/61)	25% (15/61)
Seattle Children's Research Institute phase I	Pediatric	FMC63-4-1BB-ζ	45% (18/40)	18% (7/40)
NCI phase I	Pediatric	FMC63-CD28-ζ	29% (8/28)	18% (5/28)
Memorial Sloan Kettering phase I	Adult	SJ25C1-CD28-ζ	57% (25/44)	9% (4/44)
Fred Hutchinson Cancer Center phase I	Adult	FMC63-4-1BB-ζ	31% (9/29)	7% (2/29)




Overall, 50% of relapses are CD19– CD19+ relapses are more frequent in adults

Majzner RG, Mackal CL. Cancer Discov. 2018;8:1219-1226.

HSCT after CAR T

AlloHSCT in MRD- patients after CAR T

Hay K, et al. *Blood*. 2019;133:1652-1663.

Strategies to improve outcomes of CD19 CAR T-cell Tx

Beyond CD19 target: prevent CD19–relapse

- CD22
- CD19+CD22
- CD19+CD20+CD22
- CD123

Improve CAR T-cell persistence/efficacy

- Fully human/humanized scFv to prevent immune rejection
- Combination with checkpoint inhibitors (eg, Tisa-Cel + pembro/nivolumab)
- Apheresis of T cells in earlier phases of the disease, especially in older patients
- Improve availability
 - Off-the-shelf CAR T
- Expand indications beyond BCP ALL
 - CAR T (CD7, CD1a)
 - NK CAR

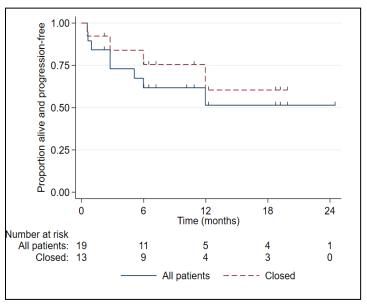
AUTO-1, a novel fast-off rate CD19 CAR in R/R BCP ALL

- Phase 1 of AUTO1 ALLCAR19 study in R/R BCP ALL
- AUTO1: Second-generation CD19 CAR T with lower affinity for CD19 and shorter target interaction time (more physiologic T-cell activation and reduced toxicity)
- 19 pts infused (additional 13 in a closed process)

Median age 43 yr (18-62), 6/19 with Ph+ ALL Prior tx with blinatumomab or inotuzumab: 73% Prior HSCT: 63%

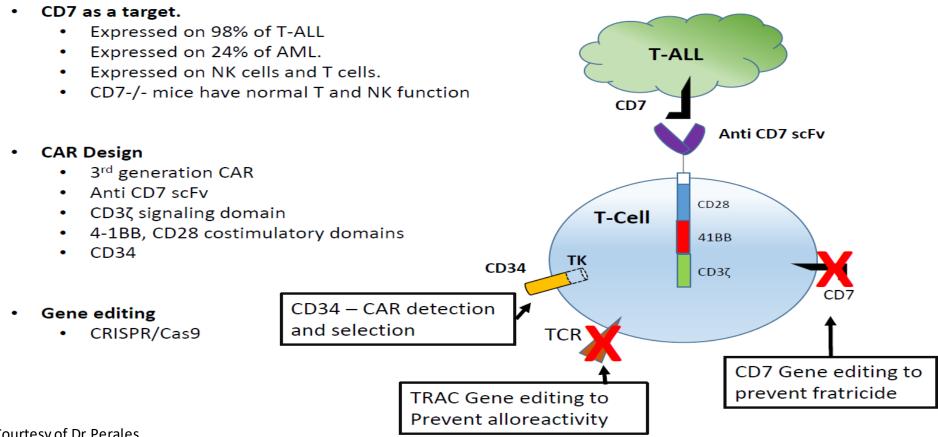
Refractory: 4; 1st rel: 8; 2nd rel: 5; 3rd rel: 2. >50% blasts: 42% Median f/u: 11 mo (0.5-21)

• Efficacy (15 pts evaluable)


MRD-CR: 84%, 11/19 in continuous MRD-CR

(median 12 mo) 6-mo EFS: 62%

Subsequent alloHSCT: 1


• Safety

No grade ≥3 CRS Grade ≥3 neurologic toxicity: 16%

Roddie C, et al. EHA 2020. Abstract S119, and SOHO 2020.

CD7 CAR Design

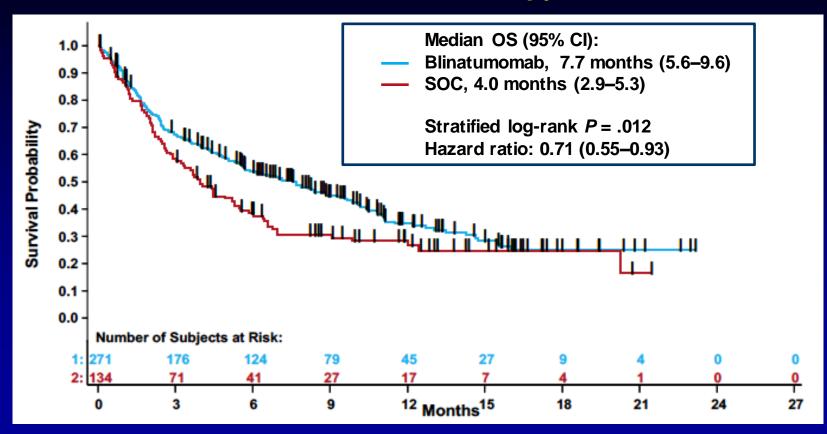
Courtesy of Dr Perales.

Bispecifics

Elias Jabbour

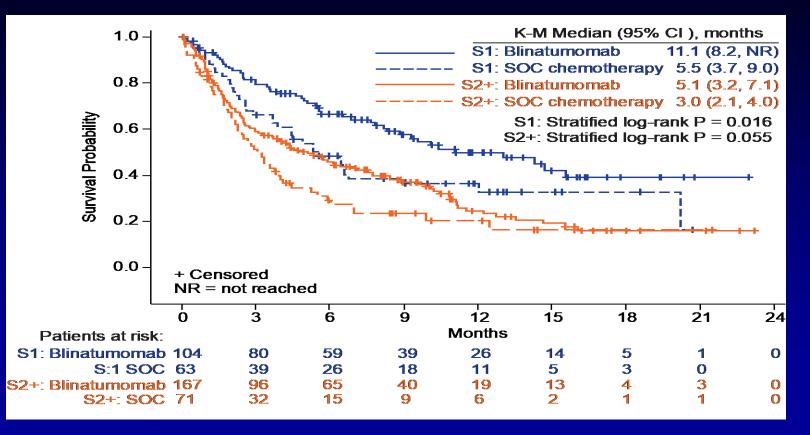
Bispecifics in R/R ALL

Elias Jabbour, MD Professor of Medicine Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX

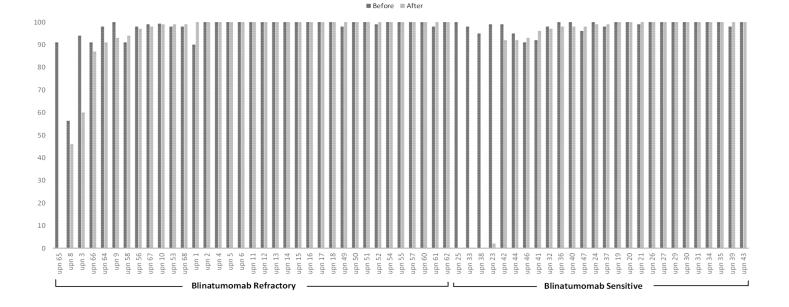

Autumn 2020

Historical Results in R-R ALL

Poor prognosis in R-R ALL Rx with standard of care (SOC) chemotherapy


Rate (95% CI)	No Prior Salvage (S1)	1 Prior Salvage (S2)	≥2 Prior Salvages (S3)
Rate of CR, %	40	21	11
Median OS, months	5.8	3.4	2.9

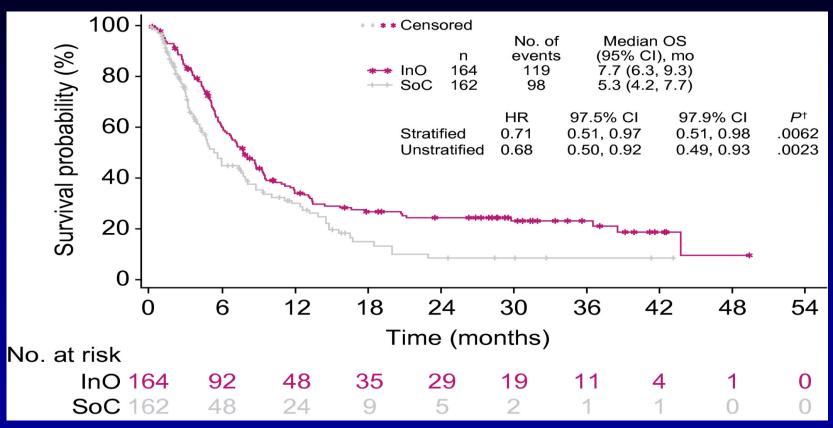
Blinatumomab vs Chemotherapy in R-R ALL


Kantarjian. N Engl J Med. 2017;376:836-847.

Phase III TOWER Study: Survival by Salvage

Dombret. Leuk Lymphoma. April 2019.

CD19 (%) Expression Before and After Blinatumomab Therapy



61 patients evaluated for immunophenotype; 56 (92%) had CD19+ disease

- 5 (8%) had ALL recurrence with CD19– disease
- 2 patients progressed with lower CD19+ disease

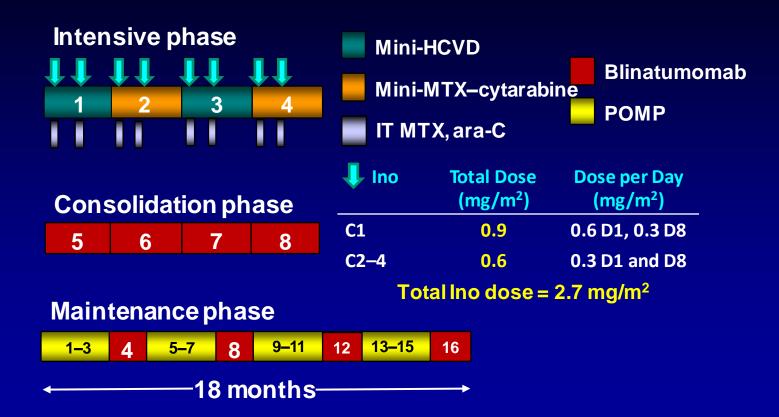
Jabbour. Am J Hematol. 2018;376:836-847.

OS After Censoring

Kantarjian H, et al. Cancer. 2019;125(14):2474-2487.

AlloSCT Post-inotuzumab in R-R ALL

- 236 pts Rx with inotuzumab; 103 (43%) alloSCT
- Ino as S1 in 62%; prior SCT 15%
- Median OS post-SCT 9.2 mo; 2-yr OS 46%
- 73 pts had alloSCT in CR post-Ino: 2-yr OS 51%
- VOD 19/101 = 20%
- Lower risk of mortality post-HSCT associated with MRD negativity and no prior HSCT

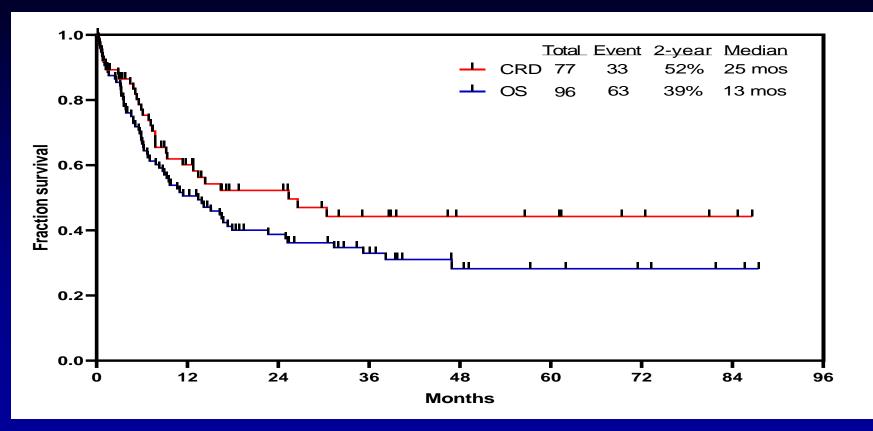

Phase II Study of Inotuzumab in R-R Children-AYA ALL (COG ALL0232)

- 48 pts; median age 9 yr (1–21). S2+ 67%. Prior blina 29%; prior alloSCT 23%; prior CAR T 23%
- Inotuzumab weekly × 3: 0.8–0.5 mg/m² D1, 0.5 mg/m² D8 and D15. Total 1.8–1.5 mg/m²/course, up to 6 courses
- CR/CRi 30/48 (62%), MRD- 19/29 (65%)
- 12-mo EFS 36%; 12-mo OS 40%
- 19 pts (39%) received alloSCT
- 5 VOD (10.4%): all post-SCT: 5/19 (26%)

Mini-HCVD-Ino-Blina in ALL: Design

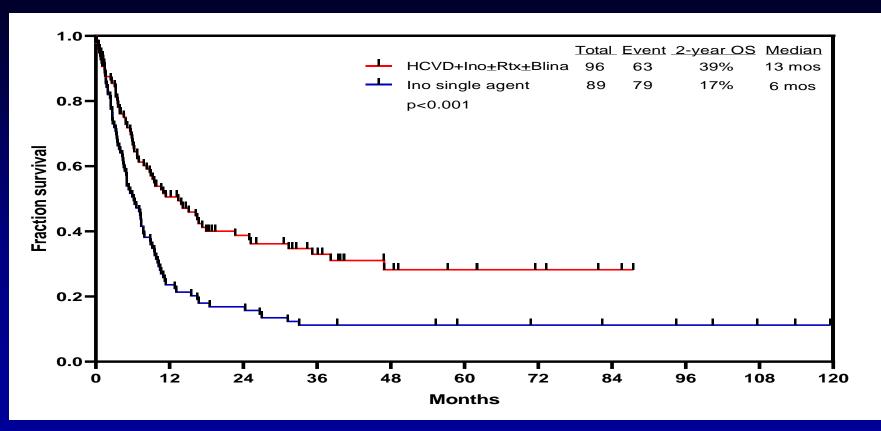
- Dose-reduced hyperCVD for 4–8 courses
 - Cyclophosphamide (150 mg/m² \times 6) 50% dose reduction
 - Dexamethasone (20 mg) 50% dose reduction
 - No anthracycline
 - Methotrexate (250 mg/m²) 75% dose reduction
 - Cytarabine (0.5 g/m² \times 4) 83% dose reduction
- Inotuzumab on D3 (first 4 courses)
 - Modified to 0.9 mg/m² C1 (0.6 and 0.3 on D1 and 8) and 0.6 mg/m² C2-4 (0.3 and 0.3 on D1 and 8)
- Rituximab D2 and D8 (first 4 courses) for CD20+
- IT chemotherapy days 2 and 8 (first 4 courses)
- Blinatumomab4 courses and 3 courses during maintenance
- POMP maintenance for 3 years, reduced to 1 year

Mini-HCVD + Ino ± Blinatumomab in R-R ALL: Modified Design

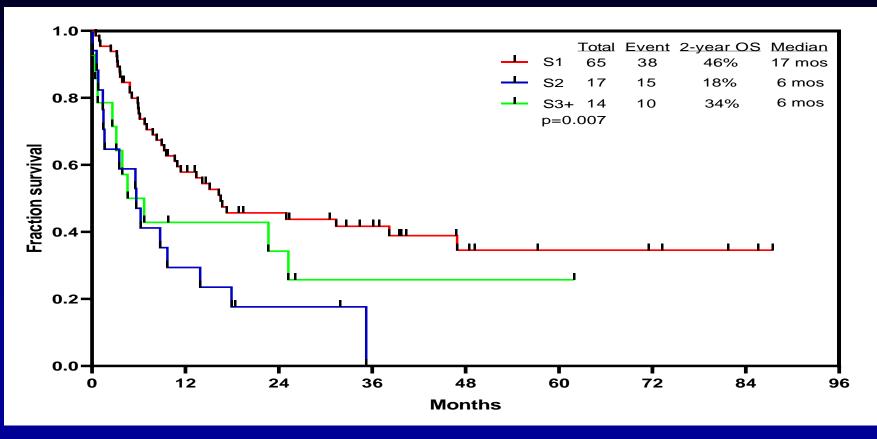


Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Sasaki K, et al. Blood. 2018;132:abstract 553.

Mini-HCVD + Ino ± Blinatumomab in R-R ALL: Response by Salvage (N = 96)


Response	Ν	Percentage
Salvage 1	58/64	91
S1, primary refractory	8	100
S1, CRD1 <12 mo	21	84
S1, CRD1 ≥12 mo	29	94
Salvage 2	11	61
Salvage ≥3	8	57
Overall	77	80
MRD-	62/75	83
Salvage 1	50/56	89
Salvage ≥2	12/19	63
Early death	7	7

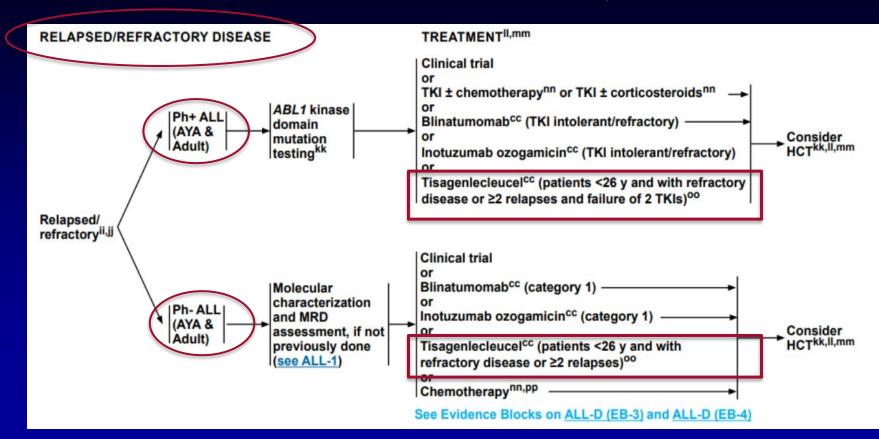
Mini-HCVD + Ino ± Blinatumomab in R/R ALL: CR Duration and OS (median F/U 48 months)


Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Sasaki K, et al. Blood. 2018;132(suppl):553.

Mini-HCVD + Ino ± Blinatumomab in R/R ALL: Historical Comparison

Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Sasaki K, et al. Blood. 2018;132(suppl):553.

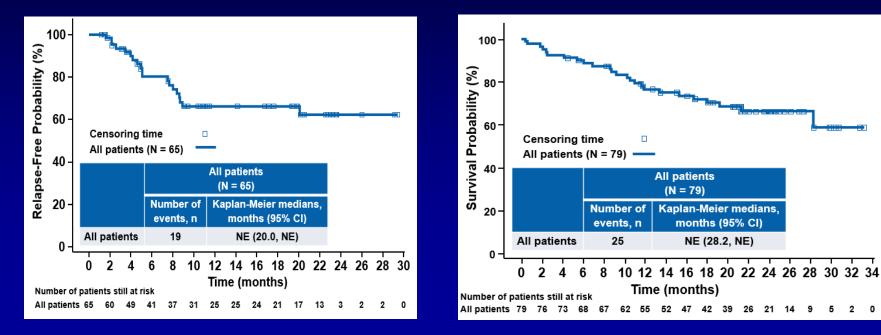
Mini-HCVD + Ino ± Blinatumomab in R/R ALL: OS by Salvage Status



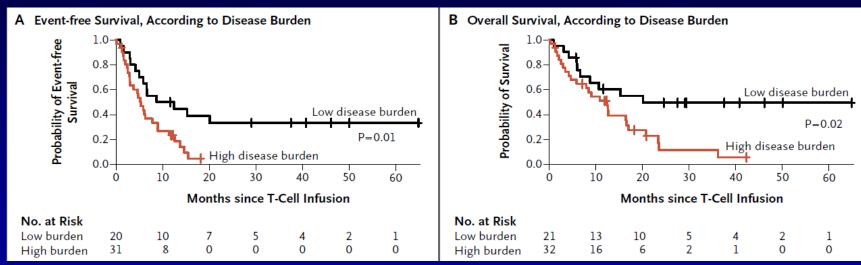
Sasaki. Blood. 2018;132:abstract 553; Jabbour E. JAMA Oncol. 2018;4:230.

Mini-HCVD + Ino ± Blina in ALL: VOD

- N = 96 pts
 - 67 pts Rx monthly InO; of them, 22 (33%) received subsequent alloSCT
 - 29 pts Rx weekly low-dose InO followed by Blina; of them, 15 (52%) received subsequent alloSCT
- VOD = 9 (9%); all had at least 1 alloSCT, 3 had 2 alloSCT
 - 9/67 (single; 13%) vs 0/29 (weekly LD; 0%)


Where Does CAR T-Cell Therapy Stand?

NCCN Guidelines ALL version 1.2020: https://www.nccn.org/professionals/physician_gls/pdf/all.pdf


ELIANA Trial Update

- 113 screened, 97 enrolled, 79 infused
- 3-mo CR 65/79 = 82%, or 65/97 = 67%
- 24-mo OS 66%; RFS 62%. Grade 3–4 CRS 49%. ICU 48%

CD19-CD28z CAR (MSKCC): Outcome by Tumor Burden

- High tumor burden
 - Bone marrow blasts ≥5% (n = 27)
 - Bone marrow blasts <5% + extramedullary disease (n = 5)</p>
- Low tumor burden (MRD+ disease; n = 21)

Median EFS Low tumor burden (MRD+): 10.6 mo High tumor burden: 5.3 mo Median OS Low tumor burden (MRD+): 20.1 mo High tumor burden: 12.4 mo

Park. NEngl J Med. 2018;378:449-459.

Adult R-R ALL: CAR T vs MoAb

Parameter	HCVD-Ino- Blina	MSKCC (R-R)	MSKCC (MRD)	Blina (MRD)
Ν	ITT	Evaluable		ITT
ORR, %	78	75	95	NA
MRD–, %	83	67		78
Median OS, mo	14	12.4	20.1	36
Salvage 1, mo	e 1, mo 25 Not reported Not reported		40	
Toxicities	VOD (10%)	G3–4 CRS (26%); NE (42%)		G3–4 CRS (2%); NE (13%)

Venetoclax + Navitoclax in R/R ALL

- Navitoclax inhibits BCL2, BCL-XL, and BCL-W
- Venetoclax-navitoclax synergistic antitumor activity
- Rx with Ven/Nav + chemoRx (PEG-ASP, VCR, Dex)
- 47 pts (25 B-ALL + 19 T-ALL + 3 LL), median age 29
- Median 4 prior therapies; 28% post-ASCT, 13% post-CAR T
- ORR 28/47 (60%); MRD negativity 15/26 (58%)
- 4/32 (13%) CR/CRi/CRp at D8 after Ven/Nav
- Median OS 7.8 mo; 9.7 mo (B-ALL) and 6.6 mo (T-ALL)
- Preliminary BH3 profiling analysis revealed a trend in BCL2 dependence at baseline in T-ALL cells vs both BCL2 and BCL-XL dependence in B-ALL cells

Salvage Therapies in ALL: Conclusions

- Very effective salvage therapy in R/R ALL
 - High MRD-negativity rate
 - Best outcome in salvage 1
- Combination with low-dose chemotherapy
 - Safe and effective
 - Median survival 14 months
 - Salvage 1: 24 months (2-year OS rate >50%)
- AEs better controlled
 - CRS: debulk with sequential chemotherapy
 - VOD lower doses explored
- CAR T-cell Rx offered post-blinatumomab and -inotuzumab failure
 - Salvage 2 and high-risk salvage 1 (eg, MLL)
 - Consolidation in high-risk patients (replacing alloSCT)
- Better "blinatumomab" and "inotuzumab" needed
 - Better "Blina": long half-life; SQ; no neurotoxicities
 - Better "InO": no VOD

Debate on CD19-targeted approaches: Discussion and voting

After listening to the debate, what is your preferred ALL treatment choice in salvage?

- a. CAR T therapies
- b. Bispecifics

After listening to the debate, do you think that children and young adults with active nonbulky CNS disease can safely be treated with CD19 CAR T cells?

- a. Yes
- b. No
- c. I do not know

After listening to the debate, what advantages do you see in bispecifics vs CAR T cells?

- a. Readily available off the shelf
- b. Dosing can be easily interrupted in case of toxicity
- c. Can be combined with chemotherapy
- d. I do not know

Emerging data and the management of ALL patients during COVID-19

Elias Jabbour

Emerging Data and the Management of ALL Patients During COVID-19

Elias Jabbour, MD Professor of Medicine Department of Leukemia The University of Texas MD Anderson Cancer Center, Houston, TX

Autumn 2020

Has the COVID-19 pandemic impacted the number of new cancer patients you are seeing in your clinic?

- a) No, I am seeing about the same number of new cancer patients per month
- b) Yes, I am seeing fewer new cancer patients per month
- c) Yes, I am seeing more new cancer patients per month

Do you feel that associations like NCCN, ASCO, or ASH have provided sufficient guidance on caring for cancer patients during the COVID-19 pandemic?

- a) Yes
- b) No

- Clinical infection <1%-2% worldwide
 - Mortality rate of 1%–5% in COVID-infected patients in the general population
 - Potentially≥30% in patients with cancer
- Careful consideration to the risk of COVID-19 in leukemia vs
 Reducing access of patients to specialized cancer centers
 Modifying therapies to those with unproven curative benefit

- Patients with leukemia have uniquely higher risk of COVID-19 infection for multiple reasons associated with
 Underlying disease
 Treatment
 - Patient-specific factors

	Cause		
Risk Factors	Leukemia Diagnosis	Treatment	Patient Specific
Neutropenia	Х	Х	
Leukopenia	Х	Х	
Hypogammaglobulinemia	Х	Х	
Depressed immune function	Х	Х	
Hypercoagulable state	Х	Х	
Organ dysfunction (cardiac, renal, liver, pulmonary)	Х	Х	Х
Comorbid conditions			Х
Age			Х

	Possible Risk Factors
ALL	 Myelosuppression due to underlying disease and treatment Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Prolonged steroid exposure Pulmonary and renal impairment due to methotrexate therapy Cardiac dysfunction due to anthracycline exposure Increased risk of COVID-19–associated thrombosis with asparaginase
AML	 Myelosuppression due to underlying disease and treatment Cardiac dysfunction due to anthracycline exposure Pulmonary injury due to midostaurin
CML	 Cardiac injury due to dasatinib, nilotinib, ponatinib Pulmonary injury due to dasatinib Increased risk of COVID-19–associated thrombosis with ponatinib and nilotinib
CLL	 Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Impaired innate immune response as well as B-cell and T-cell function with Bruton's tyrosine kinase (BTK) inhibitors

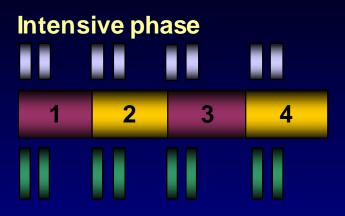
- Weigh the treatment of a lethal, acute illness requiring aggressive therapy against the systemic limitations of inpatient stays, frequent clinic visits, and increasingly restricted blood product supply
- Development of several targeted therapies to treat acute leukemia may allow a reduction of dose-intensity while preserving the efficacy and the potential for cure
- Patients who are candidates for intensive Rx to be tested upfront

- Patients with leukemia have uniquely higher risk of COVID-19 infection for multiple reasons associated with
 Underlying disease
 Treatment
 - Patient-specific factors

	Cause		
Risk Factors	Leukemia Diagnosis	Treatment	Patient Specific
Neutropenia	Х	Х	
Leukopenia	Х	Х	
Hypogammaglobulinemia	Х	Х	
Depressed immune function	Х	Х	
Hypercoagulable state	Х	Х	
Organ dysfunction (cardiac, renal, liver, pulmonary)	Х	Х	Х
Comorbid conditions			Х
Age			Х

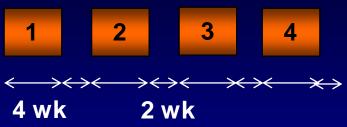
	Possible Risk Factors
ALL	 Myelosuppression due to underlying disease and treatment Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Prolonged steroid exposure Pulmonary and renal impairment due to methotrexate therapy Cardiac dysfunction due to anthracycline exposure Increased risk of COVID-19–associated thrombosis with asparaginase
AML	 Myelosuppression due to underlying disease and treatment Cardiac dysfunction due to anthracycline exposure Pulmonary injury due to midostaurin
CML	 Cardiac injury due to dasatinib, nilotinib, ponatinib Pulmonary injury due to dasatinib Increased risk of COVID-19–associated thrombosis with ponatinib and nilotinib
CLL	 Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Impaired innate immune response as well as B-cell and T-cell function with Bruton's tyrosine kinase (BTK) inhibitors

Treating ALL in the Time of COVID-19


Туре					
	Induction/ Consolidation	Ph–	<60 y.o.	•	HCVAD \times 4 cycles followed by Blina \times 4 cycles
			≥60 y.o.	•	Mini-HCVD + Ino \times 4 cycles followed by Blina \times 4 cycles
			≥70 y.o.	•	Mini-HCVD + Ino \times 2 cycles followed by Blina \times 8 cycles
			MRD+	•	Move to Blina early after 2 cycles of HCVAD or mini-HCVD + Ino or clinical trial for MRD positivity Allogeneic SCT can be considered if benefit outweighs risks
ALL		Ph+		•	Blina + TKI or Ino + TKI Blinatumomab + ponatinib preferred
	Maintenance	Maintenance		• •	Important to still give maintenance May omit vincristine to reduce clinic visits and reduce steroids May transition to maintenance early if MRD negativity achieved and administering HCVAD or mini-HCVD is logistically difficult Incorporate Blina or low-dose Ino in late intensification

• Asparaginase possibly increases the thrombotic risk: complication of COVID-19

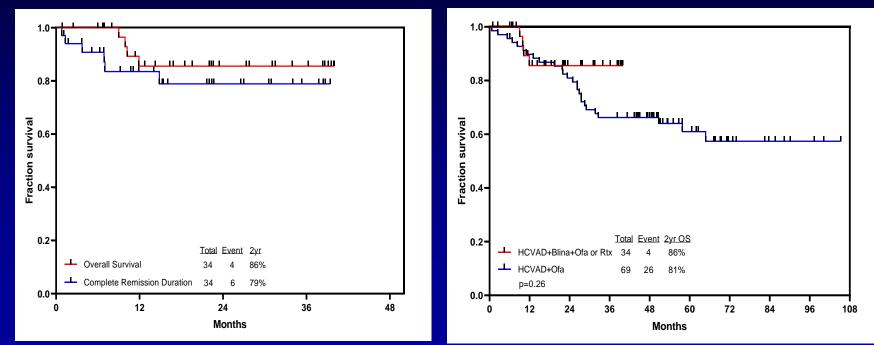
• If necessary, peg-asparaginase recommended

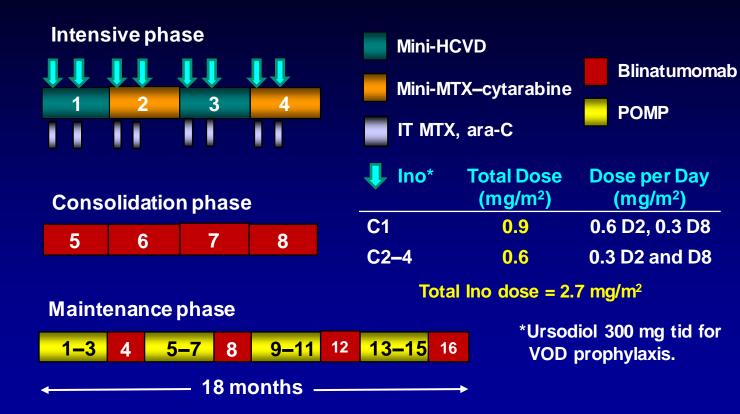

Paul S, el at. Acta Haematol. 2020;1-13.

HyperCVAD + Blinatumomab in B-ALL (Ph– B-ALL <60 years): Treatment Schedule

Blinatumomab phase

*After 2 cycles of chemo for Ho-Tr, Ph-like, t(4;11)


Maintenance phase

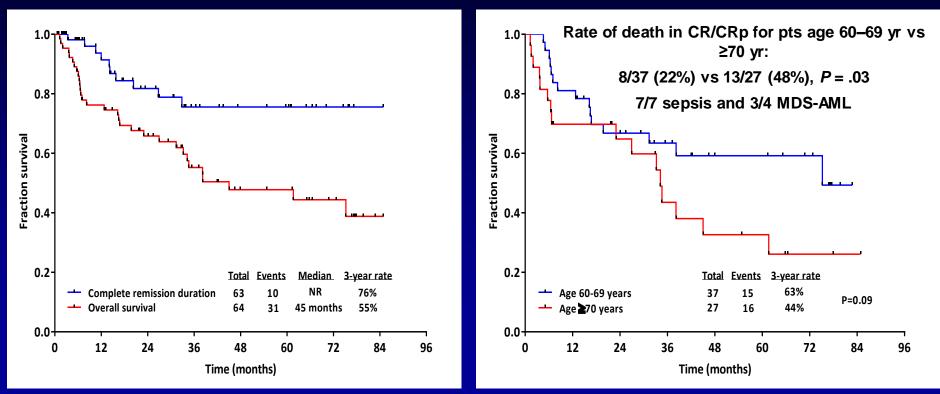

Richard-Carpentier. Blood. 2019;134:abstract 3807.

HyperCVAD + Blinatumomab in FL B-ALL (N = 34)

CR 100%, MRD negativity 97% (at CR 87%), early death 0%
 CRD and OS Overall
 OS – HCVAD-Blina vs O-HCVAD

Mini-HCVD + Ino ± Blina in Older ALL: Modified Design (pts 50+)

Mini-HCVD + Ino ± Blina in Older ALL (N = 64)

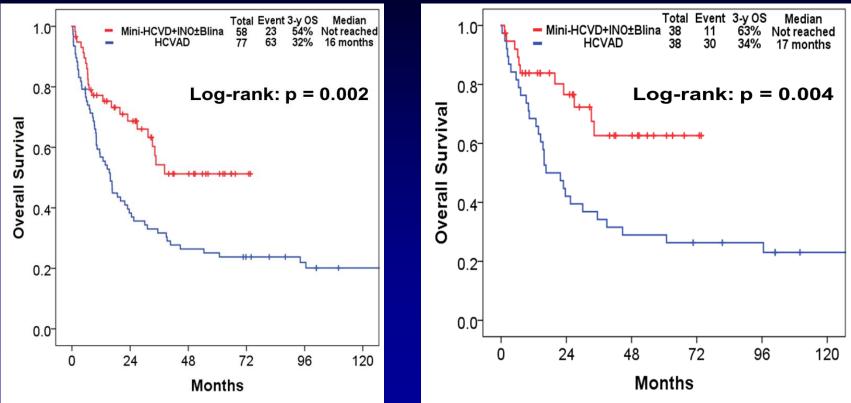

Characteristic	Category	N (%)/Median [range]			
Age (years)	≥70	68 [60-81]	Response (N = 59)	N (%)	
		27 (42)	ORR	58 (98)	
Performance status	≥2	9 (14)	CR	51 (86)	
WBC (× 10 ⁹ /L)		3.0 [0.6-111.0]		· · · ·	
Karyotype	Diploid HeH Ho-Tr Tetraploidy Complex t(4;11) Misc IM/ND	21 (33)	CRp	6 (10)	
		5 (8) 12 (19)	CRi	1 (2)	
		3 (5)	3 (5) 1 (2) No response Early death	1 (2)	
		1 (2) 1 (2)		0	
		9 (14) 12(19)	Flow MRD response	N (%)	
CNS disease at diagnosis		4 (6)	D21	50/62 (81)	
CD19 expression, %		99.6 [30-100]	Overall	60/63 (95)	
CD22 expression, %		96.6 [27-100]			
CD20 expression	≥20%	32/58 (57)			
CRLF2+ by flow		6/31 (19)			
TP53 mutation		17/45 (38)			

Short. Blood. 2019;134:abstract 823.

Mini-HCVD + Ino ± Blina in Older ALL: Outcome

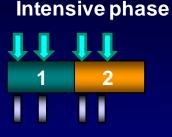
CRD and OS overall

OS by age



Short. Blood. 2019;134:abstract 823.

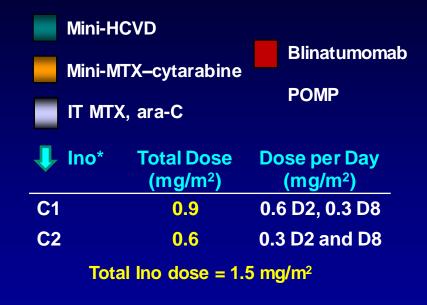
Mini-HCVD + Ino ± Blina vs HCVAD in Elderly ALL: Overall Survival


Prematched

Matched

Sasaki. Blood. 2018;132:abstract 34.

Mini-HCVD + Ino ± Blina in Older ALL: Amended Design (pts ≥70 years)

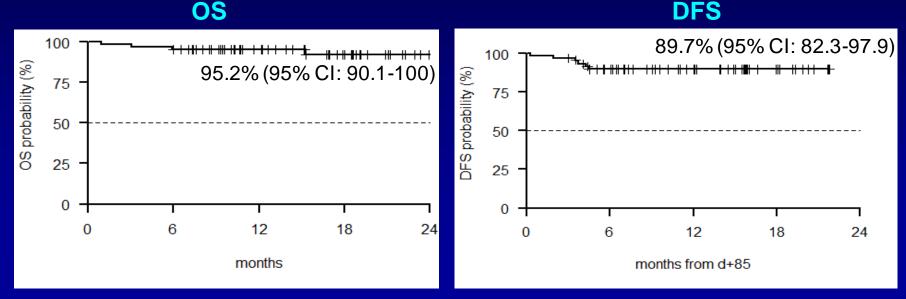


Consolidation phase

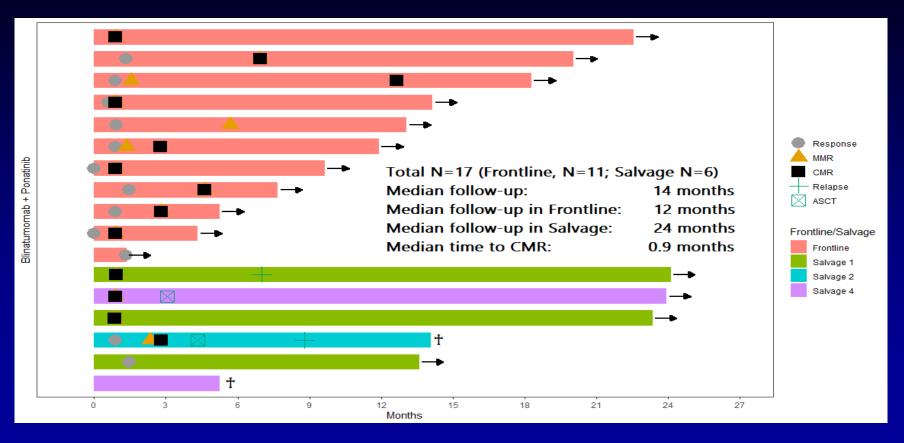
5	6	7	8

Maintenance phase

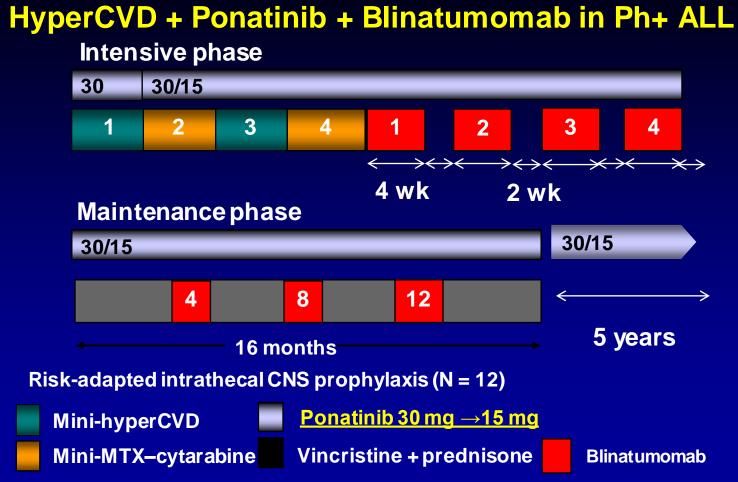
*Ursodiol 300 mg tid for VOD prophylaxis.


Jabbour E, et al. *Cancer.* 2018;124(20):4044-4055; Kantarjian H, et al. *Lancet Oncol.* 2018;19:240.

Treating ALL in the Time of COVID-19: Advantage of These Regimens


- Blina significantly less myelosuppressive. Although currently administered after 4 courses of HCVAD or mini-HCVD, pts switch to Blina earlier, after 2 courses, to avoid additional myelosuppression
- No or low tumor burden after intensive Rx, no CRS: need for hospitalization significantly reduced. Blina dose-escalation on day 5 instead of day 8
- 7-day bags: outpatient setting with reduced clinic visits
- Blina earlier deepens MRD response and safely shortens maintenance from 30 months to 18 months

Dasatinib-Blinatumomab in Ph+ ALL


- 63 pts, median age 54 yr (24–82)
- Dasatinib 140 mg/D × 3 mo; add blinatumomab × 2–5
- 53 post–dasa-blina × 2 molecular response 32/53 (60%), 22 CMR (41%); MRD ↑ in 15, 6 T315I; 12-mo OS 96%; DFS 92%

Blinatumomab + Ponatinib Swimmer Plot (N = 17)

Personal communication from Dr Jabbour.

https://clinicaltrials.gov/ct2/show/NCT03147612

- Risk of COVID-19 complications weighed very carefully vs restricting access of patients to highly specialized centers and of advocating for regimens without known equivalent curative potential
- Efforts should be prioritized to reduce patient and staff exposure while maintaining optimal care
- Utilizing less-intensive Rx, reducing patient visits, and establishing collaborative care at local centers or through telemedicine
- Rx decisions individualized on the basis of patient-related factors, risk of added toxicity, and feasibility of treatment administration
- Standard hygiene and social distancing measures to be pursued

Emerging data and the management of ALL patients during COVID-19

Panel discussion

Session close

Elias Jabbour and Franco Locatelli

APTITUDE HEALTH"

Thank you!

> Please complete the evaluation survey that will be sent to you by email

- > The meeting recording and slides presented today will be shared on the www.globalleukemiaacademy.com website
- > You will also receive a certificate of attendance by email by October 30

THANK YOU!

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

SEE YOU TOMORROW AT THE BREAKOUT SESSIONS!

State APTITUDE HEALTH