

Adaptive

AMGEN

Global Leukemia Academy Virtual Breakout: Pediatric ALL patients

Emerging and Practical Concepts and Controversies in Leukemias 8–9 July 2020

Virtual Breakout: Pediatric ALL patients Session Opening

Rob Pieters

Meet the Faculty

Rob Pieters, MD, PhD Chief Medical Officer, Princess Máxima Center for Pediatric Oncology

Hale Ören, MD Professor of Pediatrics, Dokuz Eylul University

Patrick Brown, MD Associate Professor of Oncology and Pediatrics, Director of the Pediatric Leukemia Program Johns Hopkins University

Sema Anak, MD

Faculty member at Istanbul Medipol University International School of Medicine, Head of the Department of Pediatric Hematology/Oncology

Akif Yesilipek, MD

Head of pediatric bone marrow transplant units in Medicalpark Antalya and Göztepe Hospitals. Faculty of Medicine, Pediatric Hematology Department, Bahcesehir University, Antalya, Turkey

Objectives of the Program

Understand current treatment patterns for ALL including incorporation of new technologies Uncover when genomic testing is being done for ALL, and how these tests are interpreted and utilized Understand the role of stem cell transplantation in ALL as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring ALL Gain insights into antibodies and bispecifics in ALL: what are they? When and how should they be used? Where is the science going? Discuss the evolving role of ADC therapies in ALL Review promising novel and emerging therapies in ALL

Virtual Breakout: Pediatric ALL Patients

Chair: Rob Pieters

TIME UTC+3	TITLE	SPEAKER
15.00 – 15.15	 Session opening Educational ARS questions for the audience 	Rob Pieters
15.15 – 15.35	 First-line treatment of pediatric ALL Presentation Q&A 	Rob Pieters
15.35 – 15.55	Current treatment options for relapsed ALL in children including HSCT considerations Presentation Q&A	Hale Ören
15.55 – 16.15	 Bispecific T-cell engagers for pediatric ALL Presentation Q&A 	Patrick Brown
16.15 – 16.55	 Case-based panel discussion: Management of long- and short-term toxicities Overview of long-term toxicities Patient case presentation Panelists: Rob Pieters, Hale Ören, Patrick Brown, Sema Anak, Gülyüz Öztürk, Akif Yesilipek 	Rob Pieters Hale Ören Discussion
16.55 – 17.10 Global Leukemia Academy	 Session close Educational ARS questions for the audience 	Rob Pieters

Educational ARS Questions

Rob Pieters

Educational questions Pediatric ALL Question 1: which assertion is correct for children with ALL?

- 1. All patients with MLL rearranged ALL should be transplanted
- 2. All patients with BCR-ABL positive ALL should be transplanted
- 3. No patient with BCR-ABL positive ALL should be transplanted
- 4. AlloSCT is part of treatment for children with early relapsed ALL

Educational questions Pediatric ALL Question 2: which assertion is correct for children with ALL?

- 1. Blinatumomab and inotuzumab are part of first-line treatment
- 2. Blinatumomab and inotuzumab can not be administered sequentially
- 3. Therapeutic drug monitoring of asparaginase improves outcome
- 4. Dexamethasone and vincristine are standard components of maintenance therapy

First-Line Treatment of Pediatric ALL

Rob Pieters

First-line treatment of ALL

Rob Pieters Chief Medical Officer

Question 1:

Which assertion is correct for first-line treatment of pediatric ALL?

- 1. A minority of patients with Ph+ ALL benefit from receiving allogenic SCT when receiving a tyrosine kinase inhibitor such as imatinib
- 2. The dose intensity of asparaginase has no impact on outcome
- 3. 6-thioguanine has to be preferred over 6-mercaptopurine in maintenance therapy
- 4. Prednisone is a more effective drug than dexamethasone

Question 2:

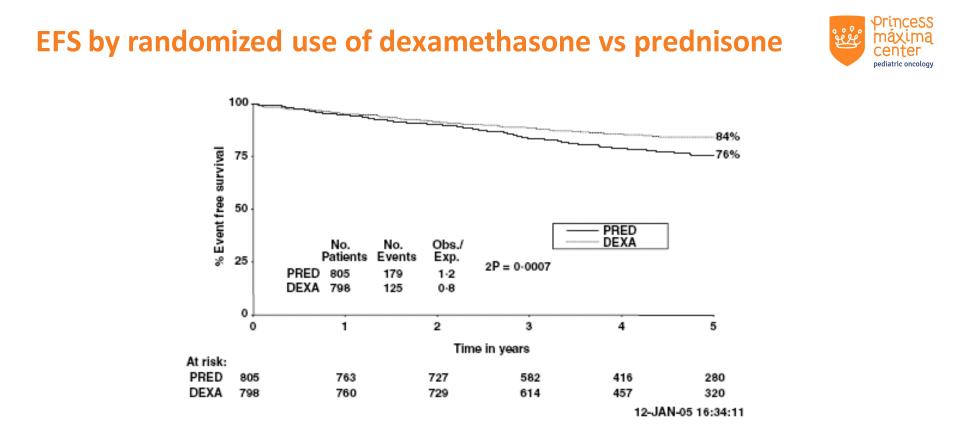
Which assertion is correct?

- 1. All children with a BCR-ABL-like ALL should be treated with a tyrosine kinase inhibitor such as imatinib or dasatinib
- 2. Cranial irradiation is indicated in B-lineage ALL and T-lineage ALL with a WBC >50 \times 10⁹/L at diagnosis
- 3. Copy number alterations (CNA) do not predict outcome
- 4. End of induction MRD and/or end of consolidation MRD is the most powerful prognostic factor

ALL: chemotherapy elements

- Induction:
- Consolidation:
- Reinduction/intensification:
- Maintenance:

- steroid, VCR, L-Asp, (DNR), intrathecal
- cyclophosphamide, araC, 6-MP, intrathecal
- HD-MTX, 6-MP, intrathecal
- steroid, VCR, L-Asp, (DNR), intrathecal
- 6-MP/MTX (+ VCR/steroid pulses)
- (cranio[spinal] radiotherapy)
- (allogenic hematopoietic stem cell transplantation [HSCT])



ALL

- Therapy elements
 - Choice of steroid
 - Dose intensity asparaginase
 - Which intensification
 - Which maintenance
 - Which central nervous system treatment
 - Who should get SCT
 - Adolescents
- New developments: targeting therapy

Event-free survival by randomized steroid. Obs./Exp., observed/expected ratio.

Intensification of asparaginase

	EFS with less intensive Asp	EFS with more intensive Asp	difference	reference
Erwinase vs Coli Asp EORTC-CLG 58881	60%	73%	significant	Duval 2002
Erwinase vs Coli Asp DFCI 95-01	78%	89%	significant	Moghrabi 2007
20 extra wks of Asp IBFM/IDH ALL91	79%	88%	significant	Pession 2005
20 extra wks of Asp in IRG AIEOP ALL91	72%	76%	not sign	Rizzari 2001
20 wks of Asp in T-ALL POG 8704	55%	68%	significant	Amylon 1999
20 wks of Asp in T-NHL POG 8704	64%	78%	significant	Amylon 1999
Shorter or longer than 25 wks of Asp DFCI 91-01	73%	90%	significant	Silverman 2001

ALL

- Therapy elements
 - Choice of steroid
 - Dose intensity asparaginase
 - Which intensification
 - Which maintenance
 - Which central nervous system treatment
 - Who should get SCT
 - Adolescents
- New developments: targeting therapy

Childhood ALL Collaborative Group. Lancet. 1996;347(9018):1783-1788.

Maintenance/reinduction therapy

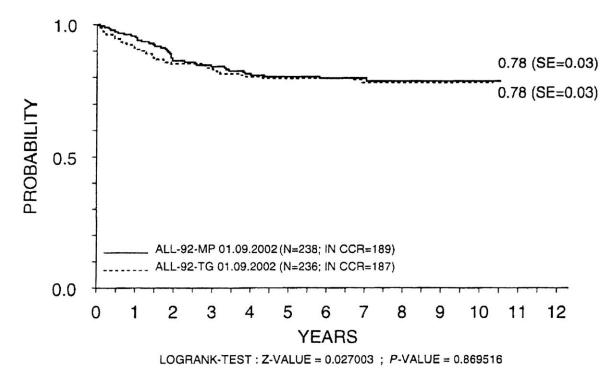
Events (relapse/toxic deaths) reduced by

- Longer maintenance
- Intensive reinduction/intensification
- VCR/Pred pulses

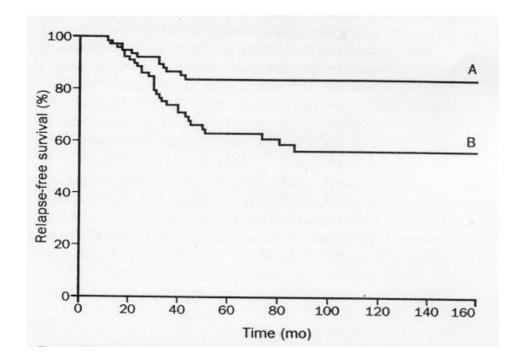
yes vs no 28% vs 36% yes vs no 31% vs 40%

3-yr vs 2-yr 23% vs 28%

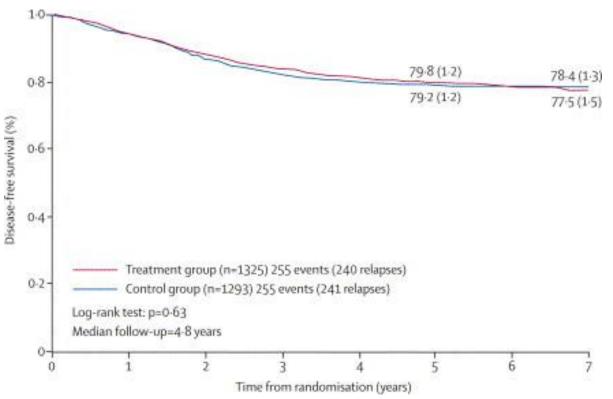
Multivariate: survival significantly improved by intensification



EFS by randomization of 6-MP vs 6-TG in maintenance

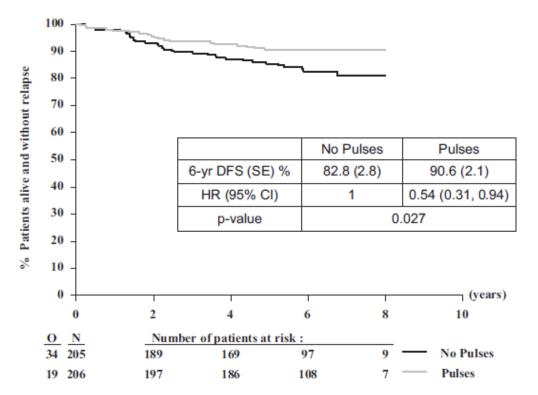

COALL - study 92

Event free survival


6-MP pharmacodynamics: Erythrocyte 6-TGN concentration vs relapse-free survival in ALL

Group A = values above the median; group B = values below the median

Dexa/VCR pulses during maintenance in average risk ALL patients (BFM)


Princess máxima

Center pediatric oncology

9CH

Dexa/VCR pulses during maintenance in average risk ALL patients (EORTC)

ALL

- Therapy elements
 - Choice of steroid
 - Dose intensity asparaginase
 - Which intensification
 - Which maintenance
 - Which central nervous system treatment
 - Who should get SCT
 - Adolescents
- New developments: targeting therapy

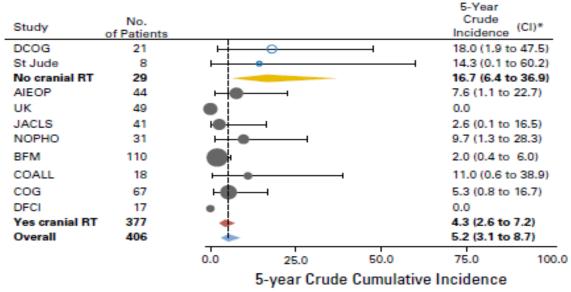
CNS treatment

- Radiotherapy + ith therapy vs extra ith therapy: EFS not different
- Radiotherapy vs IV MTX: EFS not different (Radiother: less CNS relapses; IV MTX less systemic relapses)
- Radiotherapy dose: 24 Gy = 18 Gy (= 12 Gy?)

Conclusions

- Radiotherapy can be replaced by long-term intrathecal therapy
- IV MTX reduces non-CNS relapses

5-year outcomes to pre-emptive cranial radiotherapy (CRT) for ALL subgroups other than CNS3

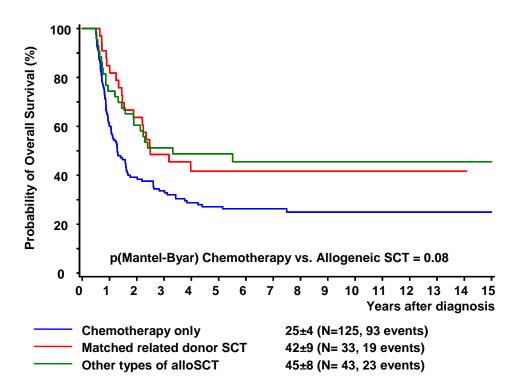


	B Cell, WBC > 100 × 10 ⁹ /L			T Cell, WBC > 100 × 10 ⁹ /L		
	CRT			CRT		
Outcome	Yes	No	Р	Yes	No	Р
5-year cumulative incidence, %						
Death (100% minus survival)	21.6	17.5	.49	27.2	19.0	.15
Any event (100% minus EFS)	37.0	27.4	.08	34.3	24.4	.08
BM relapse	17.4	15.6	.67	7.6	8.4	.88
Isolated CNS relapse	1.6	3.3	.32	5.4	6.6	.69
Any CNS relapse	3.8	6.0	.35	11.0	10.0	.77
No. of studies	3	6		7	3	
No. of patients	141	594		596	248	

5-year outcomes to pre-emptive cranial radiotherapy for ALL with CNS3

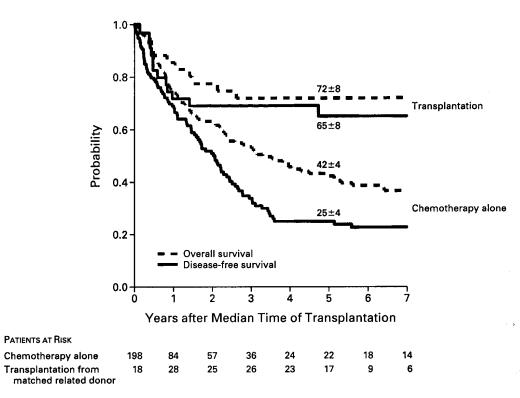
5-yr isolated CNS relapse: 16.7% vs 4.3% (*P* = .02) 5-yr mortality: 22.4% vs 20.6% (*P* = .83)

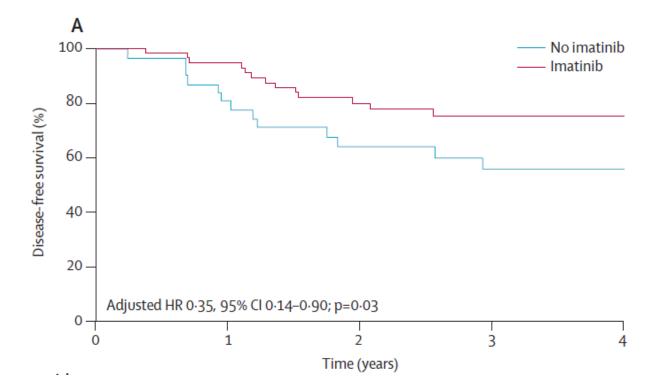
Test for treatment effect (cranial irradiation, yes v no): P = .02

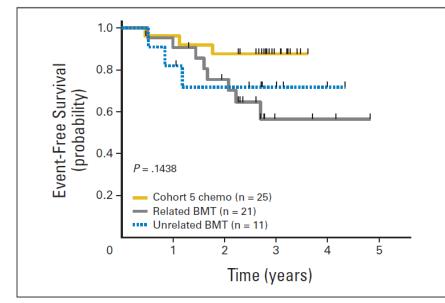


ALL

- Therapy elements
 - Choice of steroid
 - Dose intensity asparaginase
 - Which intensification
 - Which maintenance
 - Which central nervous system treatment
 - Who should get SCT
 - Adolescents
- New developments: targeting therapy


No CR after induction AND T-ALL: better survival with alloSCT


Children with t(9;22) ALL: benefit of allogenic transplantation


DFS for good-risk Ph+ ALL patients as treated with imatinib (EsPhALL)

Increased use of imatinib in BCR-ABL–positive ALL: no indication for SCT?

Fig 4. Comparison of event-free survival (EFS) for Cohort 5 chemotherapy only versus related-donor bone marrow transplantation (BMT) versus unrelated-donor BMT. Cohort 5 patients were compared with human leukocyte antigen (HLA) –identical sibling BMT (8 of 39 in cohorts 1-4; 13 of 44 in cohort 5) and 11 of the total 83 patients removed from protocol for an alternative-donor BMT. Patients treated on protocol were given imatinib 340 mg/m²/d for 6 months starting 4 to 6 months after BMT.

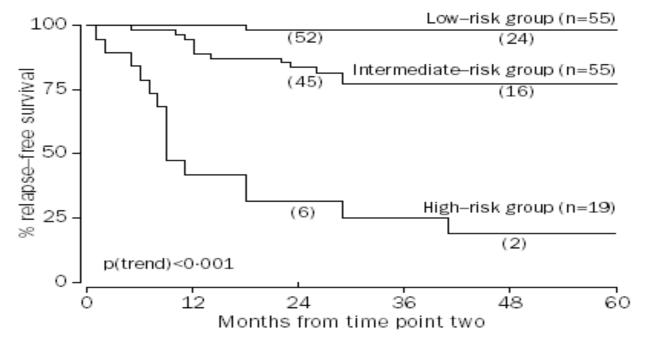
Infant ALL: no proven benefit of allogenic BMT



Figure 2: Mantel-Byar estimates of disease-free survival with a landmark of 0.38 years, and Kaplan-Meier estimates of survival with a landmark of 1 year in patients with t(4;11)

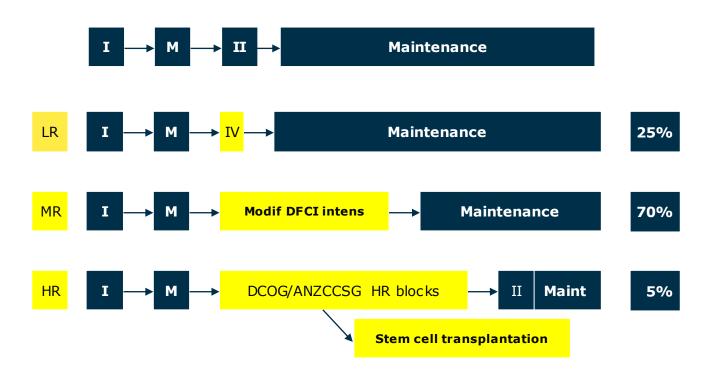
ALL

- Therapy elements
 - Choice of steroid
 - Dose intensity asparaginase
 - Which intensification
 - Which maintenance
 - Which central nervous system treatment
 - Who should get SCT
 - Adolescents
- New developments: targeting therapy


Targeting therapy in ALL

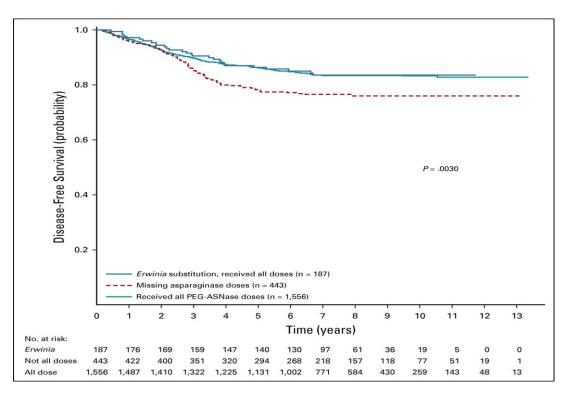
- Minimal residual disease (MRD) monitoring
- Therapeutic drug monitoring
- Genetic subclasses and pharmacology
- Specific targetable genetic lesions
- New (epi)genetic abnormalities
- Immunotherapies

Minimal residual disease and outcome in ALL



Relapse-free survival of the 3 MRD-based risk groups, as defined by MRD information at timepoints 1 and 2

DCOG ALL-10 protocol outlines

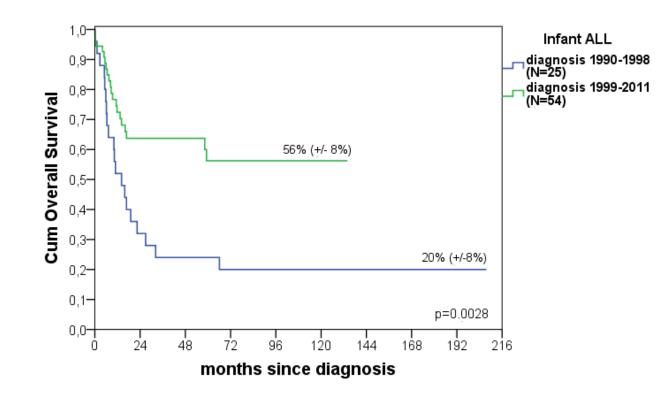

Targeting therapy in ALL

- Minimal residual disease (MRD) monitoring
- Therapeutic drug monitoring
- Genetic subclasses and pharmacology
- Specific targetable genetic lesions
- New (epi)genetic abnormalities
- Immunotherapies

Disease-free survival of NCI high-risk patients stratified by asparaginase received

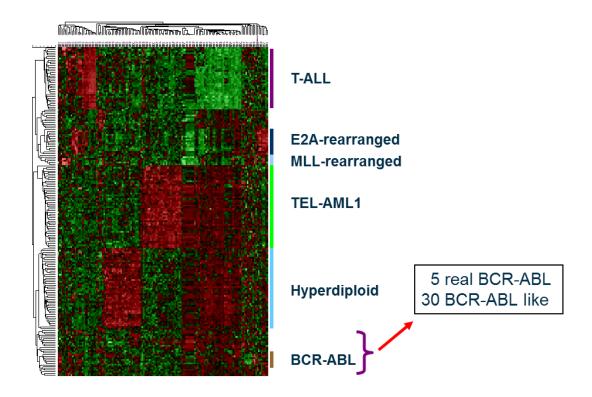
Targeting therapy in ALL

- Minimal residual disease (MRD) monitoring
- Therapeutic drug monitoring
- Genetic subclasses and pharmacology
- Specific targetable genetic lesions
- New (epi)genetic abnormalities
- Immunotherapies


In vitro resistance/sensitivity of infant ALL

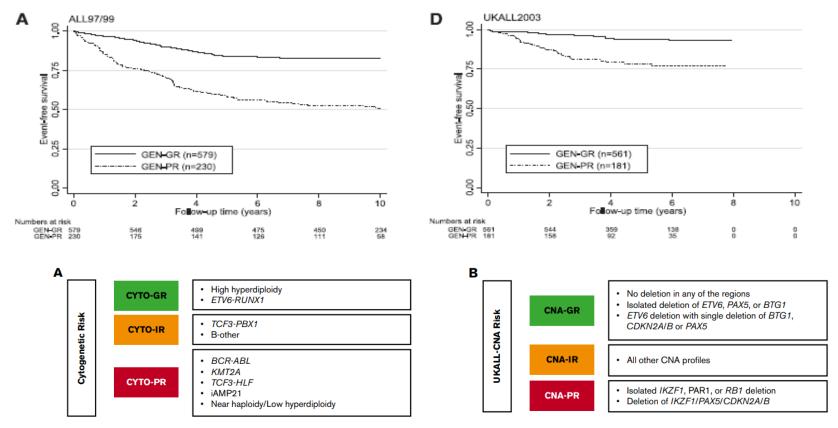
Drug	Infants <1 year median (25th–75th)	n=	c/preB ≥1 year median (25th–75th)	n=	Resistance ratio ^a	P-value
Prednisolone	> 250 (0.30-> 250)	41	0.43 (0.12-12.5)	373	>581	0.001
Dexamethasone	3.61 (0.05->6.0)	11	0.07 (0.01-0.55)	241	54.8	0.040
Vincristine	0.55 (0.10-2.54)	37	0.69 (0.24-2.52)	369	0.80	0.088
L-Asparaginase	0.96 (0.35-1.43)	29	0.08 (0.01-1.04)	361	12.0	0.001
Daunorubicin	0.07 (0.03-0.12)	33	0.09 (0.06-0.17)	386	0.83	0.090
6-Mercaptopurine	201 (95.2-321)	12	97.9 (50.4-248)	280	2.05	0.110
6-Thioguanine	6.04 (5.23-10.1)	27	5.92 (3.80-9.10)	299	1.02	0.256
Cytarabine	0.27 (0.13-0.51)	35	0.49 (0.27-1.31)	291	0.54	0.001
2-CdA ^b	0.02 (0.01-0.03)	29	0.030 (0.02-0.14)	79	0.59	< 0.001
Etoposide	1.04 (0.48-2.56)	17	1.50 (0.64-2.77)	162	0.70	0.305
Teniposide	0.28 (0.16-0.75)	11	0.25 (0.18-0.58)	227	1.12	0.786
4-HOO-ifosfamide	4.08 (1.93-5.66)	20	3.07 (1.24-5.23)	221	1.33	0.185

Survival in infant ALL before and after introduction of interfant protocol


Targeting therapy in ALL

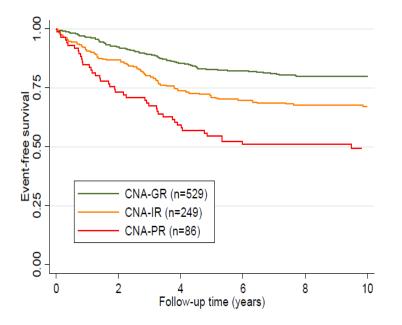
- Minimal residual disease (MRD) monitoring
- Therapeutic drug monitoring
- Genetic subclasses and pharmacology
- Specific targetable genetic lesions
- New (epi)genetic abnormalities
- Immunotherapies

Discovery of BCR-ABL-like ALL


Frequency of identified tyrosine kinase fusion genes in BCR-ABL-like ALL and B-other ALL

Marker	<i>BCR-ABL1-</i> like (n=77)	Remaining B-other (n=76)	
ABL1/ABL2 fusion	3.9%	0%	7
ZMIZ1-ABL1	1		
FOXP1-ABL1	1		
RCSD1-ABL2	1		12% with ABL-1 class fusions
PDGFRB fusion	5.2%	0%	Targetable with imatinib/dasati
EBF1-PDGFRB	4		
CSF1R fusion	2.6%	0%	
SSBP2-CSF1R	2		
JAK2 fusion	6.5%	0%	7
PAX5-JAK2	3		6% with JAK2 fusions
BCR-JAK2	1		Targetable with ruxolitinib????
TERF2-JAK2	1		
<i>CRLF2</i> high expression*	15.6%	15.8%	
PAR1 deletion**	10.5%	10.7%	

EFS ALL97/99 and UKALL2003 by genetic risk group



Moorman AV, et al. Blood. 2014;124(9):1434-1444; Hamadeh L, et al. Blood Adv. 2019;3(2):148-157.

UK copy number alteration (CNA) classifier in UKALL

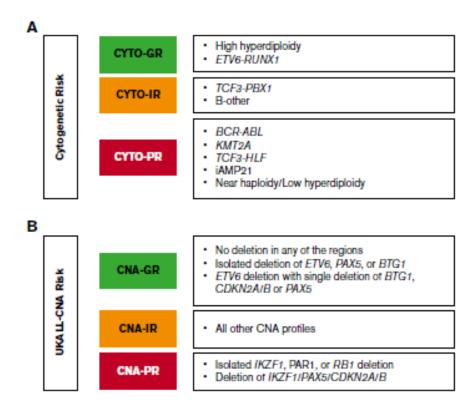
CNA profile defines risk groups

CNA profiles by MLPA

Good risk

- No deletion
- Isolated deletion of ETV6, PAX5, or BTG1
- ETV6 deletion + BTG1, CDKN2A/B or PAX5 deletion

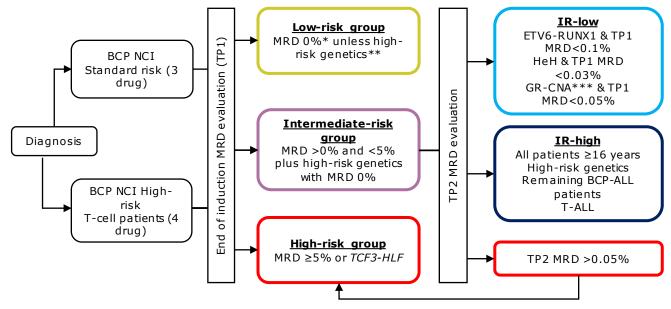
Intermediate risk


• All other CNA profiles

Poor risk

- Isolated IKZF1, PAR1, or RB1 deletion
- Deletion of IKZF1/PAX5/CDKN2A/B

Novel genetic risk groups in B-lineage ALL by cytogenetics and by CNA



Risk stratification by MRD and genetics for the ALLTogether trial

*0% = undetectable MRD by IG/TCR PCR; **High-risk genetics: *KMT2A/MLL* gene fusions, near haploidy, low hypodiploidy, iAMP21 and rearrangements affecting *ABL1*, *ABL2*, *PDGFRB* and *CSF1R* (except *BCR-ABL1* which are excluded from the study); ***CNA profile as per Moorman et al (2014) *Blood*;124(9):1434-1444. GR profile: no deletion of *IKZF1*, *CDKN2A/B*, *PAR1*, *BTG1*, *EBF1*, *PAX5*, *ETV6*, *RB1*; isolated deletions of *ETV6*, *PAX5*, *BTG1*; or *ETV6* deletions with a single additional deletion of *BTG1*, *PAX5*, *CDKN2A/B*.

Risk group	% patients	EFS%	OS%	relapse %	Treatment
VLR	24%	95	99	4	Reduction: randomised +/- anthracyclines
IR-L	36%	95	98	3	Reduction: randomised +/- anthracyclines
IR-H	37%	82	89	15	Intensification: randomised +/- inotuzumab
VHR	4%	78	78	14	Experimental: CART for B, nelarabine for T

Targeting therapy in ALL

- Minimal residual disease (MRD) monitoring
- Therapeutic drug monitoring
- Genetic subclasses and pharmacology
- Specific targetable genetic lesions
- New (epi)genetic abnormalities
- Immunotherapies: blinatumomab, inotuzumab, CAR T cells

Answer to question 1:

Which assertion is correct for first-line treatment of pediatric ALL?

- 1. A minority of patients with Ph+ ALL benefit from receiving allogenic SCT when receiving a tyrosine kinase inhibitor such as imatinib
- 2. The dose intensity of asparaginase has no impact on outcome
- 3. 6-thioguanine has to be preferred over 6-mercaptopurine in maintenance therapy
- 4. Prednisone is a more effective drug than dexamethasone

Answer to question 2:

Which assertion is correct?

- 1. All children with a BCR-ABL-like ALL should be treated with a tyrosine kinase inhibitor such as imatinib or dasatinib
- 2. Cranial irradiation is indicated in B-lineage ALL and T-lineage ALL with a WBC >50 \times 10⁹/L at diagnosis
- 3. Copy number alterations (CNA) do not predict outcome
- 4. End of induction MRD and/or end of consolidation MRD is the most powerful prognostic factor

Thank you!

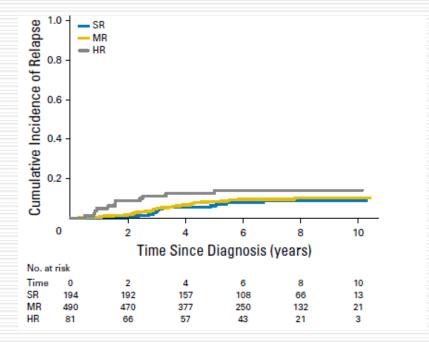
Current Treatment Options for Relapsed ALL in Children Including HSCT Considerations

Hale Ören

Overview of the talk

- Describe the importance of relapsed ALL
- Risk factors for relapsed ALL patients
- Standard therapy of relapse ALL
- HSCT indications
- New therapy approaches in relapsed ALL

Childhood ALL: Progress through collaboration


Study Group	Years of Study	No. of Patients	Age Range (years)	T-Cell ALL (%)	5-Year Cumulative Rate of Isolated CNS Relapse (% ± SE)	5-Year EFS (% ± SE)	5-Year Overall Survival (% ± SB	Reference
AIEOP-95	1995-2000	1,743	0-18	11	1.2 ± 0.3	75.9 ± 1.0	85.5 ± 0.8	Conter et al ¹
BFM-95	1995-1999	2,169	0-18	13	1.8 ± 0.3	79.6 ± 0.9	87.0 ± 0.7	Möricke et al ²
CoALL-97	1997-2003	667	1-18	14	4.0 ± 0.8	76.7 ± 1.7	85.4 ± 1.4	Escherich et al ³
COG	2000-2005	7,153	0-21	7	NA	NA	90.4 ± 0.5	Hunger et al ⁴
DCOG-9	1997-2004	859	1-18	11	2.6 ± 0.6	80.6 ± 1.4	86.4 ± 1.2	Veerman et al ⁵
DFCI 00-01	2000-2004	492	1-18	11	NA	80.0 ± 2	91 ± 1	Vrooman et al ⁶
EORTC-CLG	1998-2008	1,947	1-18	15.2	1.7 ± 0.3	82.7 ± 0.9	89.7 ± 0.7	Domenech et al ⁷
IC-BFM 2002	2002-2007	5,060	1-18	13.3	1.9 ± 0.1	74 ± 1	82 ± 1	Stary et al ⁸
JCCLSG ALL 2000	2000-2004	305	1-15	9.8	0.9 ± 0.1	79.7 ± 2.4	89.2 ± 1.8	Yamaji et al ⁹
Ma-Spore ALL 2003	2002-2011	556	0-18	8.8	1.4	80.6 ± 3.5	89.2 ± 2.7	Yeoh et al ¹⁰
MRC UKALL 2003	2003-2011	3,126	1-25	12	1.9 ± 0.6	87.3 ± 1.4	91.6 ± 1.2	Vora et al ¹¹
NOPHO-2000	2002-2007	1,023	1-15	11	2.7 ± 0.6	79.4 ± 1.5	89.1 ± 1.1	Schmiegelow et al ¹
SJCRH XV	2000-2007	498	1-18	15	2.7 ± 0.8	87.3 ± 2.9	93.5 ± 1.9	Pui et al ¹³
TPOG	1999-2010	152	0-18	7.2	1.4 ± 1.0	84.2 ± 3.0	90.2 ± 2.4	Liu et al ¹⁴

Abbreviations: AIEOP, Associazione Italiana di Ematologia Pediatrica; ALL, acute lymphoblastic leukemia; BFM, Berlin-Frankfurt-Münster; COALL, Cooperative ALL (study group); COG, Children's Oncology Group; DCOG, Dutch Children's Oncology Group; DFCI, Dana-Farber Cancer Institute (consortium); EFS, event-free survival; EORTC-CLG, European Organisation for Research and Treatment of Cancer-Children's Leukemia Group; IC-BFM, Intercontinental BFM; JCCLSG, Japanese Children's Cancer and Leukemia Study Group; Ma-Spore, Malaysia-Singapore; MRC UKALL, Medical Research Council United Kingdom Acute Lymphoblastic Leukemia; NA, not available; NOPHO, Nordic Society of Pediatric Hematology and Oncology; SJCRH, St Jude Children's Research Hospital; TPOG, Taiwan Pediatric Oncology Group.

Adapted from Pui CH, et al. J Clin Oncol. 2015;33(27):2938-2948.

Successful therapy reduction and intensification for childhood ALL on the basis of MRD

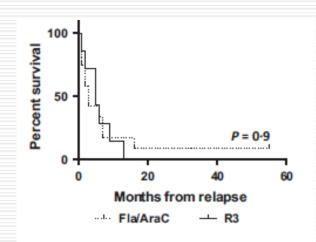
MRD-based medium-risk patients had a significantly higher 5-year EFS rate (88%, SE 2%) with therapy intensification (including 30 weeks of asparaginase exposure and dexamethasone/vincristine pulses) compared with historical controls (76%, SE 6%). Intensive chemotherapy and stem cell transplantation in MRD-based high-risk patients resulted in a significantly better 5-year EFS rate (78%, SE 8% vs 16%, SE 8% in controls). Overall outcomes improved significantly (5-year EFS rate 87%, 5-year survival rate 92%, and 5-year cumulative incidence of relapse rate 8%) compared with preceding Dutch Childhood Oncology Group protocols.

Integrated cytogenetic and genomic classification refines risk-stratification in pediatric ALL

Three-quarters of UKALL2003 patients had a GR genetic profile and significantly improved event-free survival (EFS; 94%) compared with patients with a PR genetic profile (79%). This difference was driven by a lower relapse rate (4% vs 17%), seen across all patient subgroups, and independent of other risk factors. Even genetic GR patients with minimal residual disease (>0.01%) at day 29 had an EFS in excess of 90%. In conclusion, the integration of genomic and cytogenetic data defines 2 subgroups with distinct responses to treatment and identifies a large subset of children suitable for treatment deintensification.

Moorman AV, et al. *Blood*. 2014;124(9):1434-1444.

Childhood acute lymphoblastic leukemia treatment (PDQ[®])


- Relapsed ALL is one of the major causes of death in children with cancer, so reducing relapse risk is very important
- □ Long-term survival rates after relapse range from about 30%-40% for early relapses, and 70%-80% for late relapses
- There is a large potential for developing different targeted treatments for children with ALL, on the basis of the abnormal findings in their individual disease (personalized medicine)

Childhood Acute Lymphoblastic Leukemia Treatment (PDQ[®]): Health Professional Version. 2018; Locatelli F, et al. *Blood*. 2012;120:2807-2816; Childhood cancer by the ICCC. In: Howlader N, Noone AM, Krapcho M, et al., eds.: SEER Cancer Statistics Review, 1975-2010. Bethesda, Md: National Cancer Institute, 2013, Section 28; Ko RH, et al. *J Clin Oncol*. 2009;28:648-654.

UKALL2003 clinical outcomes teenagers and young adults

OS of relapsed patients

Comparison of R3 and fludarabine/cytarabine-based regimens

	R3	Fludarabine/Cytarabine	P value
	$(n = 8^*)$	(n = 17)	
All relapsed patients			
CR after first salvage	4 (50%)	7 (41%)	
Allogeneic transplant received	3(38%)	8 (47%)	
Alive at end of study period	1 (13%)	5 (29%)	
Median OS from relapse	5.5 months	7 months	0.5
	(n = 7)	(n = 12)	
Patients relapsing on treatment only			
CR after first salvage	3 (43%)	5 (42%)	
Allogeneic transplant received	3 (43%)	5 (42%)	
Alive at end of study period	1 (14%)	1 (8%)	
Median OS from relapse	5 months	3 months	0.9

CR, complete remission; OS, overall survival; R3, protocol containing either idarubicin or mitoxantrone, as described previously (Parker *et al*, 2010).

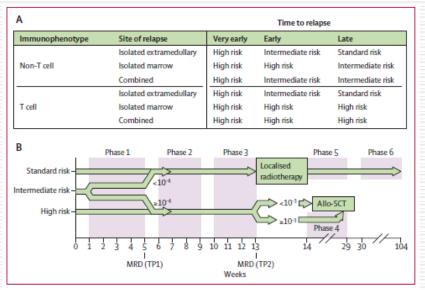
*Excludes one patient transplanted in CR1.

Outcome of relapse after allogeneic HSCT in children with ALL enrolled in the ALL-SCT 2003/2007 trial

- □ **3-year EFS 15%, OS 20%**
- The majority of children (48%) received salvage therapy without second alloSCT, 26% of the children underwent a second alloSCT, and 25% received palliative treatment only
- Combined approaches incorporating novel immunotherapeutic treatment options and second alloSCT hold promise to improve outcomes in children with post-alloSCT relapse

Prognostic risk factors in relapsed ALL

Age


- Duration of remission
- Relapse site
- Immunophenotype
- Genetics/genomics
- Leukocyte count at diagnosis
- Response to therapy
- □ MRD levels

Which prognostic risk factors are important in standard therapeutic approach?

Age

- Duration of remission
- Relapse site
- Immunophenotype
- □ MRD levels

UK ALL R3

Figure 1: Risk stratification (A) and trial design (B)

(A) Stratification according to immunophenotype, site of relapse, and time to relapse. Risk groups: very early refers to less than 18 months from first diagnosis; early refers to 18 months or more after first diagnosis and less than 6 months from stopping therapy; and late refers to 6 months or more after stopping therapy. (B) MRD sampling TPs are marked. At TP1, standard-risk and intermediate-risk patients with MRD for lower than 10⁴ cells were ineligible, and high-risk and intermediate-risk patients with MRD of 10⁴ cells or more were eligible for allo-SCT. Localised radiotherapy was given to those with extramedullary disease and not proceeding to allo-SCT. When MRD assessment was not possible in intermediate-risk patients, allo-SCT was allowed provided relapse occurred within 24 months of stopping therapy. Details of the phases are provided in table 1. MRD=minimal residual disease. TP=timepoint. Allo-SCT=allogenic stem-cell transplant.

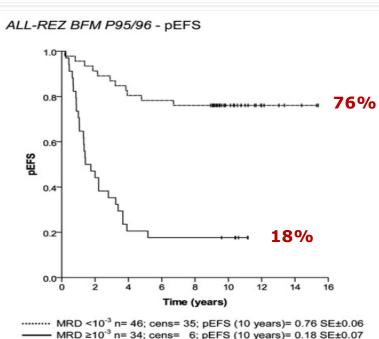
Parker C, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALLR3): an open-label randomised trial. *Lancet* 2010;376:2009-17.

Treatment protocols for relapsed ALL mostly depends on immunophenotype, site of relapse, time to relapse, MRD...genetics/genomics

HSCT in relapsed ALL

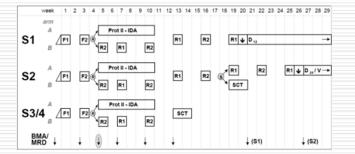
Indications	to HSCT for relapsed ALL in the IntReA	LL 2010 p	rotocol		
Risk group		MRD ^a			
	Patient subgroup	GR ^b	PR ^b	NA	
SR	Late isolated or combined bone marrow relapse of BCP-ALL	NO	MMD	MD	
	Early combined bone marrow relapse	MD	MMD	MMD	
		Time of relapse			
	Isolated extramedullary relapse	Early	Late		
		MD	NO		
HR	 Very early isolated extramedullary relapse of BCP or T-ALL Early isolated or any very early bone marrow relapse of BCP-ALL Any bone marrow relapse of T-ALL 		ISCT in ALL patients with a MD or a MMD)		

Time point of relapse: very early, <18 months after primary diagnosis and <6 after completion of primary therapy; early, \geq 18 months after primary diagnosis and <6 after completion of primary; late, \geq months after completion of primary. MD permitted donor: HLA-matched sibling or non-sibling donor, MMD permitted donor: HLA-matched or HLA-mismatched donor

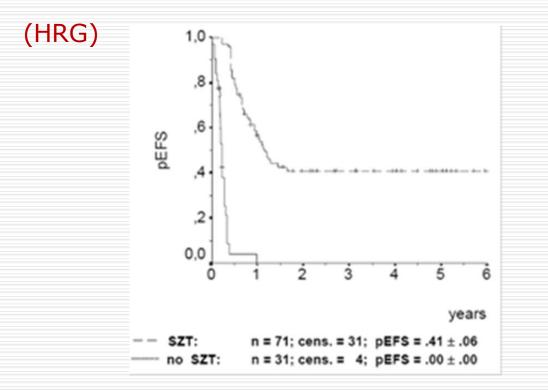

GR good response, HR high risk, HSCT hematopoietic stem cell transplantation, MRD minimal residual disease, NA not available, NO HSCT not indicated, PR poor response, SR standard risk

^aMRD response after induction

^b MRD cutoff is defined by the specific treatment arm

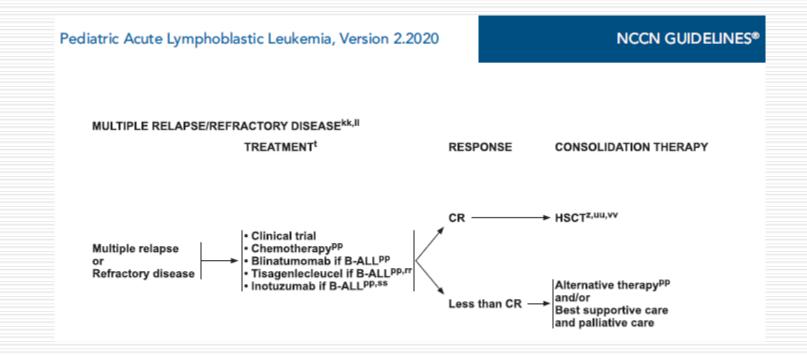

Merli P, et al. Curr Hematol Malig Rep. 2019;14(2):94-105.

Minimal residual disease after induction <u>is the strongest predictor</u> <u>of prognosis in intermediate-risk</u> relapsed acute lymphoblastic leukemia: Long-term results of trial *ALL-REZ BFM P95/96*

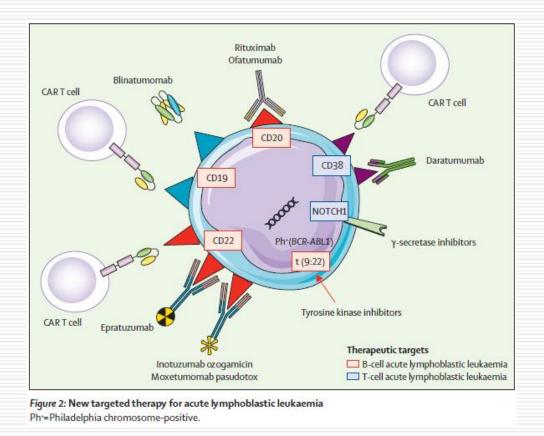


P < 0.001

ALL REZ-BFM 2002



ALL-REZ BFM S3/S4 EFS


Eckert C, et al. J Clin Oncol. 2013;31(21):2736-2742.

NCCN Guidelines pediatric ALL

NCCN Guidelines Pediatric ALL version 2.2020: https://www.nccn.org/professionals/physician_gls/pdf/ped_all.pdf

New targeted therapy for ALL

Malard F, Mohty M. Lancet. 2020;395:1146.

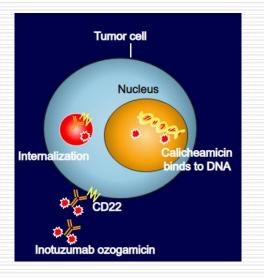
Leukemia https://doi.org/10.1038/s41375-020-0770-8

LETTER

Acute lymphoblastic leukemia

Blinatumomab versus historical standard therapy in pediatric patients with relapsed/refractory Ph-negative B-cell precursor acute lymphoblastic leukemia

Franco Locatelli¹ · James A. Whitlock² · Christina Peters ³ · Christiane Chen-Santel⁴ · Victoria Chia⁵ · Robyn M. Dennis⁶ · Kenneth M. Heym⁷ · Aaron J. Katz⁵ · Michael A. Kelsh^{5,8} · Richard Sposto⁹ · Huakang Tu⁵ · Catherine A. Tuglus⁵ · Anupam Verma¹⁰ · Luciana Vinti¹ · Jennifer J. Wilkes^{11,12} · Nathalya Zubarovskaja³ · Gerhard Zugmaier¹³ · Arend von Stackelberg⁴ · Weili Sun^{14,15}


Received: 6 September 2019 / Revised: 16 January 2020 / Accepted: 12 February 2020 \circledcirc The Author(s) 2020. This article is published with open access

In standardized IPTW, patients in the blinatumomab group were almost twice as likely to achieve a CR-full rate as the combined historical control group (OR, 1.82; 95% CI, 0.74–4.51). The HR for death with blinatumomab group versus historical controls was 0.65 (95% CI, 0.44–0.94)

"Effective bridge to transplantation"

Locatelli F, et al. Leukemia. 2020 Feb 24. doi: 10.1038/s41375-020-0770-8. Online ahead of print.

Inotuzumab ozogamicin

3 Inotuzumab ozogamicin

3.1 Mechanisms of action

CD22 is expressed on more than 90% of B-ALL cells and mature B lymphocytes, but not on normal hematopoietic B cell precursors, non-B lymphoid cells, myeloid cells, hematopoietic stem cells, or non-hematopoietic lineage cells [34, 35]. Therefore, CD22 is another attractive target for immunotherapy. Inotuzumab ozogamicin is a humanized CD22 monoclonal antibody conjugated to calicheamicin [36]. After inotuzumab binds to CD22, the complex is rapidly internalized to lysosomal vesicles. Similar to the treatment with gemtuzumab ozogamycin [37], which targets CD33-positive myeloid cells, the acidic pH environment in the lysozyme liberates calicheamicin. As a potent cytotoxic antitumor antibiotic, calicheamicin binds to DNA in the minor groove and causes double-strand DNA breaks and apoptotic cell death [38].

A phase 2 trial of inotuzumab ozogamicin (InO) in children and young adults with relapsed or refractory (R/R) CD22+ B-acute lymphoblastic leukemia (B-ALL): Results from Children's Oncology Group protocol AALL1621

□ 48 patients received InO; 1.8 mg/m²

□ Median age was 9 years (range 1–21)

67% were in >2nd relapse, 21% were in 1st relapse but refractory to reinduction, 23% had prior HSCT, 23% had prior CD19 CAR T, and 29% had prior blinatumomab

CR/CRi rate 58.3%

- □ In responders, 65.4% achieved MRD <0.01%
- Minimal hepatic toxicity was observed during InO therapy. SOS occurred in 30.7% of pts who underwent subsequent HSCT (8.3% of pts overall)

CAR T-cell studies and their results

Patients	Phase	N	Response	Survival	Adverse effects
Pediatric and young adults, relapsed/refractory B-ALL ⁵⁸	I/II	30	CR*, 90%	6-month overall survival, 78%	CRS, 100% (mild/moderate), 27% (severe)
(19-BBz)			(MRD negative**, 88%)		Neurologic, 43%
Pediatric and young adults, relapsed/refractory B-ALL ⁵⁹	П	75	CR*, 81%	6-month overall survival, 90%	CRS, 77% (any), 46% (grade≥3)
(19-BBz)			(MRD negative, 100%)		Neurologic, 40% (any), 13% (grade 3)
Pediatric and young adults, relapsed/refractory B-ALL/NHL ⁶⁰	I	21	CR*, 67%	10-month overall survival, 51.6%	CRS, 76% (any), 29% (grade≥3)
(19-28z)			(MRD negative**, 86%)		
Adults, relapsed/refractory B-ALL ⁶¹	I	53	CR*, 83%	Median survival, 12.9 months	CRS, 85% (any), 26% (grade≥3)
(19-28z)			(MRD negative**, 73%)		Neurologic, 43% (grade \geq 2), 42% (grade \geq 3
Pediatric and young adults, relapsed/refractory B-ALL ⁸¹	I	43	MRD negative CR*, 93%	12-month overall survival, 69.5%	CRS, 93% (any), 23% (severe)
(19-BBz)					Neurologic, 49% (any), 21% (severe)
Pediatric and young adults, relapsed/refractory B-ALL ¹⁰¹	I	21	CR*, 57%	Median remission duration, 6 months	CRS, 76% (any), 0% (grade≥3)
(22-BBz)			(MRD negative**, 75%)		No severe neurotoxicity
			CR*, 73% (≥1 × 10 ⁶ CAR T)		
Pediatric and young adults, relapsed/refractory B-ALL ⁸⁰	I	14	MRD-negative CR*, 86%	12-month overall survival, 63%	CRS, 93% (any), 0% (grade ≥ 3)
(19 [low affinity]-BBz)					Neurologic, 43% (any), 0% (grade \geq 3)
Pediatric and adults, relapsed/refractory B-ALL/NHL ¹⁰³	п	89	MRD-negative CR*#, 96%	12-month overall survival#, 62.8%	CRS, 95.5% (any), 21.3% (grade≥3)
(19-28/BBz and 22-28/BBz cocktail)					Neurologic, 13.5% (any), 1.1% (grade ≥ 3)

Early intervention for CRS with tocilizumab and/or corticosteroids reduced the incidence of transition from mild to severe CRS and had no detrimental effect on the MRD– complete remission rates or functional CAR T-cell persistence

ALL, acute lymphoblastic leukemia; CR, complete remission; MRD, minimal residual disease; CRS, cytokine release syndrome; NHL, non-Hodgkin lymphoma; BBz, intracellular signaling domains of 4-1BB with CD3z; 28z, intracellular signaling domains of CD28 with CD3z. *CR includes that with incomplete counts recovery; **Percentage of MRD-negative patients among those with CR; #ALL only (51 patients). Inaba H, Pui CH. *Cancer Metast Rev.* 2019;38:595-610.

CAR T cells

- □ The use of HSCT after CAR T-cell therapy is controversial
- CAR T cells migrate to extramedullary sites, thus can be used to treat extramedullary relapses
- Loss of CAR T-cell function may occur
- □ Prior blinatumomab CT may affect CAR T-cell efficacy
- Harvesting problems in some children
- □ CD19- relapses
- Cytoreduce prior to infusion to reduce CRS

Inaba H, Pui CH. Cancer Metast Rev. 2019;38:595-610.

How about current treatment options in pediatric patients with relapsed T-cell ALL?

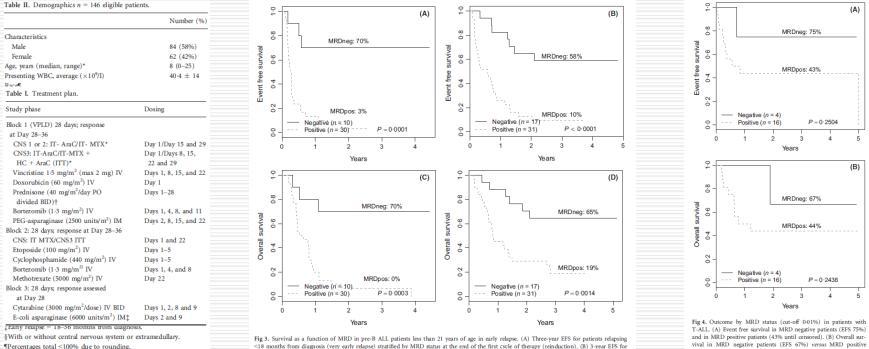
- No new drugs
- Bortezomid
- γ secretase inhibitors
- Daratumumab
- CAR T-cells

Treatment in relapsed T-cell ALL

- □ Nelarabine (55% response rate in first remission)
- □ Bortezomib-based CTs
- \Box γ -Secretase inhibitors for NOTCH1 signaling
- Daratumumab antiCD38
- □ CAR T cells targeting CD5 or CD7

© 2019 British Society for Haematology and John Wiley & Sons Ltd British Journal of Haematology, 2019, **186**, 274–285

Din research paper


Bortezomib reinduction chemotherapy in high-risk ALL in first relapse: a report from the Children's Oncology Group

Terzah M. Horton,¹ D James A. Whitlock,² Xiaomin Lu,³ Maureen M. O'Brien,⁴ Michael J. Borowitz,⁵ Meenakshi Devidas,³ Elizabeth A. Raetz,⁶ Patrick A. Brown,⁵ William L. Carroll⁷ and Stephen P. Hunger^{8,9}

patients (EFS 43%), ALL, acute lymphoblastic leukaemia; EFS, event-

free survival; MRD, minimal residual disease; MRDneg, minimal

residual disease negative; MRDpos, minimal residual disease positive.

(4) months from diagnosis (very early relapse) stratified by MRD status at the end of the first cycle of therapy (reinduction). (B) 3-year EFS for patients stratified by MRD status. (C) Three-year overall survival for very early relapse patients stratified by MRD status. (D) 3-year EFS for early relapse patients stratified by MRD status. EFS, event-free survival; MRD, minimal residual disease; MRDne, minimal residual disease nearity: MRDos, minimal residual disease positive.

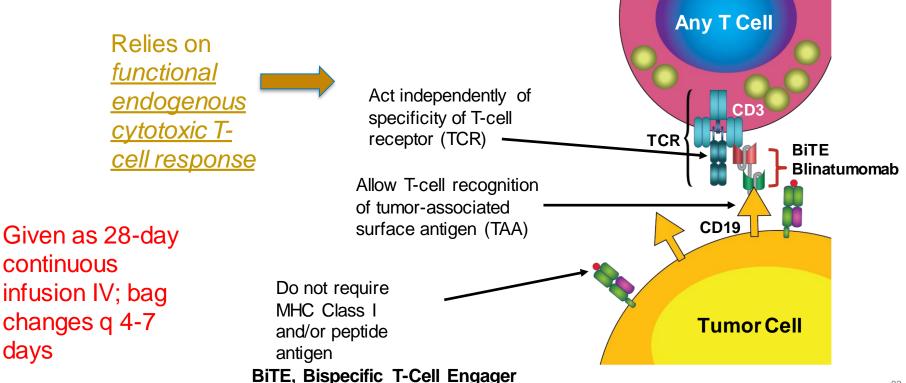
Conclusions

- □ The treatment approach for relapsed ALL is changing rapidly
- CT induction followed by blinatumomab may be a new standard in the relapsed ALL
- □ InO may be used in these patients since the MRD- cure rates are promising
- Further CAR T-cell development may improve some of the current challenges experienced with tisagenlecleucel
- The potential to replace HSCT with CAR T-cell therapy and CAR T-cell administration to treat extramedullary relapses in relapsed ALL patients is still in investigation
- Clinicians need to be aware of the adverse effects and toxicities of new drugs

Bispecific T-Cell Engagers for Pediatric ALL

Patrick Brown

THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER


BiTE Immunotherapy for Pediatric ALL

Patrick Brown, MD

Associate Professor of Oncology, Johns Hopkins University Director, Pediatric Leukemia Program, Sidney Kimmel Comprehensive Cancer Center Vice Chair for Relapse, COG ALL Committee Chair, NCCN ALL Guideline Panel

Blinatumomab Mechanism of Action

Bispecific anti-CD19/CD3 BiTE antibody blinatumomab designed to kill autologous tumor cells

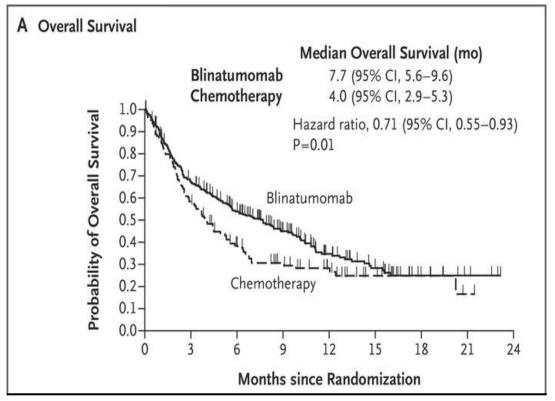
Adapted from/courtesy of Amgen.

Diagnosis and Treatment of ALL

Allo-SCT, allogeneic stem cell transplant; FISH, fluorescence in situ hybridization; TKI, tyrosine kinase inhibitor (for BCR-ABL-positive disease)

NCCN Guidelines® for Acute Lymphoblastic Leukemia (Version 2.2015) © 2015 National Comprehensive Cancer Network, Inc. Available at: NCCN.org; 2. Hahn T et al. *Biol Blood Marrow Transplant*. 2006;12(1):1-30. 3. Raetz EA et al. *Hematol Am Soc Hematol Educ Program* 2012;2012:129-136. 4. National Cancer Institute. Childhood acute lymphoblastic leukemia treatment (PDQ®). http://www.cancer.gov/cancertopics/pdq/treatment/childALL/HealthProf essional. Accessed July 10, 2017.

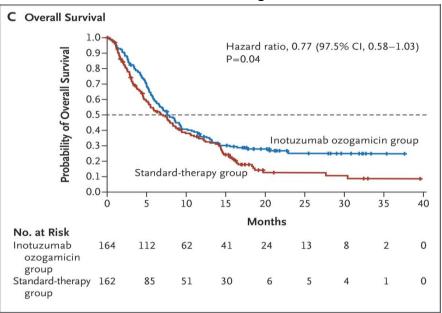
Response Rates and Survival in Relapsed/Refractory B-ALL


Agent	Туре	Target	Responses (CR / MRD–)	Toxicities	FDA indication	Cost
Blinatumomab ¹	BiTE	CD19	44%/33%	CRS, neurotoxicity	Adult and pediatric R/R B-ALL, MRD+	\$180K
Inotuzumab ²	lmmuno- conjugate	CD22	81%/63%	Hepatotoxicity	Adult R/R B-ALL	\$168K
Tisagenlecleuce I ³	CAR T cell	CD19	81%/81%	CRS, neurotoxicity	Refractory or 2 nd /greater relapse; age up to 26 years	\$475K

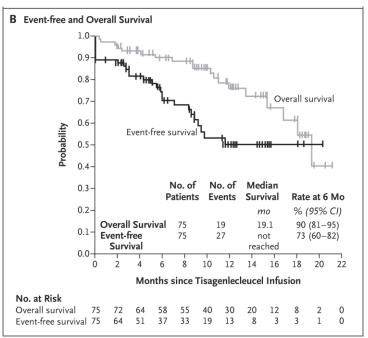
Unprecedented initial response rates . . . BUT . . .

1. Kantarjian H, et al. N Engl J Med 2017; 376:836-847; 2. Kantarjian, H. et al. N Engl J Med 2016; 375:740-753; 3. Maude SL, et al N Engl J Med 2018; 378:439-448

Survival in R/R ALL (adult)


Blinatumomab

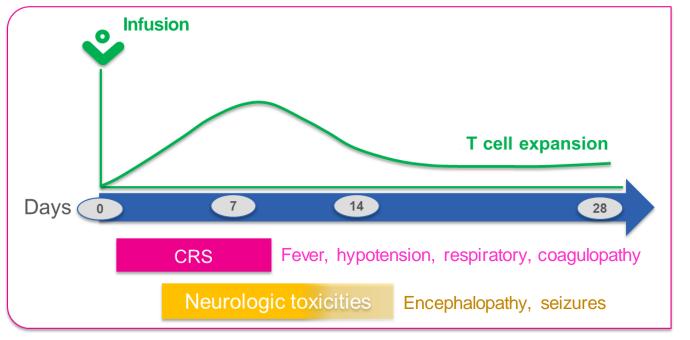
Blina: Improved survival initially, but not durable


Survival in R/R ALL

Inotuzumab Ozogamicin¹

Ino: Improved survival initially, but not durable

Tisagenlecleucel²


N Engl J Med 2018;378:439-448

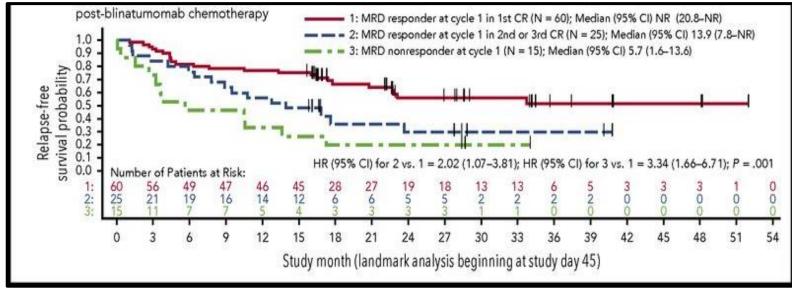
Tisa: Durable survival improvement, but long-term EFS is in the 50% range

Adverse Events in Relapsed/Refractory B-ALL

Agent	Туре	Target	Responses (CR / MRD–)	Toxicities	FDA indication	Cost
Blinatumomab ¹	BITE	CD19		CRS, neurotoxicity	Adult and pediatric R/R B-ALL, MRD+	\$180K
Tisagenlecleucel	CAR T cell	CD19	81%/81%	CRS, neurotoxicity	Refractory or 2 nd /greater relapse; age up to 26 years	\$475K

AEs After Blinatumomab and CAR T Cells

- CRS 40-80% (20-40% Gr3+), Neuro 10-30% (5-10% Gr3+)
- CRS and neuro may not correlate
- CRS -> IVF, tocilizumab (anti-IL6R), steroids


• Neuro -> self-limiting, reversible; steroids (toci not effective) Adapted from/courtesy of Novartis. *Incidence of CRS strikingly lower in MRD+ setting; neurotox is similar

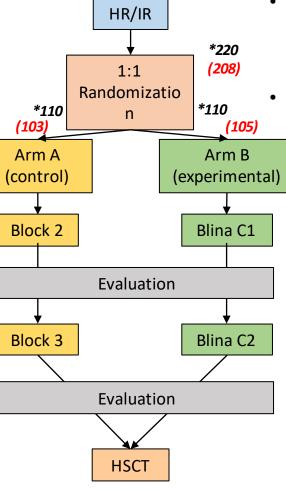
MRD+

Response Rates and Survival in MRD+ B-ALL

- N=116 adults, international multicenter single-arm Ph 2
- MRD+ (>10⁻³)
- 35% MRD+ in CR2+
- MRD cleared in 78% after 1 cycle

- 67% proceeded to HSCT
- Significant percentage of those who did not remain in prolonged remission
- 20 of 74 proceeding to HSCT (27%) died of TRM

Stratifications


- Risk group (HR vs IR)
- For HR
 - Site (BM vs iEM)
 - For BM: CR1 duration (<18 vs 18-36 mo)

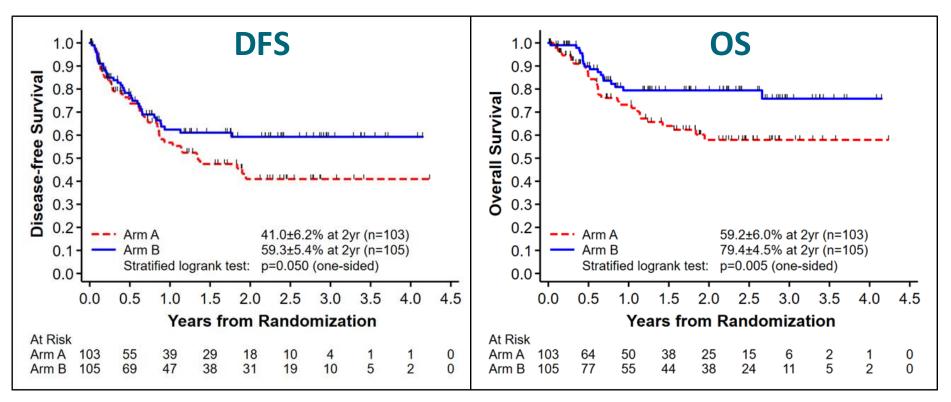
UKALLR3, Block 2*

- VCR, DEX week 1
- ID MTX, PEG week 2
- CPM/ETOP week 3
- IT MTX or ITT

UKALLR3, Block 3*

- VCR, DEX week 1
- HD ARAC, Erwinia weeks 1-2
- ID MTX, Erwinia week 4
- IT MTX or ITT

- <u>Endpoints</u>
 - Primary: DFS
 - Other: OS, MRD response, ability to proceed to HSCT
- <u>Sample size n=220 (110 per arm)</u>
 - Power 85% to detect HR 0.58 with 1-sided α =0.025
 - Increase 2-yr DFS from 45% to 63%

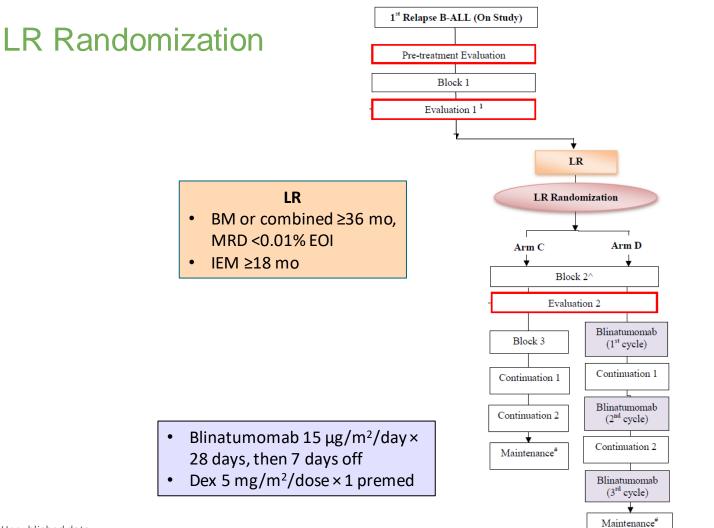

Blina C1 and Blina C2

- Blinatumomab 15 µg/m²/day × 28 days, then 7 days off
- Dex 5 mg/m²/dose × 1 premed (C1 only)
- First patient randomized Jan 2015
- Randomization halted Sep 2019 (95% projected accrual)

*UKALLR3 reference: Parker, et al. Lancet. 2010; 376: 2009-17

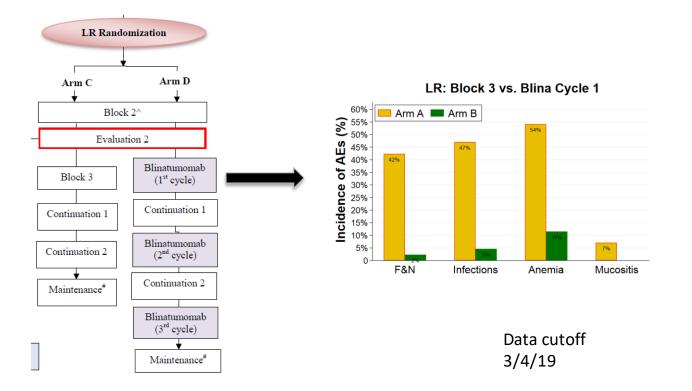
Brown et al. Blood 2019; 134 (Supplement_2): LBA-1.

Survival: Arm A (chemotherapy) vs Arm B (blinatumomab)

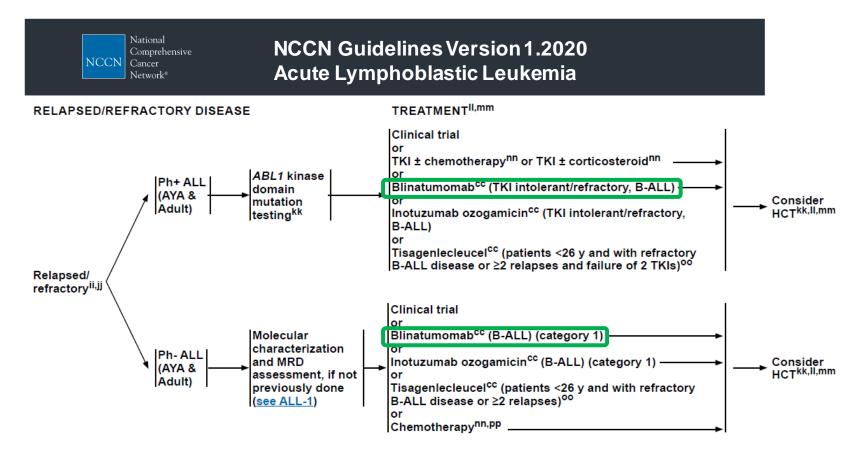


Median follow-up 1.4 years

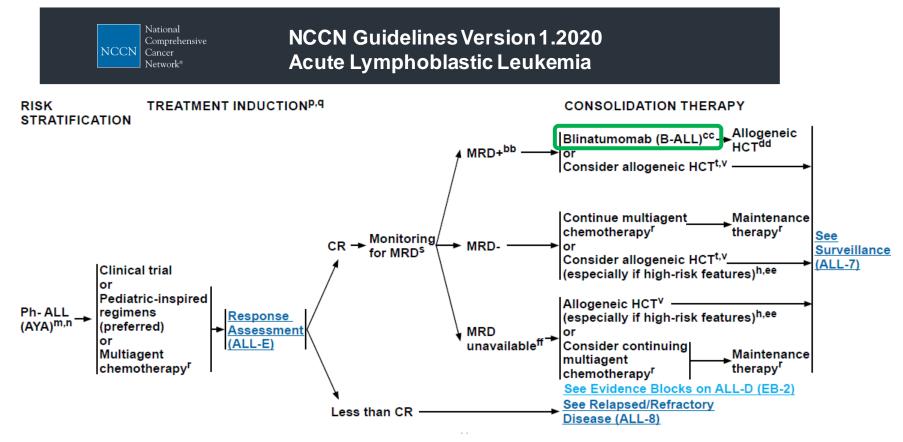
Brown et al. Blood 2019; 134 (Supplement_2): LBA-1.


CHILDREN'S

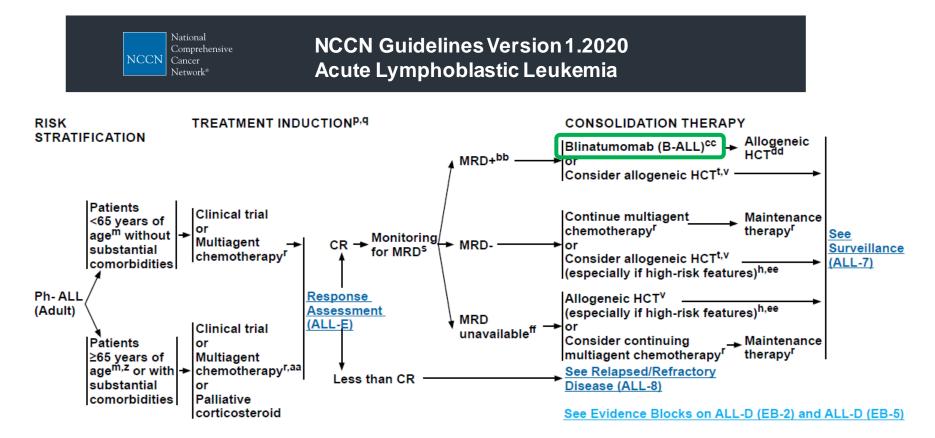
ONCOLOGY GROUP

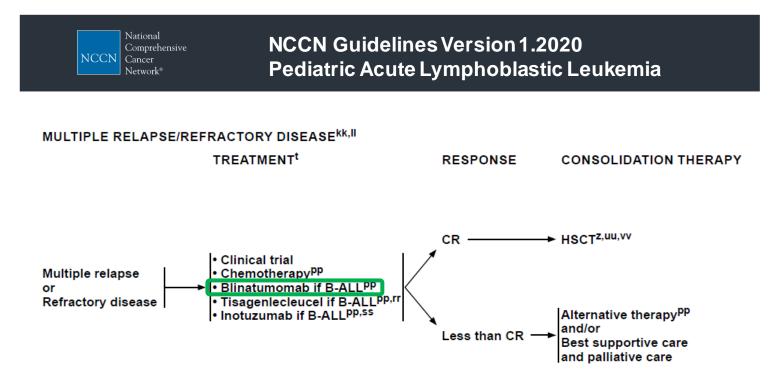

Unpublished data.

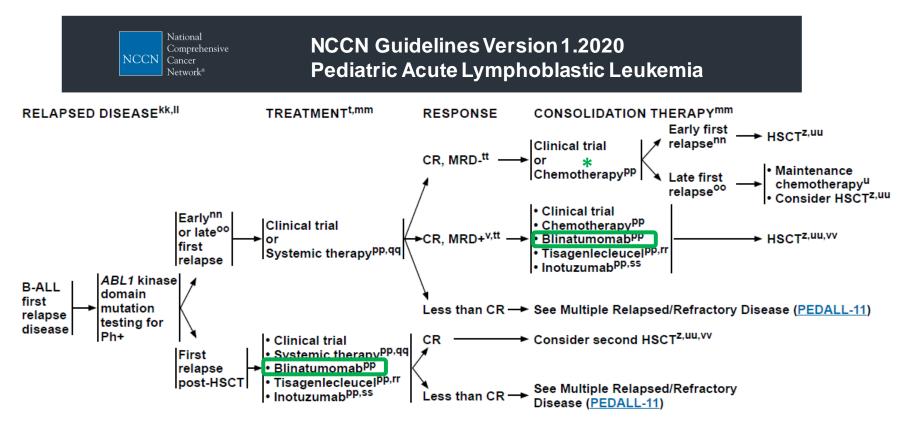
Adverse Events: LR (grade 3+)

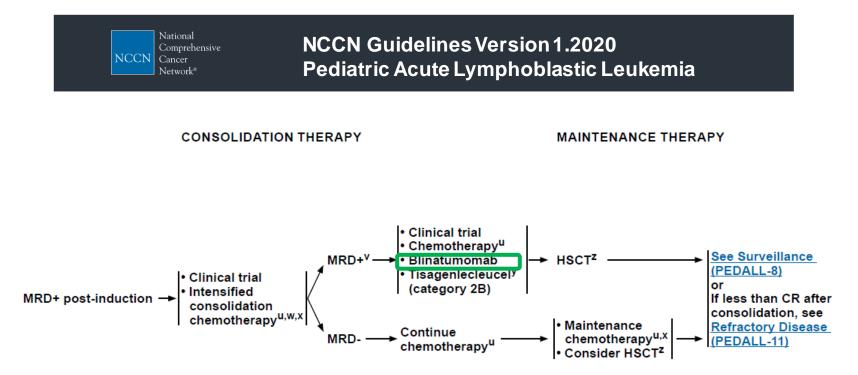


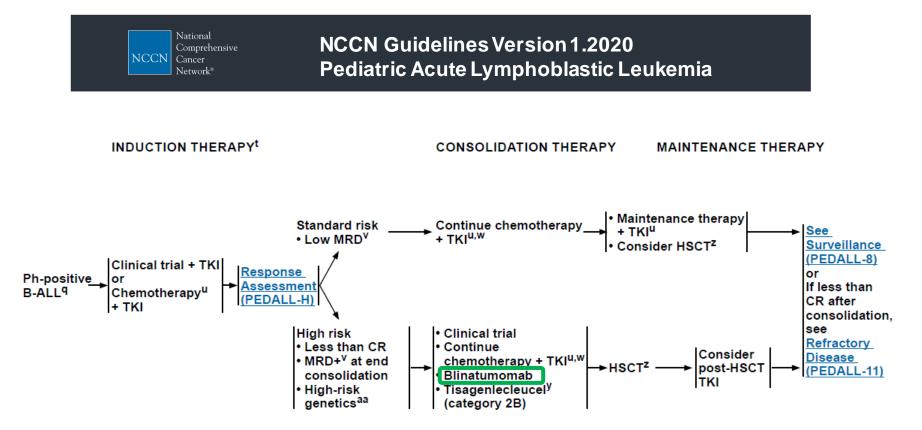
CHILDREN'S ONCOLOGY GROUP


Unpublished data.

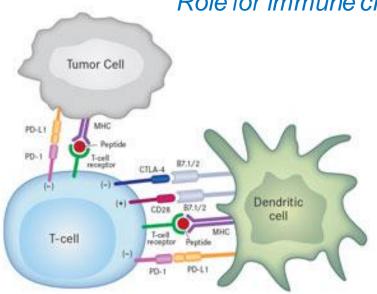

© 2018 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration maynot be reproduced in anyform without the express written permission of NCCN®. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.


© 2018 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN®. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.


© 2018 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN®. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.


© 2018 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN[®]. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.

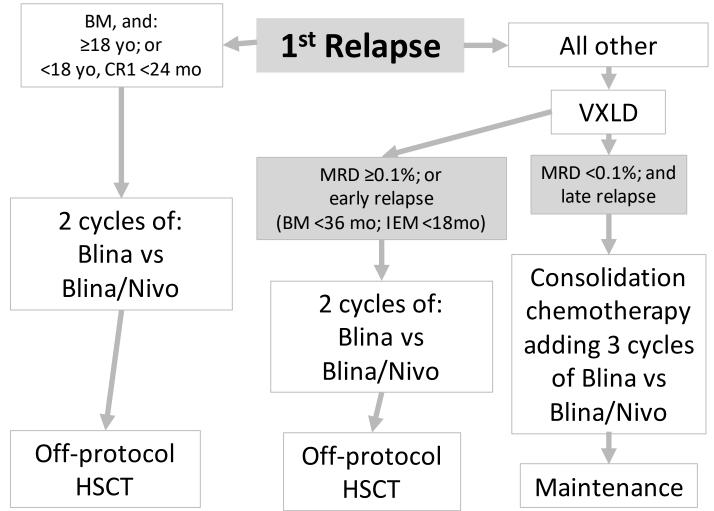
© 2018 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in anyform without the express written permission of NCCN®. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.


© 2018 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN[®]. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.

© 2018 National Comprehensive Cancer Network, Inc. All rights reserved. These guidelines and this illustration may not be reproduced in any form without the express written permission of NCCN®. To view the most recent and complete version of the NCCN Guidelines, go online to NCCN.org.

What Happens When Blinatumomab Doesn't Work?

• EARLY: Endogenous T-cell "exhaustion"

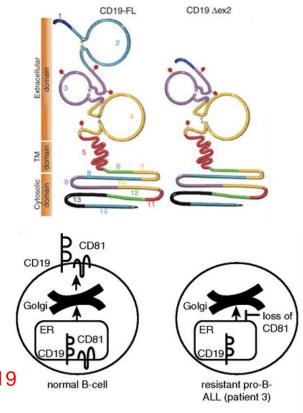


Role for immune checkpoint inhibitors (eg, anti–PD-1)?

PD-1	PD-L1	CTLA-4
Nivolumab	Atezolizumab	lpilimumab
Pembrolizumab*	Avelumab	
	Durvalumab	

Reports of efficacy in patients relapsing after blina/CAR T cells

• Feucht, et al. Oncotarget 2016 Nov 22;7(47):76902-19


Unpublished data.

- LATE: Antigen escape
 - CD19 splice variants¹
 - Defective CD19 membrane trafficking²
 - Lineage switching (esp. MLL-r)³

Multi-antigen targeting?

NOTE: Incidence of CD19 escape lower with blina than with CD19 CAR, likely reflecting less-potent CD19 selection pressure

1. Sotillo, et al. Cancer Discovery. 2015; 5(12):1282-95; 2. Braig, et al. Blood. 2017 Jan 5; 129(1):100-104; 3. Gardner, et al. Blood. 2016; 127(20):2406-100-104

Can We Predict When Blinatumomab Won't Work?

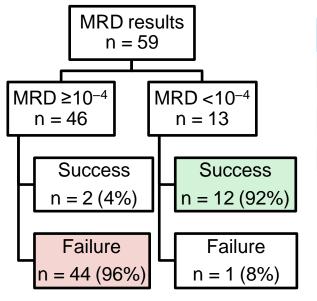
Correspondence 🔂 Free Access

Day 15 bone marrow minimal residual disease predicts response to blinatumomab in relapsed/refractory paediatric B-ALL

Patrick Brown 🔀, Gerhard Zugmaier, Lia Gore, Catherine A. Tuglus, Arend von Stackelberg

First published: 03 December 2019 | https://doi.org/10.1111/bjh.16306

Brown PA, et al. Br J Haematol. 2020;188(4):e36-e39.


Efficacy Outcomes in Patients Enrolled in Phase I/II Study

Response	Patients at Recommended Dose Who Had Response Assessment (N= 64)ª			
	n/N (%)	95% CI		
CR within the first 2 cycles	27/64 (42)	30, 55		
Non-responders (did not achieve CR)	→ 37/64 (58)	45, 70		
Partial remission	4			
Blast-free or aplastic bone marrow	2			
Progressive disease	10			
No response	21			
MRD response in patients who achieved CR within the first 2 cycles				
Complete MRD response	14/27 (52)	32, 71		
No MRD response	12/27 (44)	26, 64		
No data available	1/27 (4)			

- Study definitions
 - "Success" was defined as complete MRD response in CR (n = 14)
 - "Failure" was defined as anything other than success (n = 50)

Biomarkers to Predict Blinatumomab Success/Failure

Overall, day 15
 MRD results
 predicted best
 response after 2
 cycles with 95%
 accuracy (correctly
 in 56 of 59 patients)

()	(%)
19/40	49
54/60	90
42/51	84
56/59	95
42/49	86
	54/60 42/51 56/59

NOTE: Day 8 PB is an especially poor predictor of subsequent response

As patients with MRD $\geq 10^{-4}$ at day 15 could potentially pursue alternative therapies, such as dose escalation or combination therapies, day 15 MRD results may allow personalized treatment and improve outcomes in pediatric patients with relapsed/refractory B-ALL

Study definitions

- "Success" was defined as complete MRD response in CR (n = 14)
- **"Failure**" was defined as anything other than success (n = 50)

Blinatumomab: Questions and Discussion

- HSCT after MRD clearance with blinatumomab?
- Ability of checkpoint inhibition to safely enhance blinatumomab response?
- Predictive biomarkers of blinatumomab response?
- Risk of prior blinatumomab exposure and CD19 escape after subsequent CD19 CAR T therapy?

A 21-year-old male began an infusion of blinatumomab 36 hours ago. He has developed acute onset of fever, hypotension, respiratory distress, hypoxia, and diffuse edema. Which of the following is the most likely explanation?

A. Gram-negative bacterial sepsis

B. Disseminated adenoviral infection

C. Cytokine release syndrome (CRS)

- D. Macrophage activation syndrome (MAS)
- E. Hemophagocytic lymphohistiocytosis (HLH)

True or False: The most effective treatment for blinatumomabassociated neurotoxicity is tocilizumab (anti-IL6R antibody).

Case-Based Panel Discussion: Management of Long- and Short-Term Toxicities

Rob Pieters Hale Ören

Case-Based Panel Discussion: Overview of Long-Term Toxicities

Rob Pieters

Long-term toxicities in pediatric ALL

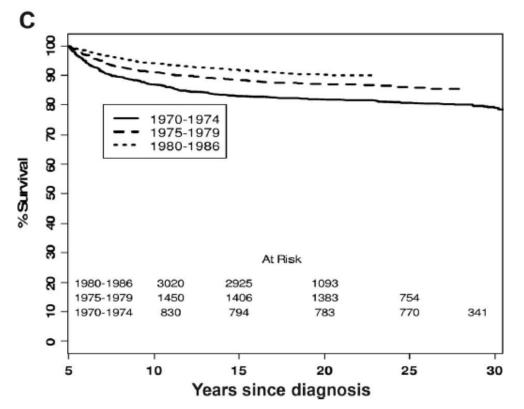
Rob Pieters Chief Medical Officer

Question 1:

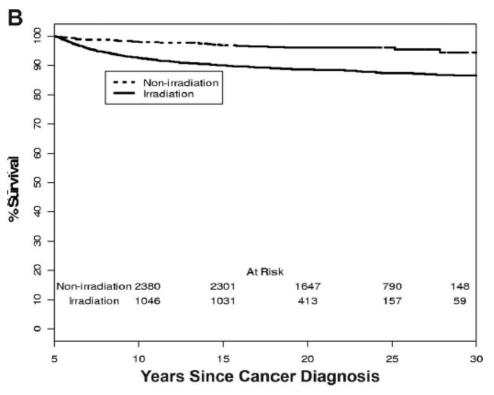
Which factor has the lowest probability of causing significant long-term toxicity in pediatric ALL?

- The anthracyclines daunorubicin and/or doxorubicin in a cumulative dose of >30 mg/m² in a child aged 5 years at diagnosis
- 2. Methotrexate in a cumulative dose of 20.000 mg/m2 in a child aged 8 years at diagnosis
- 3. Cranial radiotherapy in a child aged 2 years at diagnosis
- 4. Dexamethasone in a female child aged 14 years at diagnosis

Question 2:

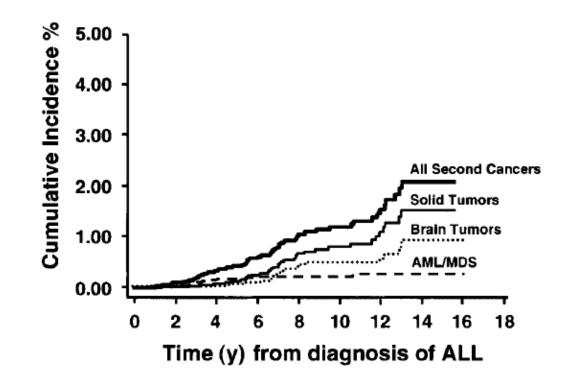


Which assertion is NOT correct?


- 1. Dexamethasone can cause osteonecrosis
- 2. The risk of osteonecrosis is lowest in children <10 years of age
- 3. The risk of osteonecrosis is highest in adults with ALL
- 4. The risk of osteonecrosis is higher with a continuous schedule of glucocorticoids than with a discontinuous schedule in the same cumulative dose

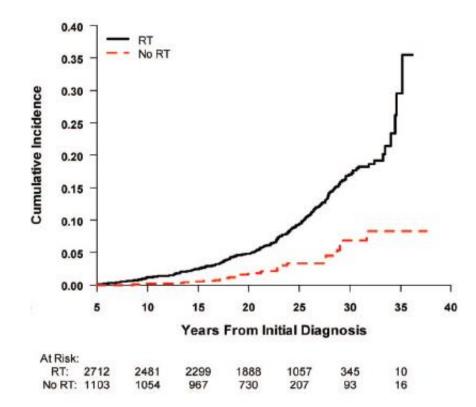
Survival of 5-year ALL survivors

Survival of 5-year ALL survivors: irradiated vs nonirradiated

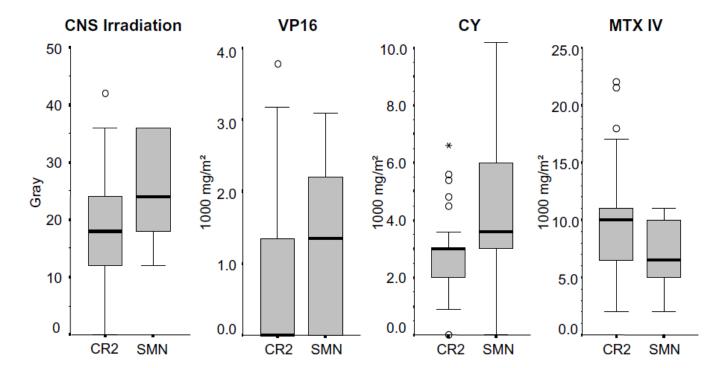

Late effects of treatment in ALL

Princess máxima center pediatric oncology

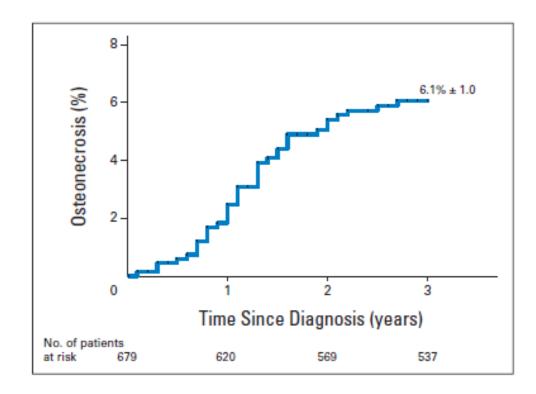
- Second malignancies
- Osteonecrosis
- Neurocognitive sequelae
- Cardiomyopathy
- Insulin dependent diabetes (pancreatitis)
- Chronic GvH
- Chronic immune deficiency (CD19-directed CAR T cells)


Cumulative incidence of second neoplasms in 8831 children with ALL

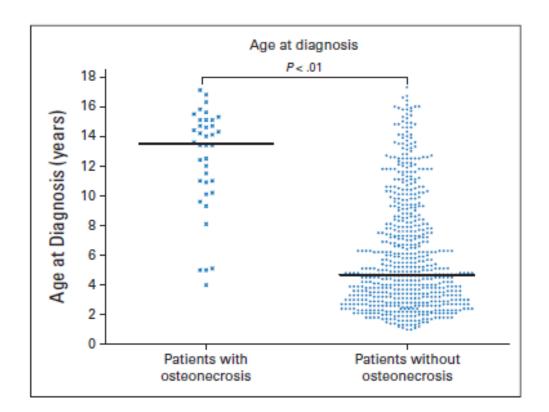
Second neoplasms among 5-year survivors of childhood ALL in the CCSS cohort: role of radiotherapy



Robison LL, et al. Hematology Am Soc Hematol Educ Program. 2011;2011:238-242.

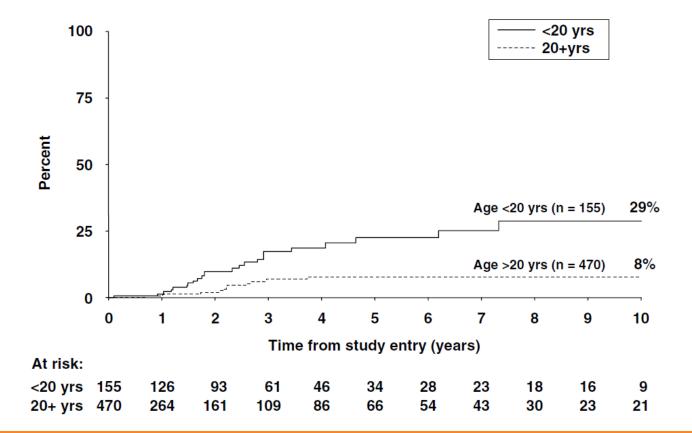

Cumulative dose of cranial irradiation and chemotherapeutic agents vs second malignancies in patients with first relapse of ALL, treated with ALL-REZ BFM 83–96

Cumulative incidence of symptomatic osteonecrosis in pediatric ALL

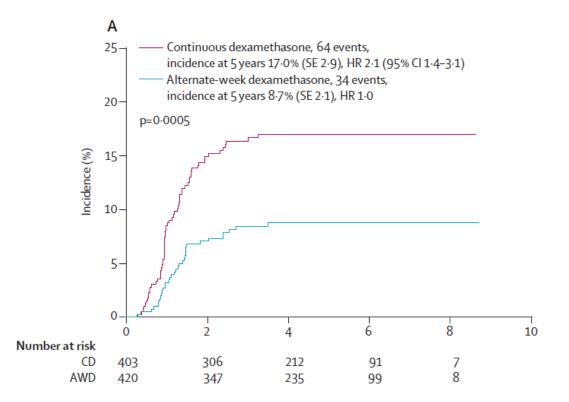


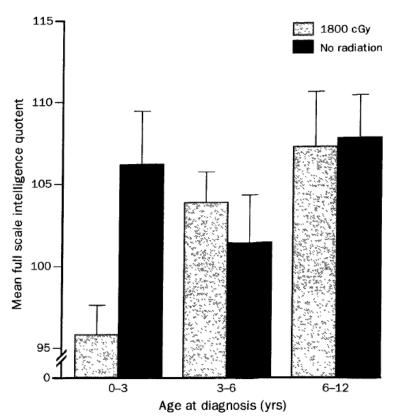
Te Winkel ML, et al. J Clin Oncol. 2011;29(31):4143-4150.

Age at diagnosis in patients with and without symptomatic osteonecrosis

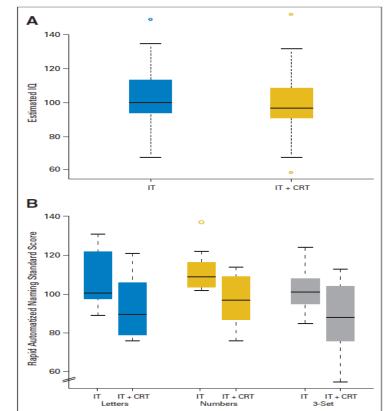

Multivariate logistic regression analysis of symptomatic osteonecrosis in relation to age, sex, and treatment arm

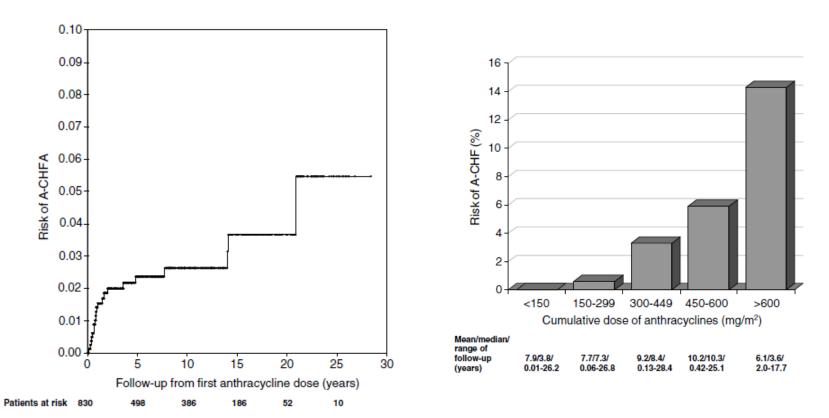
		Initial Model	
Risk Factor	OR	95% CI	Р
Age at diagnosis of ALL, years	1.47	1.33 to 1.63	< .001
BMI at diagnosis, sds	0.88	0.64 to 1.20	.41
Sex			
Male	1.00		
Female	2.13	0.99 to 4.62	.05
Risk group			
Non-high risk	1.00		
High risk	0.69	0.30 to 1.60	.39


Osteonecrosis by age in ALL: UKALL XII study

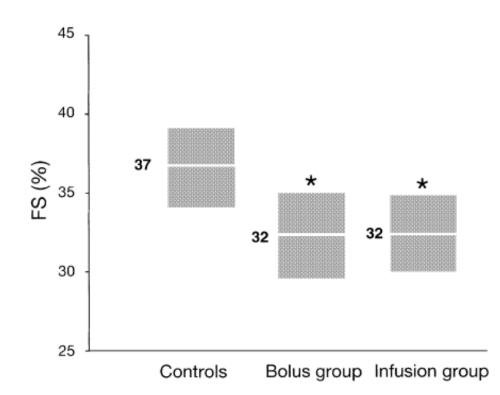


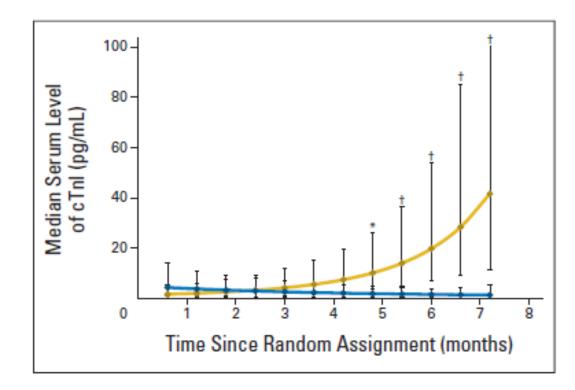
Osteonecrosis: continuous vs alternate-week dexamethasone


Effects of 1800 cGy cranial radiation on intellectual performance as a function of age at diagnosis



IQ and rapid naming tasks: intrathecal (IT) vs IT plus cranial radiation therapy (CRT)


Risk of anthracycline-induced clinical heart failure in childhood cancer


Shortening fraction by bolus or 6-hour infusion of daunorubicin

Cardiac troponin during doxorubicin therapy in ALL with (blue) or without (red) dexrazoxane

Late effects of treatment in ALL

Princess máxima center pediatric oncology

- Second malignancies
- Osteonecrosis
- Neurocognitive sequelae
- Cardiomyopathy
- ... Others ...
- Large series
- Long follow-up
- Structured follow-up
- Feedback to current protocols

Late effects outpatient clinic

Page 134

Answer to question 1:

Which factor has the lowest probability of causing significant long-term toxicity in pediatric ALL?

- The anthracyclines daunorubicin and/or doxorubicin in a cumulative dose of >30 mg/m² in a child aged 5 years at diagnosis
- 2. Methotrexate in a cumulative dose of 20.000 mg/m² in a child aged 8 years at diagnosis
- 3. Cranial radiotherapy in a child aged 2 years at diagnosis
- 4. Dexamethasone in a female child aged 14 years at diagnosis

Answer to question 2:

Which assertion is NOT correct?

- 1. Dexamethasone can cause osteonecrosis
- 2. The risk of osteonecrosis is lowest in children <10 years of age

3. The risk of osteonecrosis is highest in adults with ALL

4. The risk of osteonecrosis is higher with a continuous schedule of glucocorticoids than with a discontinuous schedule in the same cumulative dose

Thank you!

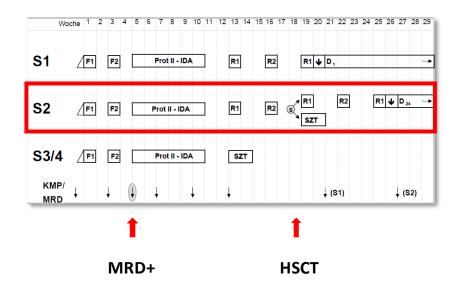
Case-Based Panel Discussion: Patient Case Presentation

Hale Ören

Short-term toxicities associated with treatment of childhood ALL

- Hypersensitivity to asparaginase
- Hyperlipidemia
- Osteonecrosis
- Asparaginase-associated pancreatitis
- Arterial hypertension
- Posterior reversible encephalopathy syndrome
- Seizures

- Depressed levels of consciousness
- MTX-related stroke-like syndrome
- Peripheral neuropathy
- High-dose MTX-related severe nephropathy
- Sinusoidal obstruction syndrome
- Thromboembolism
- Pneumocystis jirovecii pneumonia


Clinical case: Initial diagnosis (May 2012)

- 10-year-old male
- Pre–B-cell ALL, CNS negative
- Treatment started according to ALL-BFM 2000 protocol
- MLL (-), t(9;22) (-), t(12;21) (-)
- No abnormalities in cytogenetic analysis
- PGR on day 8
- 15th day and 33rd day BM in remission
- MRD-PCR: TP 1 − 10⁻²; TP 2 − 10⁻³; TP 3 − (-)/10⁻⁵ (intermediate-risk group)
- Treatment completed: May 2014

Clinical case: First relapse (Feb 2016)

56 months after diagnosis

- Isolated bone marrow relapse
- Treatment according to ALL-REZ BFM 2012-S2
- MRD still positive before protocol II-IDA
 - HSCT decision
- AlloHSCT after R2 (29.11.2016)
 - 9/10 MUD

Clinical case: Second relapse (May 2018)

19 months after HSCT (30.05.2018)

- Isolated bone marrow relapse
 - Trisomy 8+, 23%
- FLAG
 - M3 bone marrow
- FLAG + mitoxantrone
 - M2 bone marrow, MRD+

What would you do next?

- 1. AlloHSCT
- 2. Start CAR T-cell therapy
- 3. Start blinatumomab therapy
- 4. Palliative care

Clinical case: Blinatumomab treatment (14.08.2018)

Which dose of blinatumomab would you prefer to give?

- 1. Start and continue with 5 μ g/m²/day
- 2. Start and continue with $30 \,\mu g/m^2/day$
- 3. Start with 5 μ g/m²/day, then give 15 μ g/m²/day after day 8
- 4. Start and continue with 15 μ g/m²/day

Recommended dose confirmed in phase 1 was applied to phase 2

On the basis of the phase 1 dose-escalation study, the recommended blinatumomab dose for children with R/R B-cell precursor ALL is:

5 μg/m²/day for the first 7 days

followed by

15 μg/m²/day starting at day 8

ALL, acute lymphoblastic leukemia; R/R, relapsed/refractory. von Stackelberg A, et al. *J Clin Oncol*. 2016;34:4381-4389.

Clinical case, continued

- Remission status after blinatumomab
 - M1 BM
 - MRD-
- Second alloHSCT (MUD) (01.11.2018)
- Antiepileptic therapy stopped, normal EEG (20.11.2019)
- MRD still negative
- BM is still in CR (March 2020)

Some patients treated with blinatumomab experienced neurologic/psychiatric events

	All Patients n = 70 ^a
Patients with neurologic/psychiatric events of any grade regardless of relation to treatment, n (%)	17 (24)
Tremor	4 (6)
Dizziness	3 (4)
Somnolence	3 (4)
Convulsion	2 (3)
Paresthesia	2 (3)
Encephalopathy	1 (1)
Neuralgia	1 (1)
Ataxia	1 (1)
Atonic seizure	1 (1)
Cerebros pi na l fluid l ea kage	1 (1)
Depressed level of consciousness	1 (1)
Dysgeusia	1 (1)
Hypoesthesia	1 (1)
Nystagmus	1 (1)
Syncope	1 (1)
Confusional state	1 (1)
Mental disorder	1 (1)

13% of patients had neurologic events, primarily tremor and dizziness, that were considered treatment related; these events were of grade 2 and resolved upon treatment discontinuation

^aAll patients who received the recommended dose in phase 1 or 2. von Stackelberg A, et al. *J Clin Oncol*. 2016;34:4381-4389; supplementary material (online).

Some patients treated with blinatumomab developed cytokine release syndrome

	All Patients n = 70 ^a
Patients with CRS, n (%)	
Any grade	8 (11)
Worstgrade 3	3 (4)
Worstgrade 4	1 (1)
Worstgrade 5	0
Temporarily interrupted treatment because of CRS	2 (3) ^b
Discontinued treatment because of CRS	2 (3) ^c
Patients with CRS by age group, n (%)	
<2 years (n = 10)	2 (3)
Worstgrade3 or 4	0
2–6 years (n = 20)	2 (3)
Worstgrade3 or 4	2 (3)
7–17 years (n = 40)	4 (6)
Worstgrade3 or 4	2 (3)
Duration of grade ≥3 CRS, n (%)	
>3 to ≤7 days	2 (3)
>7 to ≤14 days	1 (1)
>14 days	1 (1)
Median (95% CI) days	6.5 (5.0–16.0)

^aAll patients who received the recommended dose in phase 1 or 2. ^bAll grade 3. ^cOne grade 3 and one grade 4 event. CRS, cytokine release syndrome.

von Stackelberg A, et al. J Clin Oncol. 2016;34:4381-4389.

Conclusions

- To prevent CRS, dexamethasone or hydroxyurea were recommended during the first week of therapy for 4 days, and were required if bone marrow blasts were >50% at baseline
- Patients received prophylactic dexamethasone 10 mg/m² 6–12 hours before and 5 mg/m² within 30 minutes of the start of infusion
- IL-6 inhibitors (tocilizumab/siltuximab), dexamethasone/methylprednisolone in CRS if necessary
- Regarding neurotoxicity, withholding blinatumomab is recommended for grade 3 toxicity until improvement to grade <1 is noted for 3 consecutive days. Restart with lower dose.
 For grade 4 toxicity, discontinue
- Daily fundus examination, EEG, MRI, LP
- Intensive care
- Antiepileptics

Case-Based Panel Discussion: Management of Long- and Short-Term Toxicities

Patrick Brown Rob Pieters Hale Ören Sema Anak Gulyuz Öztürk Akif Yesilipek

Educational ARS Questions

Rob Pieters

Educational questions Pediatric ALL Question 1: which assertion is correct for children with ALL?

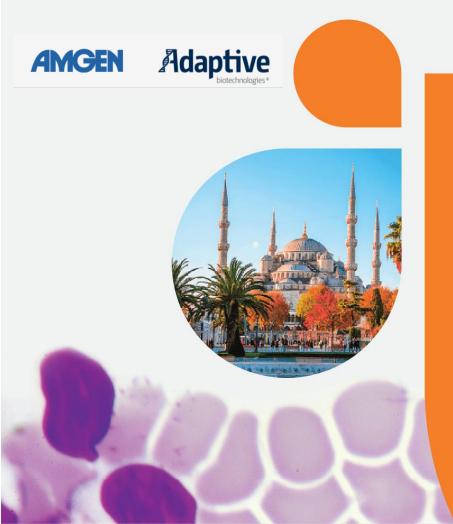
- 1. All patients with MLL rearranged ALL should be transplanted
- 2. All patients with BCR-ABL positive ALL should be transplanted
- 3. No patient with BCR-ABL positive ALL should be transplanted
- 4. AlloSCT is part of treatment for children with early relapsed ALL

Educational questions Pediatric ALL Question 2: which assertion is correct for children with ALL?

- 1. Blinatumomab and inotuzumab are part of first-line treatment
- 2. Blinatumomab and inotuzumab can not be administered sequentially
- 3. Therapeutic drug monitoring of asparaginase improves outcome
- 4. Dexamethasone and vincristine are standard components of maintenance therapy

Closing remarks

Rob Pieters



Thank You!

- >Please complete the evaluation page that will appear on your screen momentarily
- > Your notes on the slides will be emailed to you by July 17
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website by July 17
- > You will also receive a certificate of attendance by email by July 17

THANK YOU!

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias

THANK YOU FOR YOUR PARTICIPATION!

APTITUDE HEALTH®