

Global Leukemia Academy

Emerging and Practical Concepts and Controversies in Leukemias 8–9 July 2020

Welcome and Meeting Overview

Elias Jabbour and Fatih Demirkan

APTITUDE HEALTH

Meet the Faculty

Patrick Brown, MD Associate Professor of Oncology and Pediatrics, Director of the Pediatric Leukemia Program Johns Hopkins University

Hale Ören, MD Professor of Pediatrics, Dokuz Eylul University

Josep-Maria Ribera, MD, PhD

Chair, Clinical Hematology Department, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol

Andre Schuh, MD Staff Physician, Princess Margaret Cancer Centre

Rob Pieters, MD, PhD Chief Medical Officer, Princess Máxima Center for

Princess Maxima Cente Pediatric Oncology

Objectives of the Program

Understand current treatment patterns for ALL including incorporation of new technologies Uncover when genomic testing is being done for ALL, and how these tests are interpreted and utilized Understand the role of stem cell transplantation in ALL as a consolidation in first remission

Comprehensively discuss the role of MRD in managing and monitoring ALL Gain insights into antibodies and bispecifics in ALL: what are they? When and how should they be used? Where is the science going? Discuss the evolving role of ADC therapies in ALL Review promising novel and emerging therapies in ALL

Virtual Plenary Sessions (Day 1)

TIME UTC+3	TITLE	SPEAKER
15.00 – 15.10	Welcome and meeting overview; introduction to the voting system	Elias Jabbour, Fatih Demirkan
15.10 – 15.25	Review of prognostic value of MRD in ALL	Elias Jabbour
15.25 – 15.40	How and when to check for MRD in ALL	Josep-Maria Ribera
15.40 – 15.55	CR1 vs CR2 – where is MRD control more useful and how to achieve it?	Elias Jabbour
15.55 – 16.10	AYA ALL patients – what is the current treatment approach for this diverse patient population?	Rob Pieters
16.10 – 16.25	Bispecific T-cell engagers as post-reinduction therapy improves survival in pediatric and AYA B-ALL	Patrick Brown
16.25 - 16.45	Break	
16.45 – 17.00	Genetic variants in ALL – Ph+ and Ph-like	Andre Schuh
17.00 – 17.45	 Panel discussion on the role of HSCT Experience of HSCT in the region Pros and cons of HSCT How does COVID-19 influence your approach? Discussion and voting 	Moderator: Elias Jabbour Fatih Demirkan Fatih Demirkan, Andre Schuh All faculty All faculty
17.45 – 18.25	 Debate on CD19-targeted approaches CAR T Monoclonal antibodies and bispecifics Discussion and voting 	Moderator: Elias Jabbour Josep-Maria Ribera Elias Jabbour All faculty
18.25 – 18.55	 Emerging data and the management of ALL patients during COVID-19 Presentation Panel discussion 	Moderator: Fatih Demirkan Elias Jabbour All faculty
18.55 — 19.00 Global Leukemia Academy	Session close	Elias Jabbour, Fatih Demirkan

Virtual Breakout: Pediatric ALL Patients (Day 2)

Chair: Rob Pieters

TIME UTC+3	TITLE	SPEAKER
15.00 – 15.15	 Session opening Educational ARS questions for the audience 	Rob Pieters
15.15 – 15.35	 First-line treatment of pediatric ALL Presentation Q&A 	Rob Pieters
15.35 – 15.55	Current treatment options for relapsed ALL in children including HSCT considerations Presentation Q&A	Hale Ören
15.55 – 16.15	Bispecific T-cell engagers for pediatric ALL Presentation Q&A 	Patrick Brown
16.15 – 16.55	 Case-based panel discussion: Management of long- and short-term toxicities Overview of long-term toxicities Patient case presentation Panelists: Rob Pieters, Hale Ören, Patrick Brown, Sema Anak, Gülyüz Öztürk, Akif Yesilipek 	Rob Pieters Hale Ören Discussion
16.55 – 17.10 Global Leukemia Academy	 Session close Educational ARS questions for the audience 	Rob Pieters

Virtual Breakout: Adult ALL Patients (Day 2)

Chair: Elias Jabbour

TIME UTC+3	TITLE	SPEAKER
15.00 – 15.15	 Session opening Educational ARS questions for the audience 	Elias Jabbour
15.15 – 15.35	Optimizing first-line therapy in adult and older ALL – integration of immunotherapy into frontline regimens Presentation Q&A	Elias Jabbour
15.35 – 15.55	 Current treatment options for relapsed ALL in adult and elderly patients Presentation Q&A 	Fatih Demirkan
15.55 – 16.45	Case-based panel discussion Management of long- and short-term toxicities and treatment selection in adult and elderly patients Panelists: Elias Jabbour, Fatih Demirkan, Andre Schuh, Josep-Maria Ribera	Fatih Demirkan Andre Schuh Discussion
16.45 – 17.00	Session close Educational ARS questions for the audience 	Elias Jabbour

Introduction to the Voting System

Elias Jabbour

Where are you from?

- Algeria
- Kuwait
- Morocco
- Oman
- Saudi Arabia
- South Africa
- Turkey
- United Arab Emirates
- Other

How many patients with ALL are you currently following?
0

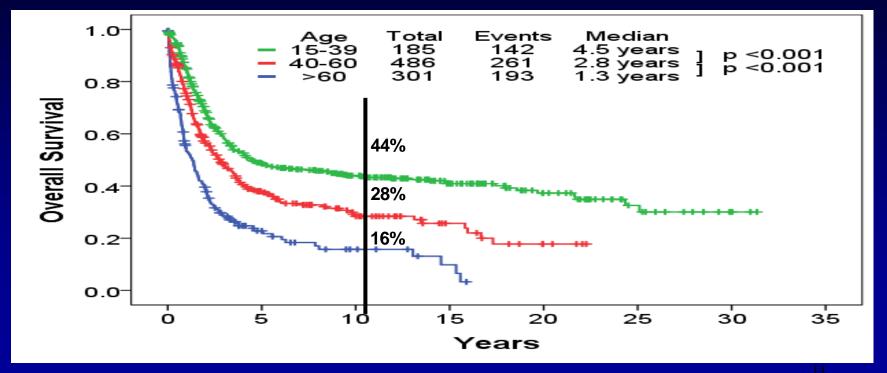
- 1–5
- 6–15
- 16–20
- ≥21

How do you assess for minimal residual disease (MRD)?

- We do not check for MRD
- Multicolor flow
- Molecular PCR
- Next-generation sequencing platform

Review of Prognostic Value of MRD in ALL

Elias Jabbour


Review of Prognostic Value of MRD in ALL

Elias Jabbour, MD Professor of Medicine Department of Leukemia The University of Texas MD Anderson Cancer Center Houston, TX

Summer 2020

Survival of 972 Adults With Ph– ALL

• 972 pts Rx 1980–2016; median F/U 10.4 years

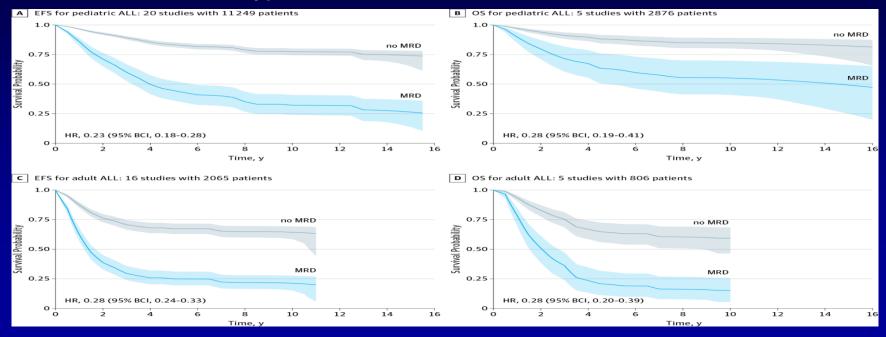
Minimal (measurable) Residual Disease

- Concept first described 40 years ago
- Main methods are flow cytometric detection of leukemic immunophenotype (LIP), detection of ALL fusion transcripts, and detection of antigen receptor rearrangements commonly to 10⁻⁴ (1:10000 cells)
- Timing of testing varies widely
- Important interaction with leukemic subtype and genomic alterations
- Role of more-sensitive tests, and with newer treatment approaches less clear

When do you assess for MRD?

- Monthly
- At CR
- At 3 months from induction
- At CR and 3 months from induction, and every 3 months thereafter
- I never check for MRD

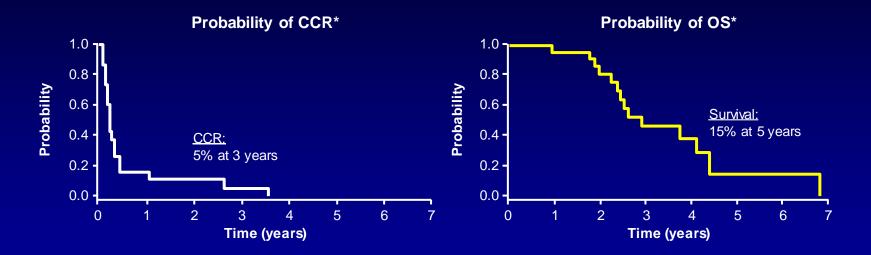
How to Define the Risk?


- → Can be defined **BEFORE** treatment
- ➔ And/or redefined DURING treatment
 - MRD, which can possibly better define transplant candidates
 - Steroid pretreatment

Treatment of ALL Before the MRD Era: High CR Rates but Relapse Is Common

Study	Ν	Median Age, Year (range)	Ph+,%	T Cell, %	CR, %	DFS , %
MRC/ECOG E2993	1826	31 (15-65)	19	20	91	38 at ≥3 yr
CALGB 19802	163	41 (16-82)	18	-	78	35 at 3 yr
GIMEMA ALL 0288	778	27.5 (12.0-60.0)	22	22	82	29 at 9 yr
GMALL 05/93	1163	35 (15-65)	24	24	83	35-40 at 5 yr
GOELAMS 02	198	33 (15-59)	22	21	86	41 at 6 yr
HyperCVAD	288	40 (15-92)	17	13	92	38 at 5 yr
JALSG-ALL93	263	31 (15-59)	22	21	78	30 at 6 yr
LALA-94	922	33 (15-55)	23	26	84	36 at 5 yr

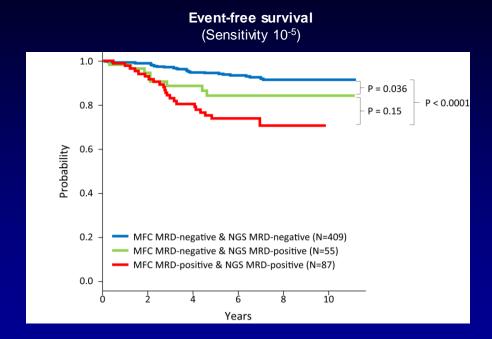
MRD in ALL


- Meta-analysis of 39 studies (pediatric and adult), including 13,637 patients with all subtypes
- Prognostic impact of MRD clearance consistent across therapies, MRD method, timing, level of cutoff, and subtypes

Berry DA. JAMA Oncol. 2017;3(7):e170580.

Molecular Relapse (MRD– → MRD+) Is Predictive of Cytologic Relapse in Patients in CR1

Probability of continuous CR and survival in n = 24 adult ALL patients in first CR but with molecular relapse

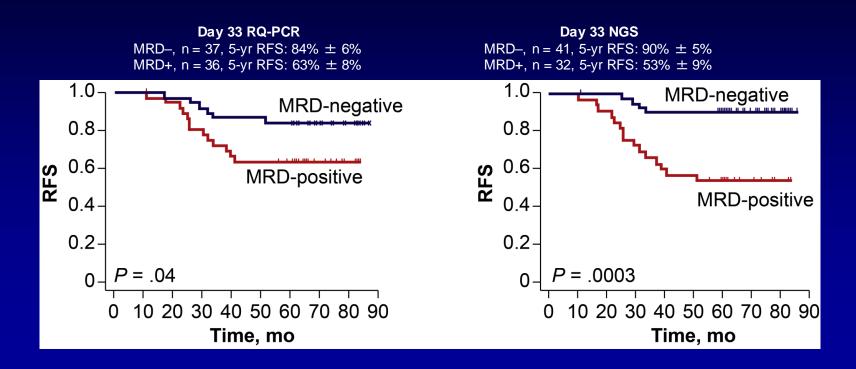

Conversion from MRD– to MRD+ preceded hematologic relapse by a median 2.6 months and predicted poor survival

*Patients with SCTin CR1 excluded. Gökbuget N, et al. *Blood.* 2012;120:1868-1876.

MRD Methods

Method	Sensitivity	Advantages	Disadvantages	
Flow cytometry for "difference from normal"	~10 ⁻⁴	 Fast Relatively inexpensive Potential to detect phenotypic shifts 	 Confounders: increased benign B-cell precursors during marrow recovery; potential phenotypic shifts Requires significant technical expertise Limited standardization (though attempts in progress) 	
RQ-PCR for IGH/TCR gene rearrangements	~10 ⁻⁴ to 10 ⁻⁵	 Sensitive Well standardized with consensus guidelines 	 Time consuming and labor intensive Requires significant technical expertise May not detect small subclones at diagnosis Expensive 	
RQ-PCR for recurrent gene fusions	~10 ⁻⁴ to 10 ⁻⁵	 Sensitive Uses standard primers utilized for diagnostic purposes 	 Applicable to <50% of ALL cases Limited standardization 	
Next-generation sequencing	~10 ⁻⁶	 Very sensitive Fast (uses consensus primers) Potential to track small subclones and clonal evolution 	 Requires complex bioinformatics Minimal clinical validation Expensive 	

NGS Identified Patients With Improved EFS



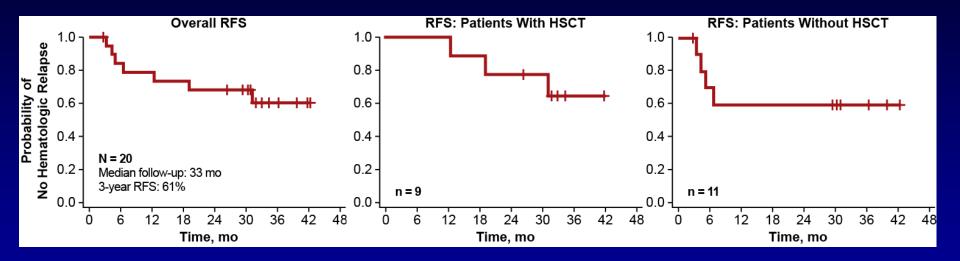
EFS was significantly worse in the NGS MRD+/flow cytometry MRD– group than patients who were MRD– by both methods (P = .036). Six patients were identified as NGS MRD– and MFC MRD+.

NGS, next-generation sequencing; MFC, multiparameter flow cytometry. Wood B, et al. *Blood.* 2018; 131(12):1350-1359.

Comparison: NGS With RQ-PCR

Prognostic value of d+33 MRD (pediatric ALL, BFM-based treatment)

Next-Generation Sequencing vs FMC MRD in ALL

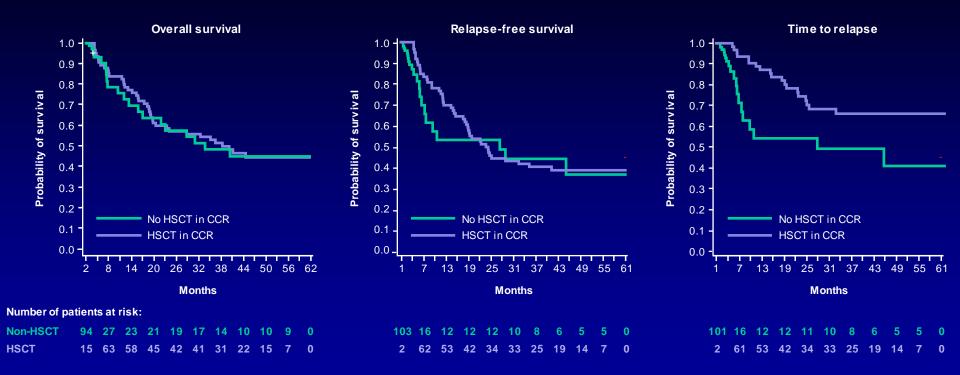

- FDA accepted MRD negativity as Rx endpoint in ALL, regardless of methodology
- Blinatumomab FDA approved (April 2018) for Rx of MRD-positive ALL in CR1-CR2 on the basis of *JAMA Oncology* meta-analysis (Don Berry) and German single-arm trial results
- NGS detects MRD at 10⁻⁶; 4- to 8-color FCM detects MRD at 10⁻⁴
- In adult ALL, MRD >0.1% at CR and >0.05%-0.01% 2-3 mo in CR predictive of worse survival on chemoRx
- NGS may predict better ongoing studies at MDACC of outcome at MRD <10⁻⁶ vs 10⁻⁶–10⁻⁴ vs >10⁻⁴

Post-remission Rx of ALL According to FCM-MRD

- 307 pts age 15–60 yr with pre-B ALL
- ORR 91%; 83% after induction 1
- If MRD >0.1% at end of induction (week 5), >0.01% at mid-consolidation (week 17): chemoRx then alloSCT, otherwise chemoRx alone
- ORR 277/307 = 81%; 94 (31%) assigned to alloSCT and 190 (62%) chemoRx

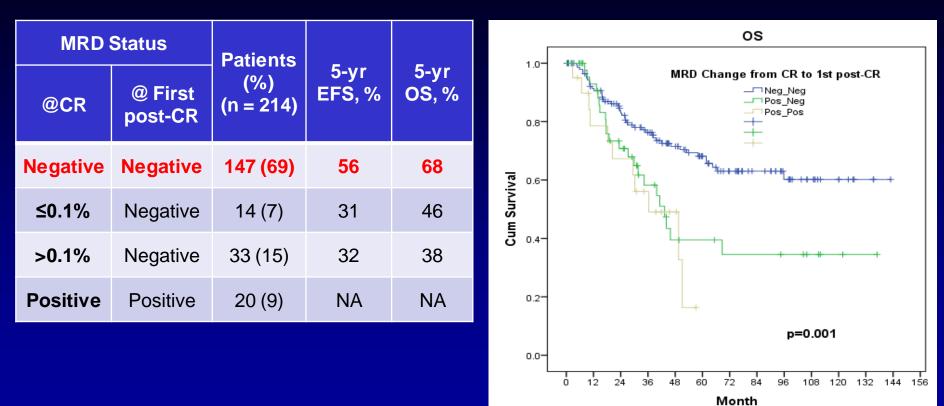
	5-yr CIR, %	5-yr OS, %
Overall	44	48
AlloSCT	37	38
ChemoRx	48	55
MRD <0.1 at CR and <0.01 at consolidation	42	66
MRD <0.01 at CR	17	90

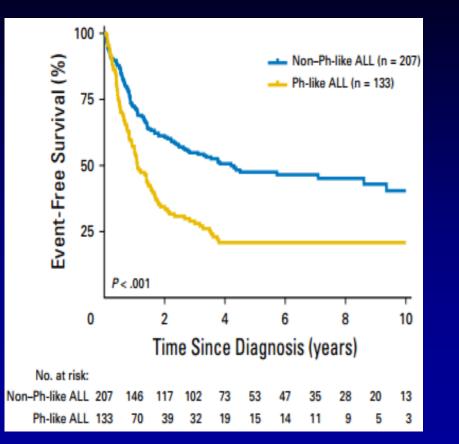
Blinatumomab in MRD+ BCP-ALL: MT103-202 Trial (2/2)

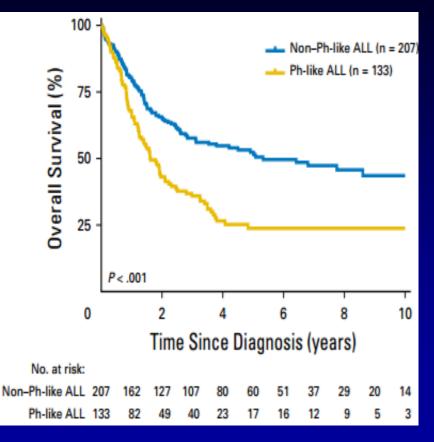

Topp MS, et al. Blood. 2012;120:5185-5187.

Blinatumomab for MRD+ ALL in CR1/CR2

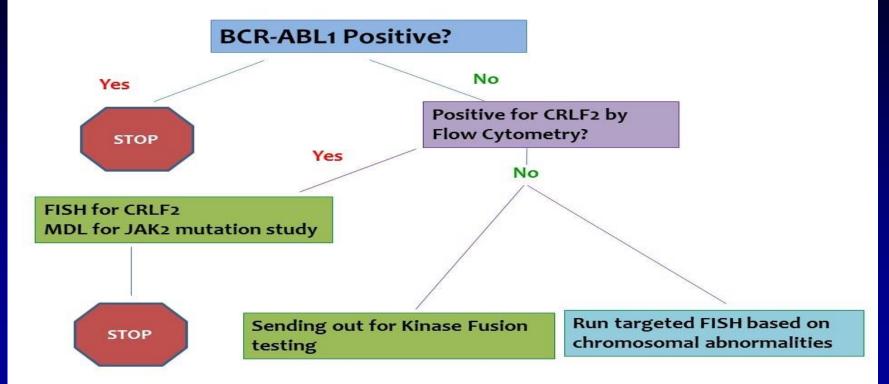
- 113 pts Rx. Post-blina MRD-88/113 = 78%
- 110 evaluated (blasts <5%, MRD+); 74 received allo-SCT. Median FU 53 mo</p>
- Median OS 36.5 mo; 4-yr OS 45%; 4-yr OS if MRD– 52%
- Continuous CR 30/74 post–allo-SCT (40%); 12/36 without SCT (33%)


Outcomes by HSCT Use in CCR: Simon-Makuch Analyses – Landmark of 2 Months


Landmark of 2 months for overall survival and 40 days for other analyses was used to ensure non-zero number of patients in the HSCT group. CCR, continuous complete remission; HSCT, hematopoietic stem cell transplantation.

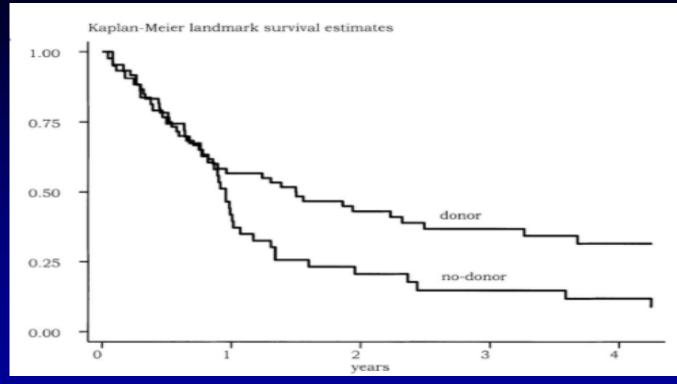

Goekbuget N, et al. Slides presented at: 60th ASH Annual Meeting & Exposition of the American Society of Hematology; December 1-4, 2018; San Diego, CA.

Dynamics of MRD: Outcome


Ph-Like ALL: Survival and EFS

Roberts, et al. J Clin Oncol. 2017;35:394.

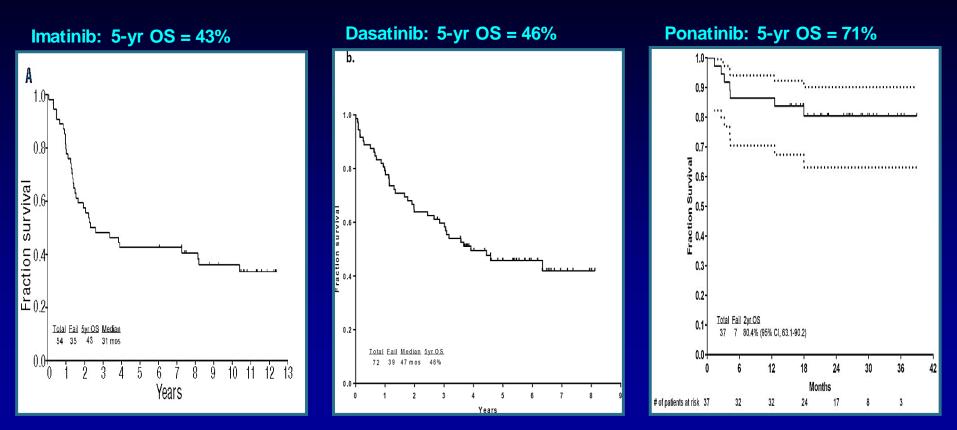
Ph-Like FISH Testing Algorithm



Personal communication from Dr Jabbour.

Ph-Like ALL: Higher MRD+ Rate

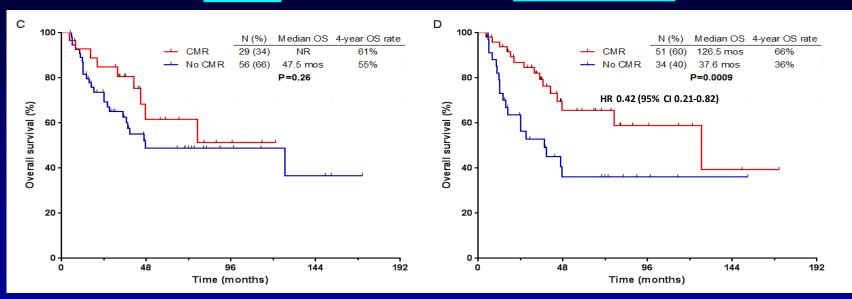
	B-ALL C			
	Ph-like	Ph+	B-other	Dvoluo
Ν	56	46	53	<i>P</i> value
CR/CRp	50 (89)	43 (93)	50 (94)	.57
MRD at CR				
Positive	23 (70)	15 (44)	4 (13)	<.001
Negative	10 (30)	19 (56)	27(87)	


SCT for Ph+ ALL: Pre-TKI

- Donor (n = 60): 3-year OS 37%
- No donor (n = 43): 3-year OS 12%

Dombret H, et al. Blood. 2002.

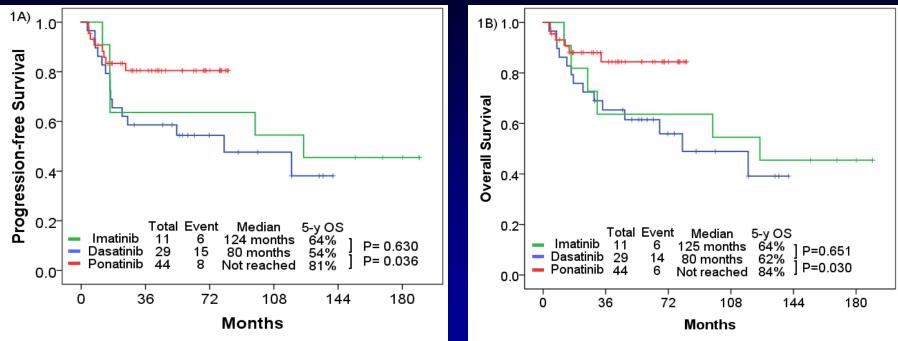
TKI for Ph+ ALL



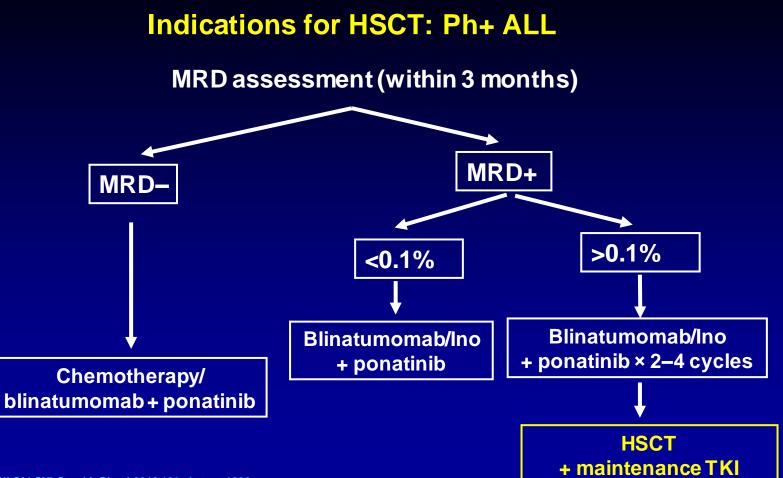
Daver. Haematologica. 2015; Ravandi. Cancer. 2015; Jabbour. Lancet Oncol. 2015; Jabbour. Lancet Hematol. 2018.

CMR in Ph+ ALL: OS for CMR vs Others

At CR


At 3 months

MVA for OS CMR at 3 months (HR 0.42 [95% CI: 0.21-0.82]; P = .01)


Short. Blood. 2016;128(4):504-507.

Outcome of 3-Month CMR by TKI PFS OS

MVA for outcome Ponatinib only predictive factor for PFS (HR 0.39; P =.03) and OS (HR 0.38; P = .04)

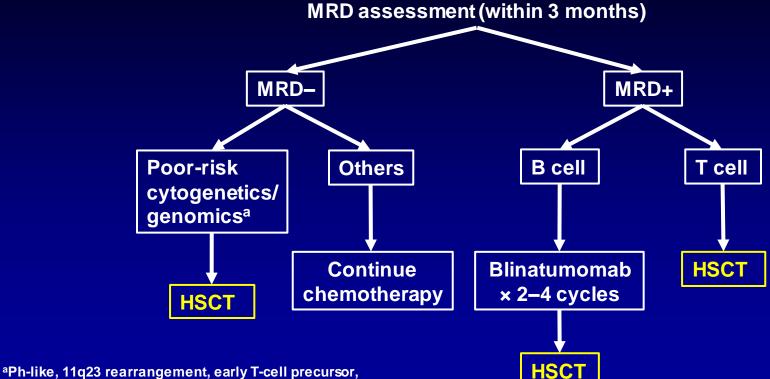
Sasaki. Blood. 2019;134:abstract 1296.

Short. *Blood*. 2016;128(4):504-507; Sasaki. *Blood*. 2019;134:abstract 1296; Samra. *Blood*. 2019;134:abstract 1296.

MRD+ Identifies Candidates for Allogeneic SCT

Effect of allogeneic SCT on 5-year outcome of adult Ph– ALL patients with molecular failure after consolidation (week 16)

Parameter		No Allogeneic SCT		ogeneic SCT Allogeneic	
	Ν	n	%	n	%
CCR	120	63	12	57	66 P <.0001
CCR (landmark analysis)*	60	35	17	25	73 P =.0001
DFS	120	63	11	57	44 P <.0001
DFS (landmark analysis)*	60	35	16	25	50 P =.004
OS	120	63	33	57	54 P = .06


Patients with molecular failure who underwent allogeneic SCT had significantly better CCR and DFS than those who did not

*All patients undergoing chemotherapy with CRD < median time to SCT + 1 month were excluded. DFS, disease-free survival. Gökbuget N, et al. *Blood.* 2012;120:1868-1876.

Impact of MRD on Outcome After Allo-SCT: Selected Major Published Trials

Study	Type of SCT	N	Method	Estimate	MRD-	MRD+ (low/high)	Р
Knechtli (1998)	Allo	64 (P)	PCR	2-y EFS	73%	36%	<.001
Dombret (2002)	Allo	63 (A)	PCR (BCR-ABL)	3-y IOR	41%	75%	.01
Krejci (2003)	Allo	140 (P)	PCR	5-y EFS	75%	41%/21%	<.001
Spinelli (2007)	Allo	37 (A)	PCR	3-y IOR 3-y OS	0% 80%	46% 49%	.027 NS
Bader (2009)	Allo	91 (Treat MRD	Prior to All	o-SCT?	20%/57% 48%/31%	<.001
Patel (2010)	Allo Auto	36 (A) 25 (A)	PCR	5-y EFS	50% 77%	52% 25%	NS .01
Leung (2011)	Allo	64 (P)	Flow	5-y IOR	6%	28%	.03
Sanchez-Garcia (2012)	Allo	102 (P+A)	Flow	5-y LFS 5-y OS	66% 52%	43%/0% 29%/0%	<.001 <.001
Bachanova (2012)	UCB	86 (P+A)	Flow	2-y IOR 3-y LFS	16% 55%	30% 30%	.05 .02
Zhou (2014)	Allo	149	Flow	2-y PFS 2-y OS	47% 55%	28% 40%	.08 .22

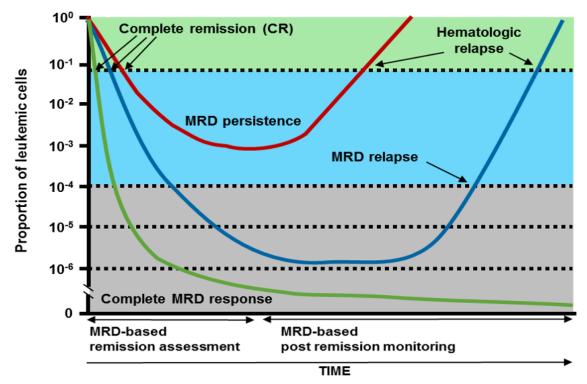
Indications for HSCT: Ph– B-ALL and T-ALL

low hypodiploidy, complex cytogenetics.

Short NJ, et al. Am J Hematol. 2019;94(2):257-265.

SO . . . MRD in ALL

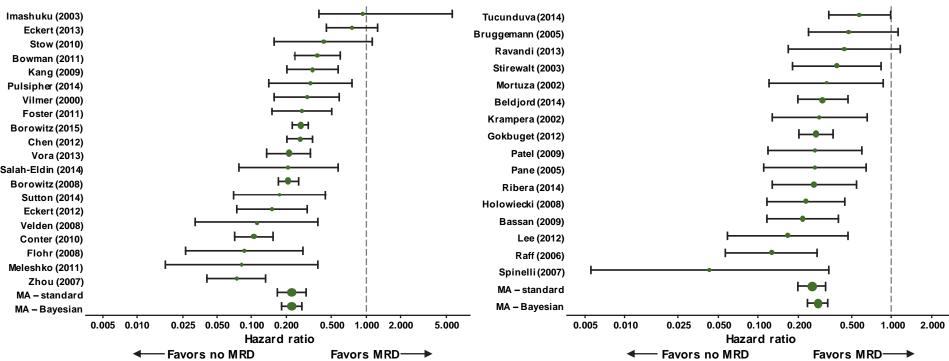
- Despite achievement of CR with induction and consolidation, up to 60% of patients with ALL may still be MRD+
- In adult ALL, MRD+ in CR is predictive of worse survival on chemoRx
- FDA accepted MRD negativity as Rx endpoint in ALL, regardless of methodology
- Blinatumomab FDA approved (April 2018) for Rx of MRD+ ALL in CR1– CR2
- No clear benefit for alloSCT after conversion to MRD- with blina, particularly in CR1
- Maintenance blina post-alloSCT?
- Role of Ino? CAR T cells in MRD+ ALL?


How and When to Check for MRD in ALL

Josep-Maria Ribera

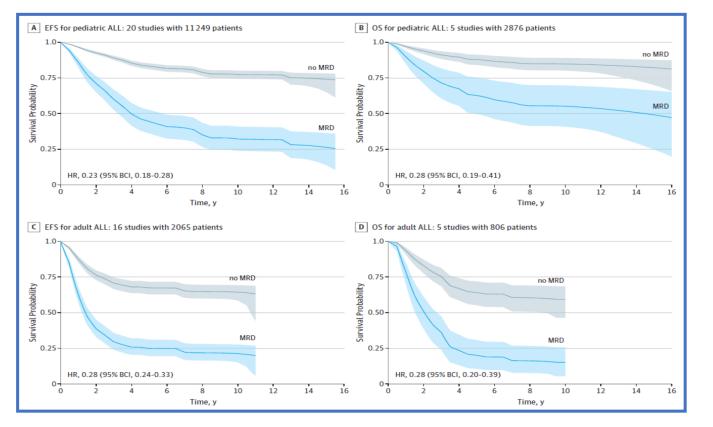
Hypothetical correlation of MRD and risk of relapse*

*Defined as the reappearance of MRD after prior achievement of molecular complete response.


CR, complete remission; MRD, minimal residual disease.

Adapted from Brüggemann M, et al. Blood. 2012;120:4470-4481.

MRD and EFS in pediatric and adult ALL


EFS by ALL adults studies (with 95% CIs)

EFS by ALL peds studies (with 95% Cls)

Berry DA, et al. JAMA Oncol. 2017;3:e170580.

Negative MRD is associated with longer EFS and OS in childhood and adult ALL

Meta-analysis of 20 pediatric ALL trials >11,000 patients

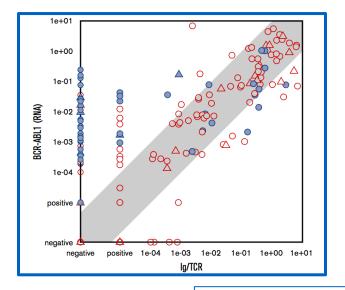
Meta-analysis of 16 adult ALL trials >2,000 patients

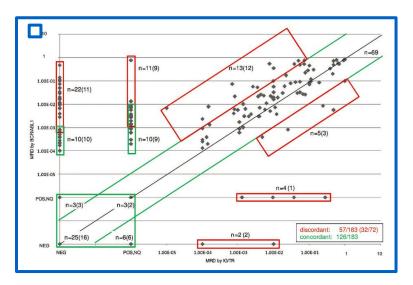
Berry DA, et al. JAMA Oncol. 2017;3:e170580.

Forest plot of OS hazard ratios by subgroup (random effects model)

	HR [95% CI]	Subgroup N
Disease stage: CR1	2.33 [1.67, 3.26]	12
CR2 or later	1.52 [0.93, 2.48]	2
Timing of MRD rel HSCT:		
after HSCT	6.10 [2.47, 15.1]	2
before HSCT	1.24 [0.86, 1.78]	з
MRD level: 10 ⁻⁴	2.48 [1.93, 3.18]	9
10 ⁻⁵	⊢◆┤ 1.52 [1.14, 2.01]	2
Ph status: mixed	3.40 [1.20, 9.59]	2
Ph negative	2.55 [1.93, 3.37]	5
Ph positive	1.84 [1.15, 2.94]	6
Phenotype: B-cell	2.16 [1.54, 3.03]	12
mixed	2.42 [1.64, 3.56]	2
Post MRD tx: mixed	2.50 [1.88, 3.33]	8
SCT	1.24 [0.86, 1.78]	з
targeted therapy	3.89 [1.21, 12.5]	2
Pre MRD tx: HSCT only	8.02 [2.32, 27.7]	1
chemo only	3.01 [2.08, 4.37]	4
targeted therapy	1.65 [1.24, 2.20]	9
Risk group: high risk	3.39 [1.70, 6.75]	1
standard risk	3.01 [1.73, 5.24]	1
MRD testing location:		
central		6
local	1.77 [1.08, 2.90]	5
Timing of MRD:		
≤ 3 months from induction	2.45 [1.87, 3.22]	8
> 3 months from induction	2.60 [1.76, 3.84]	З
MRD methodology: flow	2.49 [1.08, 5.76]	з
PCR	2.11 [1.53, 2.91]	11
Overall	⊢←│ 2.19 [1.63, 2.94]	14
	Favors MRD pos	
	really a reaction reaction real	
	0.1 1 10	

Bassan R, et al. Haematologica. 2019;104:2028-2039.


Comparison of MRD detection methods


Method	Target	Sensitivity	Considerations	~Percentage of patients evaluated
Flow cytometry ¹⁻⁴	Leukemic immunophenotypes	3- to 4-color: 10 ⁻³ to 10 ⁻⁴ 6- to 9-color:10 ⁻⁴	Rapid Limited sensitivity, but improved Limited standardization	~95% of all patients with ALL ¹
PCR ¹⁻⁴	lg and TCR gene rearrangements	10 ⁻⁴ to 10 ⁻⁵	Sensitive Time consuming High degree of standardization Potential instability of targets	~90% of all patients with ALL ¹
PCR ¹⁻⁴	Fusion transcripts	10 ⁻⁴ to 10 ⁻⁶	Sensitive Stability of target during course of treatment Limited standardization Risk of cross-contamination	~40% of all patients with ALL ¹
NGS⁵	DNA sequence; mutations	10 ⁻⁶	Accurate Not yet widely available Less feasible for common gene mutations due to high costs ⁵	~90% of all patients with ALL

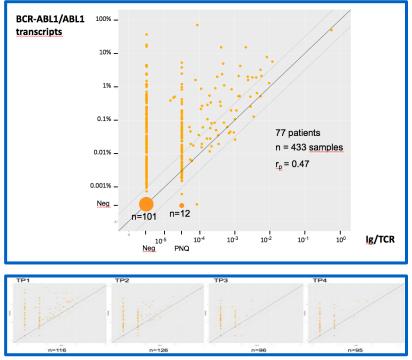
ALL, acute lymphoblastic leukemia; Ig, immunoglobulin; MRD, minimal residual disease; NGS, next-generation sequencing; PCR, polymerase chain reaction; TCR, T-cell receptor.

1. Campana D. Hematology Am Soc Hematol Educ Program. 2010;2010:7-12; 2. Brüggemann M, et al. Blood. 2012;120:4470-4481; 3. Schrappe M. Hematology Am Soc Hematol Educ Program. 2012;2012:137-142; 4. van Dongen JJ, et al. Blood. 2015;125:3996-4009; 5. Thol F, et al. Genes Chromosomes Cancer. 2012;51:689-695.

Discordance between MRD methods: The case of Ph+ ALL

In patients with discordant MRD results, *BCR*-ABL1 fusion was detected in

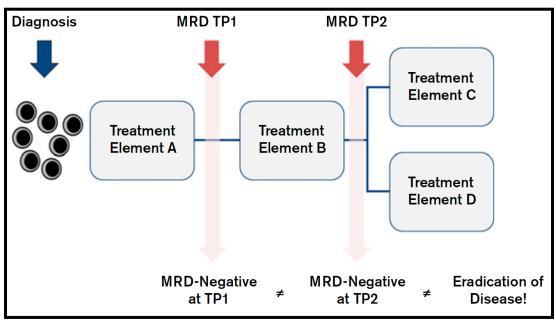
- Non-ALL B cells (15% to 83%)
- T cells (12% to 21%)
- Myeloid cells (15% to 80%)


Hovorkova L, et al. Blood. 2017;129(20):2771-2781.

Nagel I, et al. Blood. 2017;130(18):2027-2031.

Cazzaniga G, et al. *Haematologica*. 2018;103(1):107-115.

Ig-TCR vs BCR-ABL1 MRD in Ph+ ALL


Persistent BCR-ABL1 clonal hematopoiesis after blast clearance identifies a CML-like subgroup of Ph+ALL

	Dissociated N = 36	Parallel N = 41	P value
Median age, years	45	48	.66
Male:female ratio	2.6	1.05	.067
Organ infiltration, %	32	29	.80
Median WBC, G/L	27.1	12.3	.056
Median PMN count, G/L	4.5	1.8	.0009
Median lymphocyte count, G/L	3.1	2.8	.20
Median monocyte count, G/L	0.4	0.1	.019
Median blast count, G/L	8.4	6.9	.5
BM blast, %	84	92	.028
Major BCR, %	47	12	.0009
IKZF1 intragenic deletion, %	44	76	.0094

Clappier E, et al. EHA 2018. S1568.

Importance of time points in MRD assessment

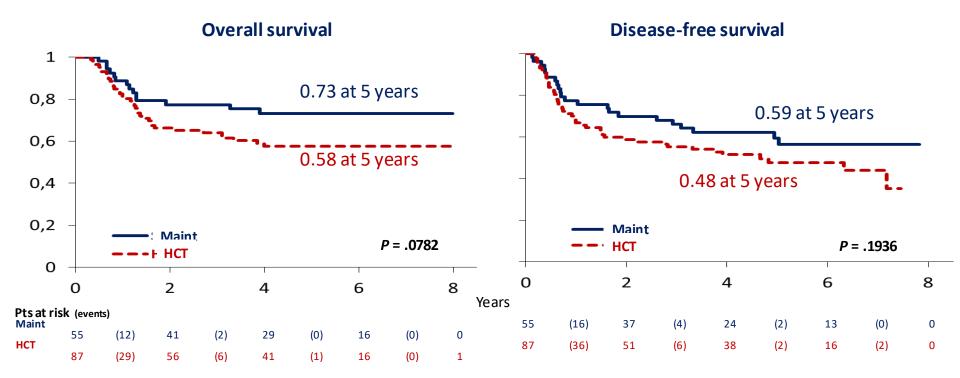
- Negative MRD at TP1: useful for recognizing patients with low risk of relapse
- **Positive** MRD at **TP2**: useful for recognizing patients with high risk of relapse

Brüggemann M, Kotrova M. Blood Adv. 2017;1:2456-2466. Reproduced with permission: ©2017 American Society of Hematology

What is known

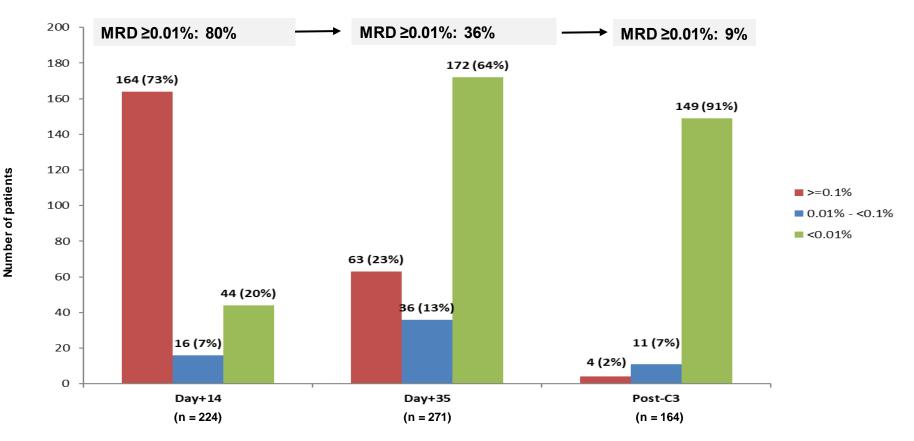
✓ Adolescents and adults (15–60 yr) with SR, Ph– ALL

- Good MRD response after induction/consolidation: no alloHSCT
- Poor MRD response: alloHSCT better

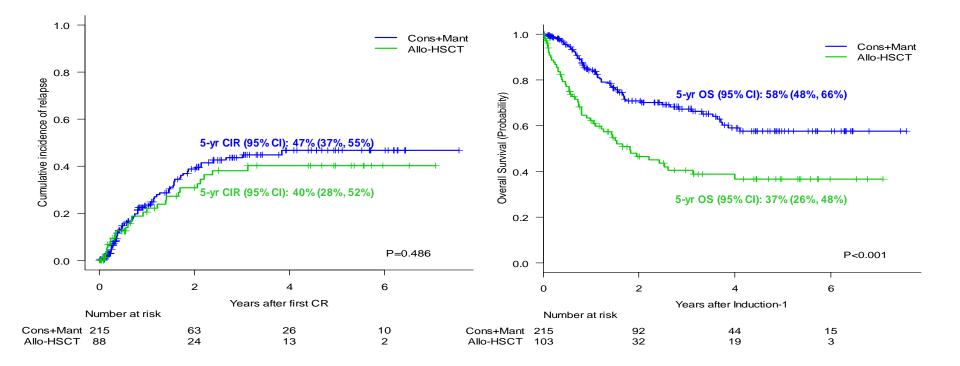

✓ Adolescents and adults (15–60 yr) with <u>HR, Ph– ALL</u>

- Poor MRD response after induction/consolidation: alloHSCT better
- Good MRD response: can we spare alloHSCT?

Prospective studies with indication for HSCT on the basis of MRD data (adult Ph– ALL)


Trial	Risk groups	MRD assessment	Randomization assignment	References
NILG	SR and HR	PCR	No Allo(auto)HSCT in MRD+ pts	Bassan R. <i>Blood.</i> 2009;113:4153-4162
PETHEMA HR03	HR	4-color flow	No AlloHSCT in poor early cytologic responders or MRD+ pts	Ribera JM. <i>J Clin Oncol.</i> 2014;32:1595-1604
NILG 10/07	SR and HR	PCR	No Allo(auto)HSCT in MRD+ pts	Bassan R. ASH 2016. #176
PETHEMA HR11	HR	8-color flow	No AlloHSCT in MRD+ pts	Ribera. ASH 2019. #826
GMALL 08/2013	SR and HR	PCR	Yes AlloHSCT vs chemo in MRD– HR pts AlloHSCT in MRD+ pts	Ongoing NCT02881086

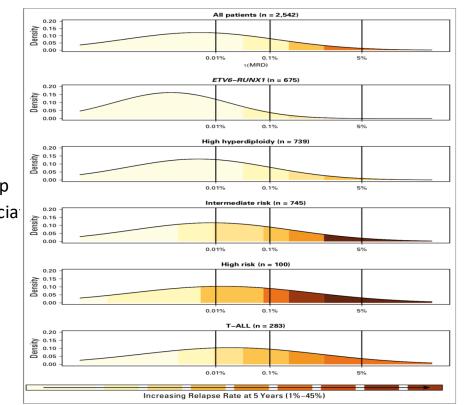
NILG 10/07: <u>SR and HR ALL</u> – Main outcomes by treatment allocation (ITT analysis)


Courtesy of Bassan R. ASH 2016, #176.

MRD level according to time points: ALL HR11 trial (high-risk patients only)

Ribera JM, et al. ASH 2019. #826 and manuscript submitted.

CIR and OS for HR-ALL patients assigned to chemotherapy vs alloHSCT according to MRD level (analysis by intention to treat)


Ribera JM, et al. ASH 2019. #826 and manuscript submitted.

Value of MRD according to genetic subgroups

• The value of MRD may depend on

- Response kinetics
- Existence of resistant subclones
- Pediatric UKALL2003 study
 - The risk of relapse was proportional to the MRD level within each genetic risk group
 - However, absolute relapse rate that was association with a specific MRD value varied significantly by genetic subtype

Integration of genetic subtype/subclone-specific MRD could allow a more refined risk-stratification

O'Connor D, et al. J Clin Oncol. 2018;36:34-43.

Conclusions: MRD how and when

How

- Each methodology has pros and cons
- Select the methodology with more experience
- Use MRD within specific trials
- Do not exchange the method of MRD assessment within a trial

When

• After induction **and** after consolidation (or before HSCT) are the critical time points

And . . .

• Do not forget the genetic background of ALL in addition to MRD

Question #1

- MRD assessment by fusion transcripts is especially useful in ALL with . . .
 - a. IKZF1 mutation
 - b. MYC rearrangements
 - c. BCR-ABL1 rearrangement
 - d. TEL-AML1 rearrangement
 - e. None of the above

Question #2

- The MRD level considered for MRD response by consensus is . . .
 - a. 0.1%
 - b. 0.01%
 - c. 0.001%
 - d. 0.0001%
 - e. 0.00001%

Acknowledgments

Patients

PETHEMAGroup:

51 participating Spanish centers

PETHEMA Data Management: M. Morgades, O. Garcia

Josep Carreras Research Institute, Badalona, Spain

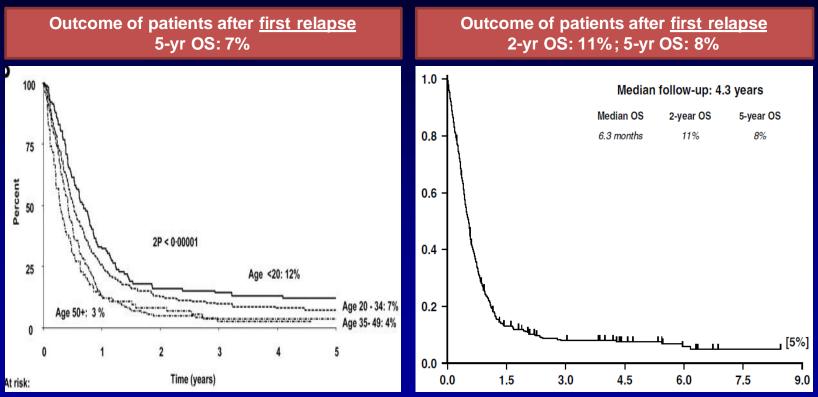
J. Ribera, E. Genescà

Cancer Research Centre (IBMCC-CSIC/USAL), Cytometry Service, University of Salamanca A. Orfao, J. Ciudad, S. Barrena

Catalan Institute of Oncology, Hematology Department

CR1 vs CR2 – Where Is MRD Control More Useful and How to Achieve It?

Elias Jabbour


ALL Salvage Standards of Care in 2020

- Refer for investigational therapies: MoAb + chemo Rx; CAR T
- Ph+ ALL: TKIs + chemo Rx; blinatumomab
- Pre-B ALL
 - -Blinatumomab (FDA approval 12.2014)
 - -Inotuzumab (FDA approval 8.2017)
 - 2 CAR Ts (FDA approvals 8.2017 and 10.2017)
- T-ALL: nelarabine
- Chemo Rx: FLAG-IDA, hyper-CVAD, augmented HCVAD, MOAD

ALL: Historical Survival Rates After First Relapse

MRC UKALL2/ECOG2993 study (n = 609)

LALA-94 study (n = 421)

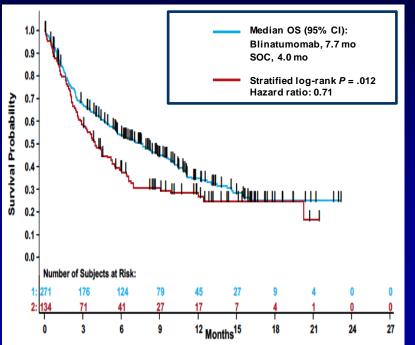
Fielding, et al. Blood. 2007;109:944-950; Tav ernier E, et al. Leukemia. 2007;21:1907-1914.

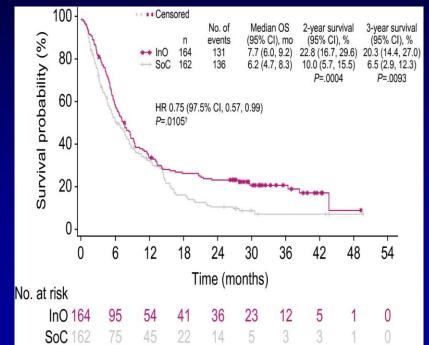
Question 1

When compared with SOC in patients with relapsed/refractory ALL, inotuzumab ozogamicin (select all that apply):

- Improves response rate
- Improves duration of response
- Improves MRD-negativity rate
- Improves overall survival
- I am not aware of the data

Question 2


When compared with SOC in patients with relapsed/refractory ALL, blinatumomab improves OS.


- True
- False
- I'm not sure

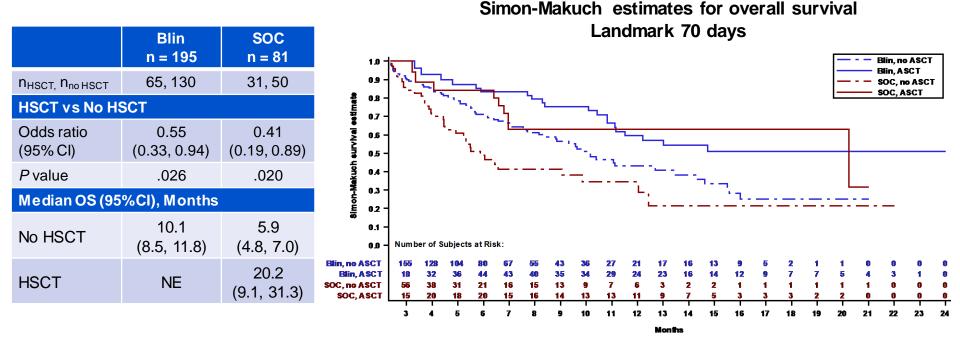
Blinatumomab-Inotuzumab vs Chemo Rx in R-R ALL

Marrow CR

Blina vs SOC: 44% vs 25%

Ino vs SOC: 74% vs 31%

Kantarjian. N Engl J Med. 2017;376:836-847.


Kantarjian. N Engl J Med. 2016;375:740; Cancer. May 2019

Blinatumomab vs Chemo Rx in R-R ALL (phase III TOWER)

Parameter	Blinatumomab	Chemo Rx	P Value	
CR, %	34	16	<.001	
Marrow CR, %	44	25	<.001	
MRD- in CR, %	76	48		
Median OS, mo	7.7	4.0	.01	
Safety profile	CRS/NE+++			

Kantarjian. N Engl J Med. 2017;376:836-847.

Overall Survival in Patients Receiving On-Study HSCT: Blinatumomab and SOC

Data suggest outcomes may be better with transplant in both groups

Landmark at day 70 was used to ensure adequate number of HSCT patients at the earlier time points; MRD status is also at day 70.

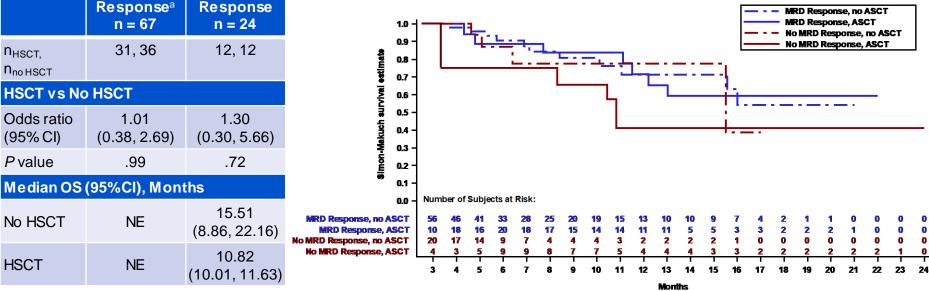
68

Overall Survival by CR/CRh/CRi ± HSCT

Blinatumomab arm only

	CR/CRh/Cri ^a n = 91	No CR/CRh/CRi n = 93
N _{HSCT,} N _{no HSCT}	44, 47	20, 73
HSCT vs No	HSCT	
Odds ratio (95% Cl)	1.17 (0.54, 2.53)	0.36 (0.16, 0.84)
P value	.69	.014
Median OS	(95%CI), Month	IS
No HSCT	16 (NE, NE)	7.54 (5.5, 9.58)
HSCT	NE (NE, NE)	14.72 (NE, NE)

Simon-Makuch estimates for overall survival Landmark 70 days



^aLast response before landmark day 70.

Landmark at day 70 was used to ensure adequate number of HSCT patients at the earlier time points.

Overall Survival by MRD Response ± HSCT

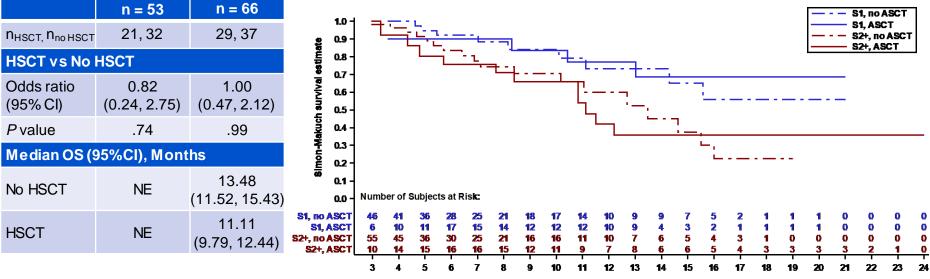
Simon-Makuch estimates for overall survival Landmark 70 days

^aLast response before landmark day 70.

MRD

Landmark at day 70 was used to ensure adequate number of HSCT patients at the earlier timepoints. MRD status is also at day 70.

No MRD


Overall Survival by Salvage Line ± HSCT

S2+

S1

Blinatumomab CR/CRh/CRi only

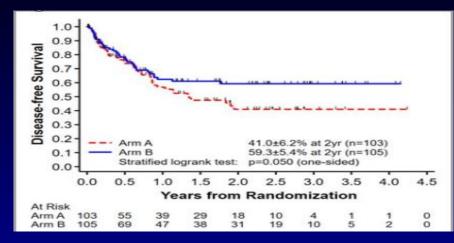
Simon-Makuch estimates for overall survival Landmark 70 days

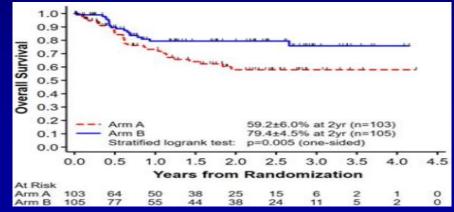
Months

Overall Survival in Blinatumomab Patients by Last Response Prior to HSCT and Salvage Line

Overall Survival Among HSCT Patients	HSCT (n = 65)	HSCT + CR/CRh/CRi ^a (n = 44)	HSCT + MRD Response ^a (n = 28)	HSCT + S1 (n = 30)	HSCT + S1 + MRD Response ^a (n = 12)
Death, n (%)	20 (31)	14 (32)	4 (14)	6 (20)	1 (8)
Due to disease progression	11	5	1	3	0
Alive at last follow-up, n (%)	44 (68)	30 (68)	23 (82)	23 (77)	10 (83)
KM survival rates, %					
At 12 months	66	64	85	84	100
At 18 months	57	55	77	68	80

S1 + MRD Response

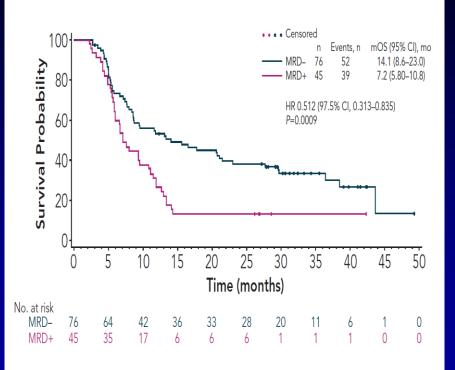

- Too few deaths for a meaningful analysis
- Patients treated with blinatumomab following S1 who attain MRD response and receive HSCT are surviving beyond study follow-up

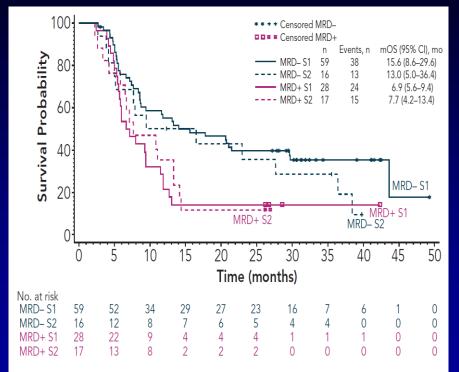

Phase III Study of Blinatumomab vs Chemo Rx in Children – AYA in Salvage 1

 208 pts randomized 1:1 to blina (n = 105) vs chemo Rx (n = 103)

Parameter	Blina	Chemo	Р
2-yr DFS, %	59	41	.05
2-yr OS, %	79	59	.005
SCT, %	73	49	<.001
MRD clearance, %	79	21	<.001

 Rates of FUO, infections, sepsis, all significantly lower with blina

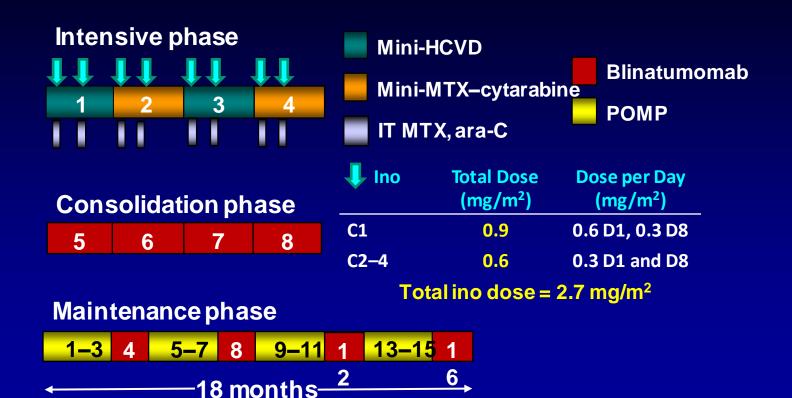



Inotuzumab vs Chemo Rx in R-R ALL (phase III INOVATE trial)

Parameter	Inotuzumab	Chemo Rx	P Value
CR/CRi, %	81	29	<.0001
MRD- in CR, %	78	28	<.0001
Median OS, mo	7.7	6.2	.01
Safety profile	VOD +++		

Impact of MRD in R-R ALL Rx With Ino

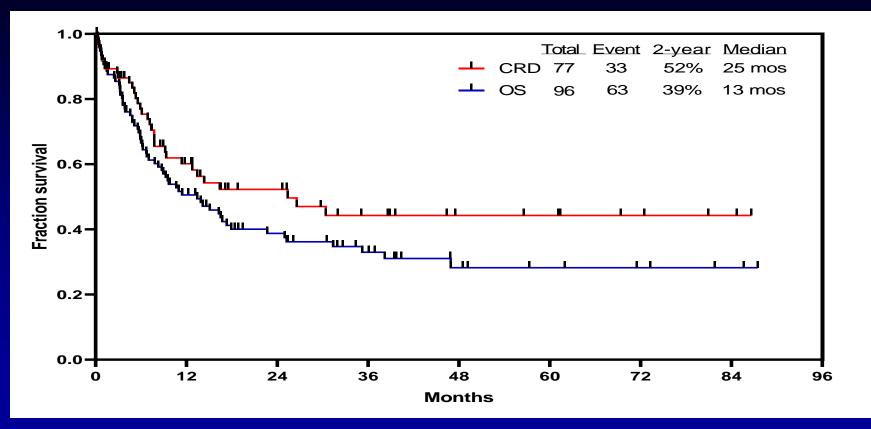
CI=confidence interval; HR=hazard ratio; InO=inotuzumab ozogamicin; mOS=median overall survival; MRD=minimal residual disease



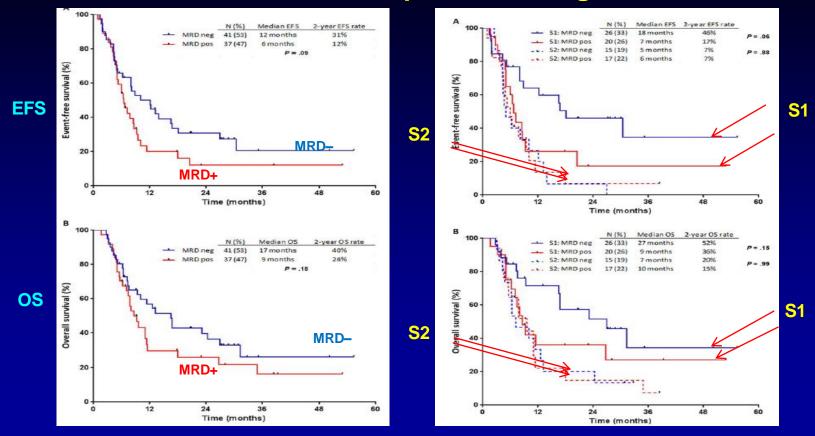
CI=confidence interval; Ino=inotuzumab ozogamicin; MRD=minimal residual disease; S1=first salvage status; S2=second salvage status

Mini-HCVD-Ino-Blina in ALL: Design

- Dose-reduced hyper-CVD for 4–8 courses
 - Cyclophosphamide (150 mg/m² \times 6) 50% dose reduction
 - Dexamethasone (20 mg) 50% dose reduction
 - No anthracycline
 - Methotrexate (250 mg/m²) 75% dose reduction
 - Cytarabine (0.5 g/m² \times 4) 83% dose reduction
- Inotuzumab on D3 (first 4 courses)
 - Modified to 0.9 mg/m² C1 (0.6 and 0.3 on D1 and 8) and 0.6 mg/m² C2-4 (0.3 and 0.3 on D1 and 8)
- Rituximab D2 and D8 (first 4 courses) for CD20+
- IT chemotherapy days 2 and 8 (first 4 courses)
- Blinatumomab 4 courses and 3 courses during maintenance
- POMP maintenance for 3 years, reduced to 1 year

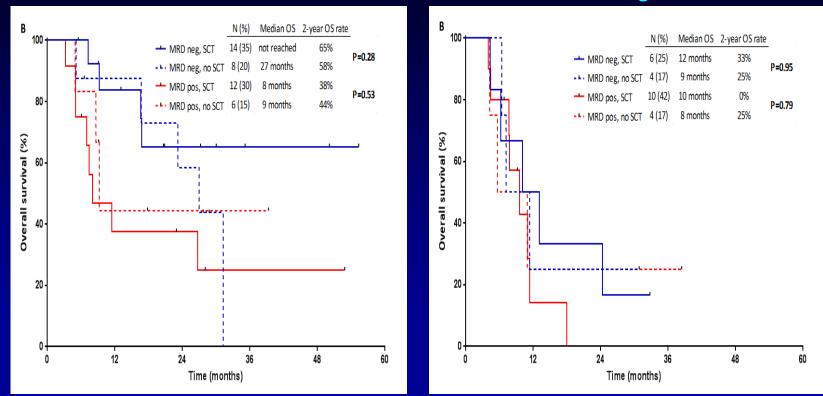

Mini-HCVD + Ino ± Blinatumomab in R-R ALL: Modified Design

Mini-HCVD + Ino ± Blinatumomab in R-R ALL: Response by Salvage (N = 96)


Response	Ν	Percentage
Salvage 1	58/64	91
S1, primary refractory	8	100
S1, CRD1 <12 mo	21	84
S1, CRD1 ≥12 mo	29	94
Salvage 2	11	61
Salvage ≥3	8	57
Overall	77	80
MRD-	62/75	83
Salvage 1	50/56	89
Salvage ≥2	12/19	63
Early death	7	7

Mini-HCVD + Ino ± Blinatumomab in R/R ALL: CR Duration and OS (median F/U 48 months)

Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Sasaki K, et al. Blood. 2018;132(suppl):553.


MRD in R/R ALL: Impact of Salvage Status

MRD in R/R ALL: Impact of ASCT and Salvage Status

Salvage 1

Salvage 2

Jabbour. Cancer. 2017;123(2):294-302.

Impact of MRD Status in R-R ALL: Conclusions

- Very effective salvage therapy in R/R ALL
 - High MRD negativity rate
 - Best outcome in salvage 1
- Combination with low-dose chemotherapy
 - Safe and effective
 - Median survival 14 months
 - Salvage 1 24 months (2-year OS rate >50%)
- Eradication of MRD in the relapsed setting
 - Impact on long-term outcome
 - Higher impact in salvage 1
 - Best outcome in CR2– MRD post-alloSCT

AYA ALL Patients – What Is the Current Treatment Approach for This Diverse Patient Population?

Rob Pieters

Treatment of AYA ALL patients

Rob Pieters Chief Medical Officer

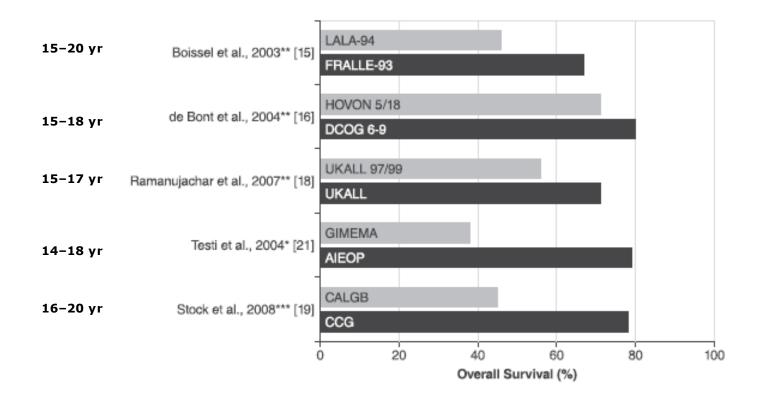
Question:

Which assertion is NOT correct for adolescent and young adult ALL patients?

- 1. Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- 2. Treatment within a clinical trial leads to a worse outcome
- 3. AYA patients experience more toxicity than young children
- 4. BCR-ABL-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

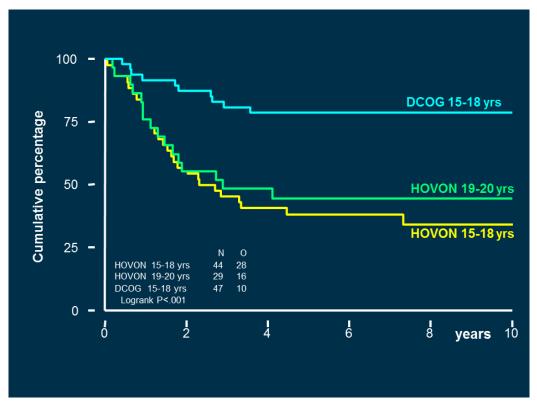
Inferior outcome for AYA patients; why?

- Role of "pediatric-" vs "adult"-inspired treatment protocols
- Site of treatment
- Trial enrollment
- Toxicity profile
- Biology/genetics of the leukemia
- Adherence


Pediatric vs adult treatment protocols

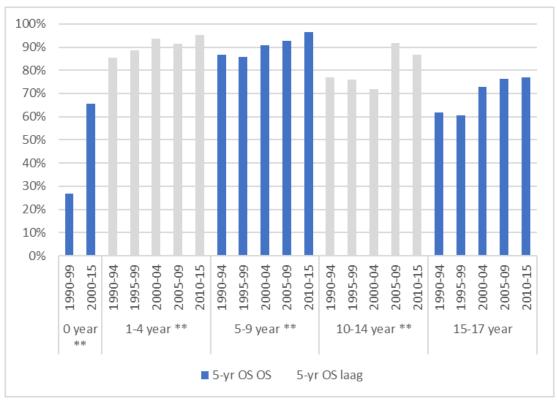
- More intensive use of
 - Glucocorticoids
 - Vincristine
 - Asparaginase
 - Methotrexate
 - 6-mercaptopurine
- Less intensive use of
 - Anthracyclines
 - Cyclophosphamide
- Less frequent use of alloSCT
- Prolonged maintenance, delayed intensification, CNS-directed therapy

Retrospective comparison of outcomes in AYA patients treated on pediatric and adult protocols



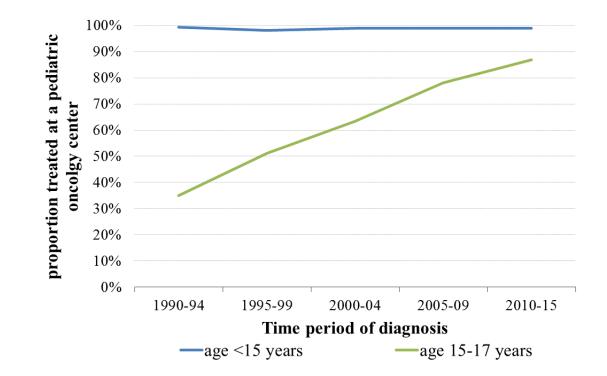
Boissel N, Sender L. J Adolesc Young Adult Oncol. 2015;4(3):118-128.

Outcome of adolescent ALL on pediatric DCOG vs adult HOVON protocol in the Netherlands


Outcome of adolescent ALL on pediatric DCOG vs adult HOVON protocol in the Netherlands

5 yrs actuarial probabilities

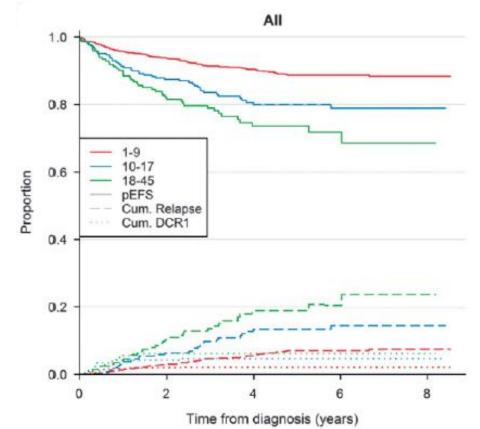
	CR	OS (sd)	EFS (sd)	DFS (sd)	pREL (sd)	TRM (sd)
DCOG 15-18 yrs (n=47)	98%	79% (±6)	69% (±7)	71% (±7)	27% (±7)	4% (±3)
HOVON 15-18 yrs (n=44)	91%	38% (±7)	34% (±7)	37% (±8)	55% (±8)	25% (±7)
HOVON 19-20 yrs (n=29)	90%	44% (±9)	34% (±9)	38% (±10)	50% (±10)	21% (±8)
p-value	0.24	0.0001	<0.0001	0.0002		


5-year overall survival by age group over time in the Netherlands

Proportion of patients with ALL treated at a pediatric oncology center in the Netherlands

Multivariate analysis of risk of death: Patients aged 15–17 years with ALL in the Netherlands between 1990 and 2015

		Hazard Risk	95% CI	95% CI	P Value
	1990–1994	Reference			
	1995–1999	0.97	0.50	1.91	.94
Period	2000–2004	0.67	0.32	1.42	.30
	2005–2009	0.64	0.30	1.37	.25
	2010–2015	0.80	0.38	1.68	.56
Sex	Male	Reference			
Sex	Female	1.45	0.89	2.37	.14
Immunophenotype	Precursor B-cell	Reference			
	Precursor T-cell	1.59	0.97	2.62	.07
Site of treatment	Outside pediatric oncology center	Reference			
Site of treatment	Pediatric oncology center	0.32	0.20	0.53	<.01

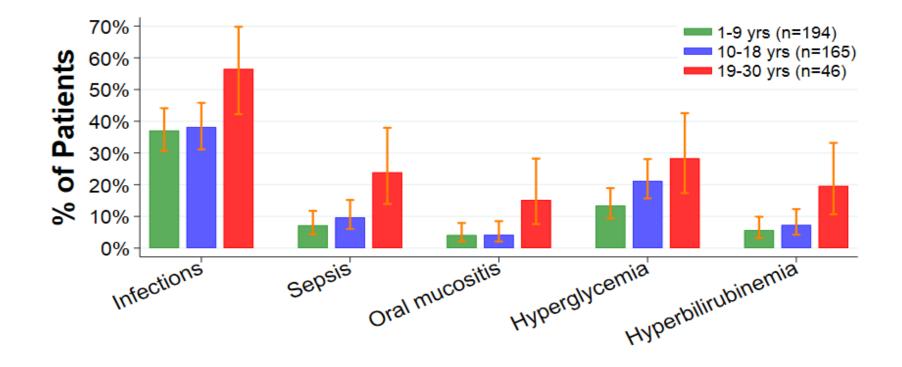

Outcomes in older adolescents treated in recent pediatric trials

Trial	No. of Patients Age Range, y	Ago Dongo y	Early Death, % Death in CR, %			EFS		OS	
		Age Kange, y		HSCT, %	Y	%	Y	%	
CCG 1961	262	16–21	2	3	4	5	72	5	78
DFCI 9101/9501	51	15-18	4	2	NR	5	78	5	81
Total therapy XV	45	15-18	0	7	11	5	86	5	88
UKALL 2003	229	16-24	NR	6	6.1	5	72	5	76
FRALLE 2000	186	15-19	2	2	12	5	74	5	80
DCOG ALL-10	57	15-18	NR	NR	NR	5	79	5	82

EFS, relapse, and death in first remission by age

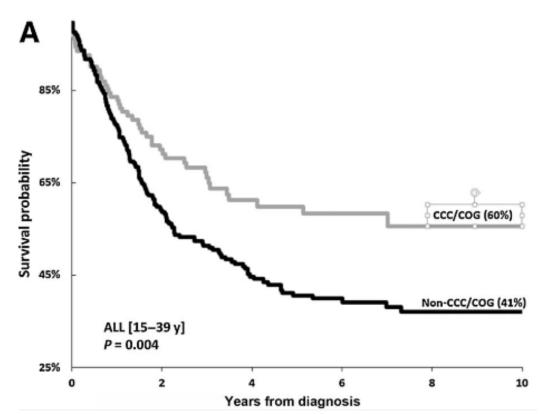
Toxicity by age

.

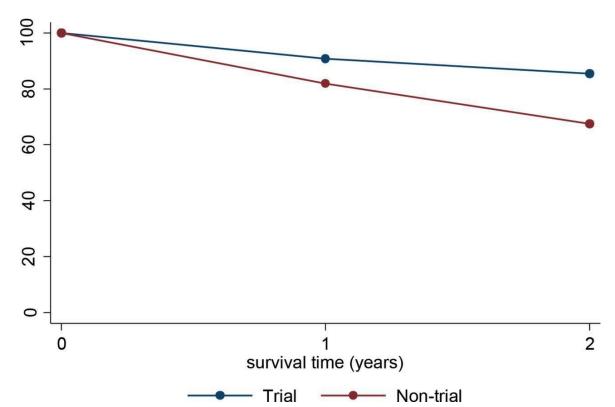


	Y/N (%)	OR (95% CI)	P
Intensiv	e care w/wo as	sisted ventilation	
1-9	145 / 864 (14.	4%) 1.0 (1.0- 1.0)	
10-17	54 / 208 (20.6	%) 1.3 (0.9- 1.9)	0.14
18-45	40 / 172 (18.9	%) 1.1 (0.7-1.6)	0.68
Anaphy	latic reaction t	o asparaginase	
1-9	146 / 863 (14.	5%) 1.0 (1.0- 1.0)	
10-17	25/237 (9.59	6) 0.6 (0.4-0.9)	0.016
18-45	11/201 (5.29	6) 0.3 (0.1-0.5)	< 0.001
	e Fungal infect		
1-9	98/911(9.79	6) 1.0 (1.0- 1.0)	
10-17	32 / 230 (12.2	%) 0.9 (0.6-1.4)	0.68
18-45	28 / 184 (13.2		0.54
Periphe	ral paralysis	04. 04. 04. 04. 04. 04. 04. 04. 04. 04.	
1-9	100 / 909 (9.9	3%) 1.0 (1.0- 1.0)	
10-17	30 / 232 (11.5	%) 1.3 (0.8-2.1)	0.21
18-45	20 / 192 (9.49	6) 1.1 (0.7-1.9)	0.61
Pancrea			
1-9	60/949 (5.99	6) 1.0 (1.0- 1.0)	
10-17		%) 2.2 (1.3-3.5)	0.001
18-45	24 / 188 (11.3		0.001
Hyperlip	pidemia		
1-9	72/937 (7.19	6) 1.0 (1.0-1.0)	
10-17	26/236(9.99		0.027
18-45	15/197 (7.19		0.37
		STATISTICS AND ADDRESS OF	

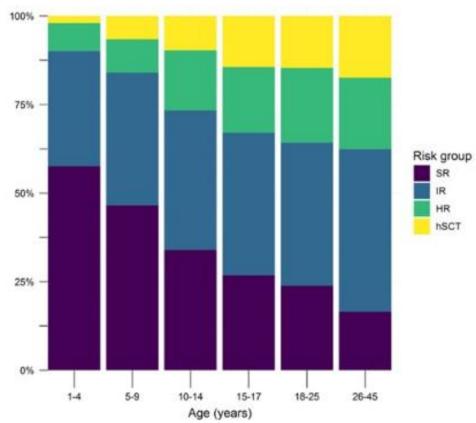
Thromb	osis	S	S	
1-9	36/973	(3.6%)	1.0 (1.0- 1.0)	2272232
	40/222		5.0 (3.1-8.2)	< 0.001
	37 / 175	(17.5%)	6.0 (3.6-10.1)	< 0.001
	ecrosis			
	23/986		1.0 (1.0- 1.0)	
10-17			8.0 (4.6-14.1)	
18-45	18/194	(8.5%)	5.3 (2.7-10.3)	< 0.001
Seizure	\$			
1-9	38/971	(3.8%)	1.0 (1.0-1.0)	
10-17	16/246	(6.1%)	1.7 (0.9-3.1)	0.086
18-45	5/207(2.4%)	0.7 (0.2-1.6)	0.39
PCP		10 (C) (C) (C) (C) (C)	ente of descriptions (see	
1-9	29/980	(2.9%)	1.0 (1.0-1.0)	
10-17	11/251	(4.2%)	1.3 (0.6-2.6)	0.48
18-45	13/199	(6.1%)	1.8 (0.9-3.7)	0.089
PRES				
1-9	37/972	(3.7%)	1.0 (1.0-1.0)	
10-17	9/253 (0.8 (0.4-1.7)	0.60
18-45	5/207 (0.5 (0.2-1.3)	0.18
			1	

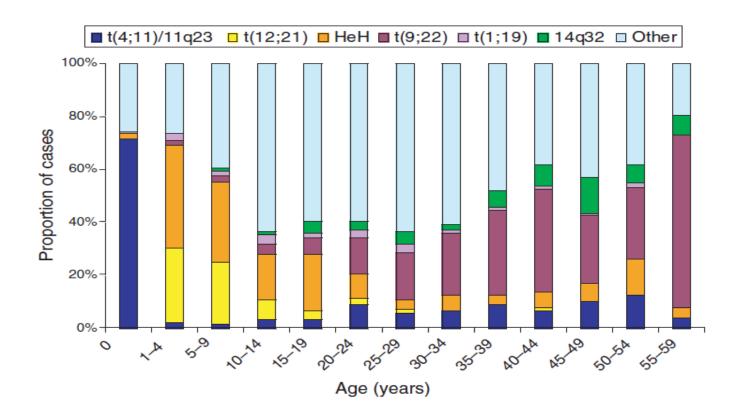

Induction toxicities by age (COG first relapse B-ALL Clinical trial AALL1331)

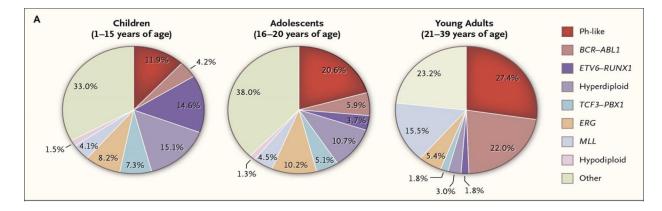
Survival in AYA with ALL by treatment site (CCC/COG vs other)

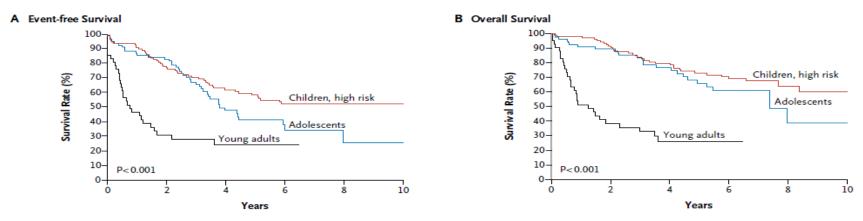


Wolfson J, et al. Cancer Epidemiol Biomarkers Prev. 2017;26(3):312-320.

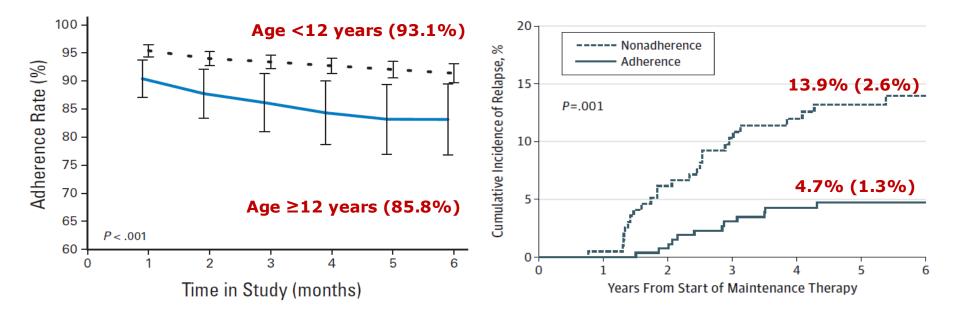

Two-year relative survival in 15–24-year-old ALL patients (n = 503) by trial status


Risk group distribution by age


Distribution of cytogenetic subtypes of ALL by age



Ph-like ALL: Prevalence and outcomes



Roberts KG, et al. N Engl J Med. 2014;371:1005-1015; Graubert TA. N Engl J Med. 2014;371:1064-1066 (courtesy of Mignon

Page 102

Low adherence to oral 6MP significantly increases relapse risk

Bhatia S, et al. J Clin Oncol. 2012;30:2094-2101 and JAMA Oncol. 2015;3:287-295 (courtesy of Mignon Loh).

AYA conclusions

- Outcome improved but still inferior to those in younger children
- Pediatric-inspired protocols better than adult-inspired protocols
- Treatment within trials better outcome
- Higher toxicity in AYA than in younger children, but manageable
- Higher incidence of unfavorable biology/genetics

Answer to the Question:

Which assertion is NOT correct for adolescent and young adult ALL patients?

- 1. Pediatric-inspired protocols lead to a better outcome than adult-inspired protocols
- 2. Treatment within a clinical trial leads to a worse outcome
- 3. AYA patients experience more toxicity than young children
- 4. BCR-ABL-like ALL is more frequent in AYA ALL than in children <10 years old with ALL

Thank you!

Bispecific T-Cell Engagers as Post-reinduction Therapy Improves Survival in Pediatric and AYA B-ALL

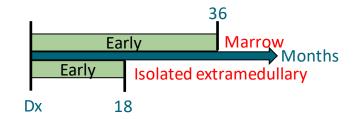
Patrick Brown

A Randomized Phase 3 Trial of Blinatumomab Vs. Chemotherapy As Post-Reinduction Therapy in High and Intermediate Risk (HR/IR) First Relapse of B-ALL in Children and AYAs Demonstrates Superior Efficacy and Tolerability of Blinatumomab

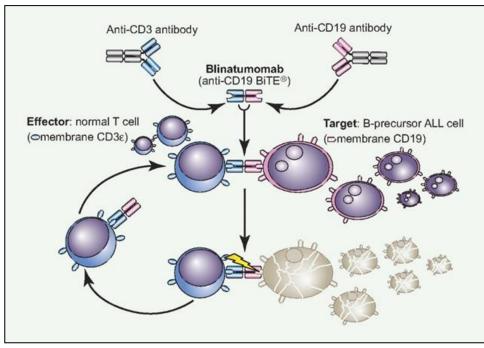
A Report from Children's Oncology Group Study AALL1331

<u>Patrick A. Brown</u>, Lingyun Ji, Xinxin Xu, Meenakshi Devidas, Laura Hogan, Michael J. Borowitz, Elizabeth A. Raetz, Gerhard Zugmaier, Elad Sharon, Lia Gore, James A. Whitlock, Michael A. Pulsipher, Stephen P. Hunger, Mignon L. Loh

CHILDREN'S ONCOLOGY GROUP


Brown PA, et al., Blood 2019; 134 (Supplement_2): LBA-1.

Background


- Poor survival for first-relapse B-ALL in children, adolescents, and young adults (AYA), especially early relapses
- Standard treatment approach
 - Reinduction chemotherapy -> second remission
 - Consolidation
 - <u>Early relapse</u>: Intensive chemo -> HSCT
 - Goal: MRD negativity prior to HSCT
 - Late relapse
 - "MRD high": same as early
 - "MRD low": intensive chemo -> maintenance therapy

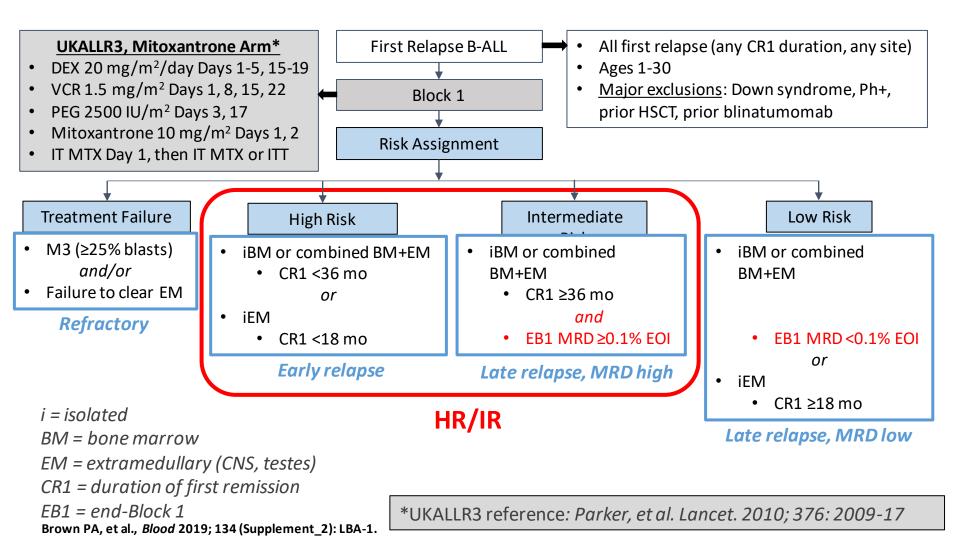
CHILDREN'S ONCOLOGY GROUP

Blinatumomab (CD19 BiTE)

Adapted from Brown P. Blood. 2018; 131: 1497-1498

CHILDREN'S ONCOLOGY GROUP

- In multiply relapsed/refractory setting (pediatrics)
 - CR 35-40%
 - MRD-negative CR 20-25%


von Stackelberg et al. JCO. 2016; 34:4381-4389

- In MRD+ setting (adults)
 - 80% MRD clearance
 - 60% subsequent DFS (bridge to HSCT)

Gokbuget et al. Blood. 2018; 131: 1522-1531

Objective of COG AALL1331:

To determine if substituting blinatumomab for intensive consolidation chemotherapy improves survival in first relapse of childhood/AYA B-ALL

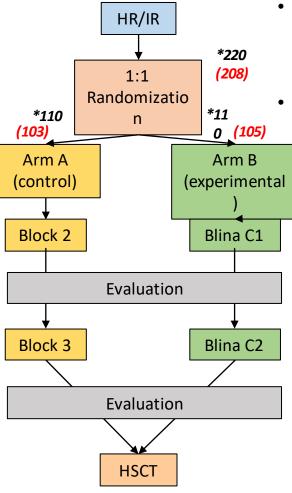
Stratifications

- Risk group (HR vs IR)
- For HR
 - Site (BM vs iEM)
 - For BM: CR1 duration (<18 vs 18-36 mo)

UKALLR3, Block 2*

- VCR, DEX week 1
- ID MTX, PEG week 2
- CPM/ETOP week 3
- IT MTX or ITT

UKALLR3, Block 3*


- VCR, DEX week 1
- HD ARAC, Erwinia weeks 1-2

*UKALLR3 reference: Parker, et al.

• ID MTX, Erwinia week 4

Lancet. 2010; 376: 2009-17

IT MTX or ITT

- <u>Endpoints</u>
 - Primary: DFS
 - Other: OS, MRD response, ability to proceed to HSCT
- <u>Sample size n=220 (110 per arm)</u>
 - Power 85% to detect HR 0.58 with 1-sided α =0.025
 - Increase 2-yr DFS from 45% to 63%

Blina C1 and Blina C2

- Blinatumomab 15 μg/m²/day × 28 days, then 7 days off
- Dex 5 mg/m²/dose × 1 premed (C1 only)
- First patient randomized Jan 2015
- Randomization halted Sep 2019 (95% projected accrual)

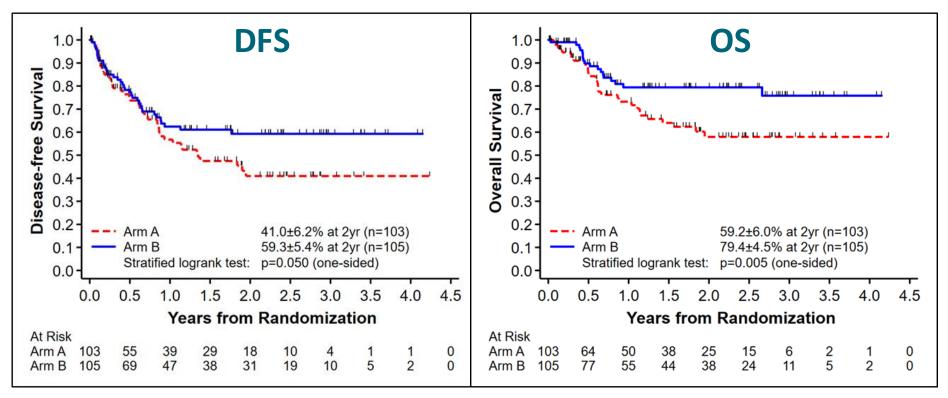
Early Closure Recommended by DSMC

- Scheduled review by DSMC Sep 2019 using data cutoff 6/30/2019 (~60% of projected events)
- <u>Despite the monitoring threshold for DFS not being crossed</u>, the DSMC recommended
 - Permanent closure of accrual to HR/IR randomization
 - Immediate crossover to experimental Arm B for patients still receiving therapy
- DSMC recommendation based on
 - The difference in <u>DFS and OS</u> between arms
 - The profound difference in **toxicity** between arms
 - The highly significant difference in <u>MRD</u> clearance rates between arms

CHILDREN'S ONCOLOGY GROUP

Baseline Characteristics

		Arm A (n=103)	Arm B (n=105)
	Age at enrollment, years		
	Median (range)	9 (1-27)	9 (1-25)
	1-9	55 (53%)	55 (52%)
	10-17	30 (29%)	35 (33%)
16% AYA 🔶	18-30	18 (18%)	15 (14%)
	Sex		
	Female	49 (48%)	48 (46%)
	Male	54 (52%)	57 (54%)
	NCI risk group at diagnosis		
	High risk	60 (58%)	59 (56%)
	Standard risk	43 (42%)	46 (44%)
	Cytogenetic groups at diagnosis		
	Favorable (Tri 4/10, ETV6-RUNX1)	16 (18%)	21 (23%)
	KMT2A rearranged	9 (10%)	7 (8%)
	Hypodiploidy	1 (1%)	0
	Other	65 (71%)	63 (69%)
N'S Y	None	12	14

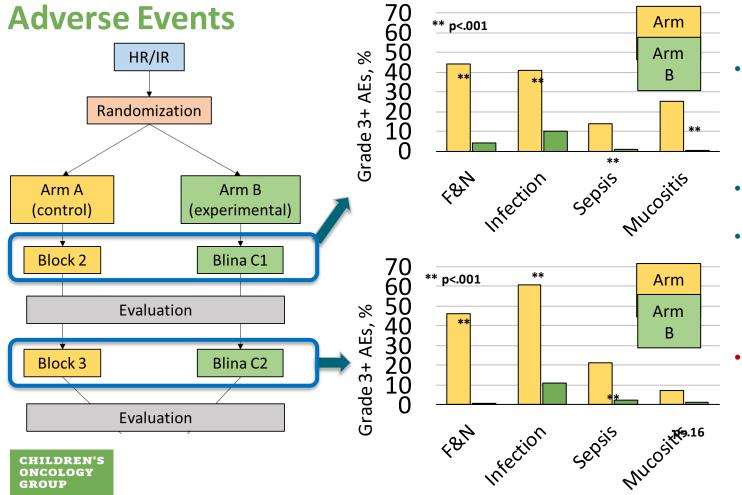

CHILDREN'S ONCOLOGY GROUP

Randomization Stratification Factors

	Stratification Factors	Arm A (n=103)	Arm B (n=105)	
	Risk Group Assignment After Block 1			
ſ	Intermediate risk (late relapse, MRD high)	34 (33%)	36 (34%)	L
٦	High risk (early relapse)	69 (67%)	69 (66%)	ſ
	High-Risk Subsets			
ſ	 Marrow, CR1 < 18 months (very early) 	18 (26%)	18 (26%)	
4	Marrow, CR1 18-36 months (early)	41 (59%)	41 (59%)	\mathbf{F}
l	 IEM, CR1 < 18 months 	10 (14%)	10 (14%)	

CHILDREN'S ONCOLOGY GROUP

Survival: Arm A (chemotherapy) vs Arm B (blinatumomab)



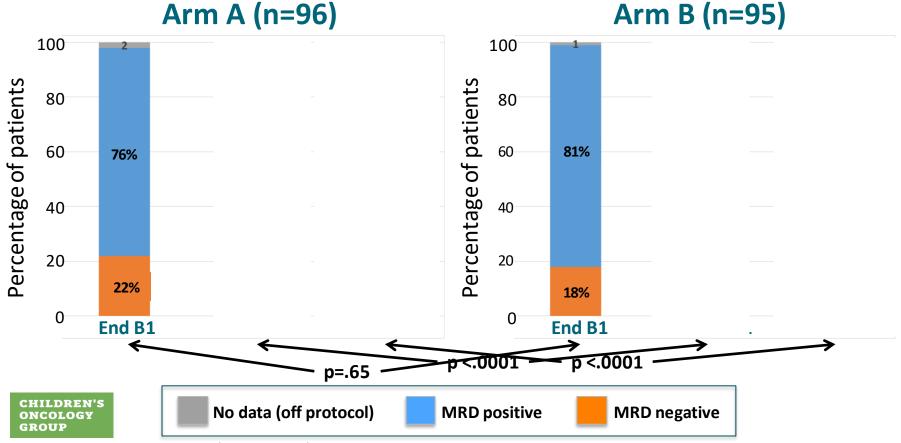
Median follow-up 1.4 years

Brown PA, et al., Blood 2019; 134 (Supplement_2): LBA-1.

CHILDREN'S

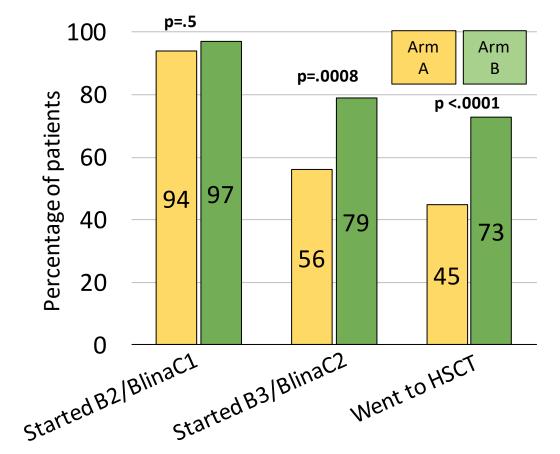
ONCOLOGY GROUP

- N=4 post-induction Grade 5 AEs on Arm A (all infections)
- N=0 on Arm B
 - Ages of Arm A deaths: 2, 17, 23, and 26 years old (AYA-skewed)
 - NOTE: AE rates significantly higher in AYA (Hogan, et al. ASH Abstract 2018)


Brown PA, et al., *Blood* 2019; 134 (Supplement_2): LBA-1.

Blinatumomab-Related AEs on Arm B

	Blin (n=	a C1 99)		a C2 83)
Blinatumomab-Related AEs	Any Grade (%)	Grade 3-4 (%)	Any Grade (%)	Grade 3-4 (%)
Cytokine release syndrome	22%	1%	1%	0%
Neurotoxicity	18%	3%	11%	2%
Seizure	4%	1%	0%	0%
Other (encephalopathic)	14%	2%	11%	2%


CHILDREN'S ONCOLOGY GROUP

MRD Clearance (for iBM and BM+EM)

Brown PA, et al., Blood 2019; 134 (Supplement_2): LBA-1.

Dropout/HSCT Rates: Arm A vs Arm B

A significant contributor to the improved outcomes for Arm B (blina) vs Arm A (chemo) in HR/IR relapses may be the ability of blinatumomab to successfully bridge to HSCT

Brown PA, et al., Blood 2019; 134 (Supplement_2): LBA-1.

Conclusions

- For children and AYA patients with HR/IR first relapse of B-ALL, blinatumomab is superior to standard chemotherapy as post-reinduction consolidation prior to HSCT, resulting in
 - Fewer and less severe toxicities
 - Higher rates of MRD response
 - Greater likelihood of proceeding to HSCT
 - Improved disease-free and overall survival
- Blinatumomab constitutes a new standard of care in this setting
- Future: Optimizing immunotherapy in relapsed ALL
 - Combination of blinatumomab and checkpoint inhibitors
 - Immunotherapy to replace or augment reinduction chemotherapy
 - CAR T cells to replace or augment HSCT

CHILDREN'S ONCOLOGY GROUP

AALL1331 Study Committee

- Chair: Pat Brown
- Vice Chair: Jim Whitlock
- Stats: Lingyun Ji, Mini Devidas
- Heme/Onc
 - Lia Gore
 - Laura Hogan
 - Terzah Horton
 - Stevie "Nix" Hunger
 - Kala Kamdar
 - Mignon Loh
 - Jen McNeer
 - Maureen O'Brien
 - Mike Pulsipher
 - Sue Rheingold
 - Teena Bhatla
 - Sarah Tasian

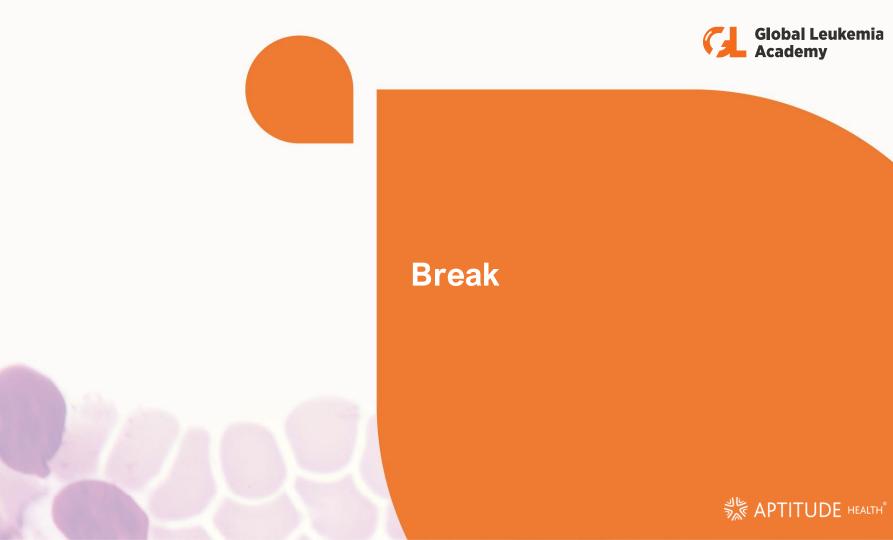
CHILDREN'S

ONCOLOGY GROUP Richard Tower

• Lab/Path

- Mike Borowitz
- Andrew Carroll
- Fady Mikhail
- Julie Gastier-Foster
- Rad Onc: Stephanie Terezakis
- Pharmacy
 - Brooke Bernhardt
 - Olga Militano
- CRA: Christopher Henchen
- Nursing
 - Deb Schissel
 - Susan Zupanec
- Research Coordinator: Susan Conway, Don Sortillon, Naira Setrakian
- Protocol Coordinator: Rachel Vasquez

Funding


- NCTN Operations Center Grant U10CA180886
- NCTN Statistics & Data Center Grant U10CA180899
- St. Baldrick's Foundation
- Blinatumomab provided by Amgen via Collaborative Research and Development Agreement (CRADA) with NCI/CTEP

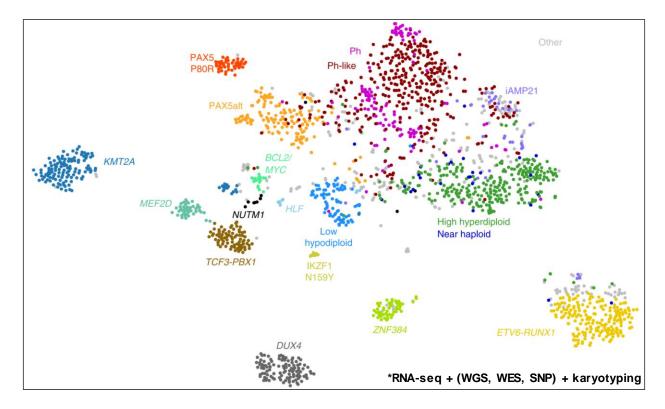
Questions?

Multiple-Choice Question 1

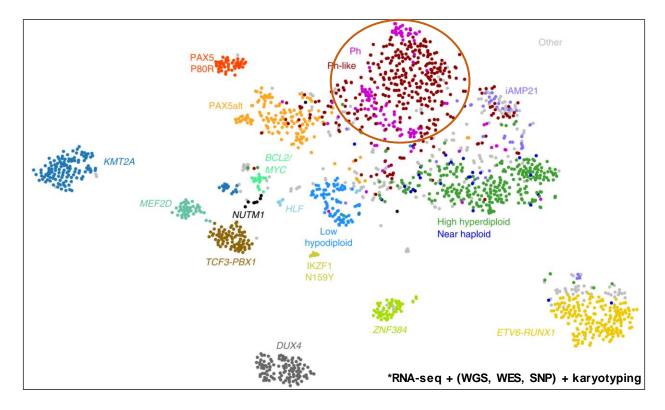
- Which of the following is NOT true of blinatumomab relative to chemotherapy as post-reinduction therapy for HR/IR first relapse of pediatric ALL?
- A. Lower rate of clearance of residual disease
- B. Lower rate of serious adverse events
- C. Lower rate of relapse
- D. Higher rate of proceeding to HSCT

Genetic Variants in ALL – Ph+ and Ph-Like

Andre Schuh



Genetic Variants in ALL: Ph+ ALL and Ph-Like ALL


Andre Schuh Princess Margaret Cancer Centre Toronto

July 8, 2020

Integrative Genetic Profiling* Defines 23 Subtypes of ALL

Integrative Genetic Profiling* Defines 23 Subtypes of ALL

• Genetic subtype/phenocopy relationships, eg, Ph+ and Ph-like

Ph+ALL

- Carries the Philadelphia (Ph) chromosome
- t(9;22)(q34.1;q11.2); BCR-ABL1
- Dysregulated activation of ABL1 kinase
- Known since 1970s
- Confers higher risk

Ph-like ALL

- Ph-ALL subtype with a gene expression profile similar to that of Ph+ALL, but <u>not</u> carrying the Ph chromosome
- Can carry a variety of alternative kinase-activating rearrangements and mutations, falling largely into ABL and JAK/STAT classes
- First described by 2 groups in 2009
- Confers higher risk?

WHO Classification (2001, 2008, 2016)

B-lymphoblastic leukemia/lymphoma

B-lymphoblastic leukemia/lymphoma, NOS

B-lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities

B-lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2);BCR-ABL1

B-lymphoblastic leukemia/lymphoma with t(v;11q23.3);KMT2A rearranged

B-lymphoblastic leukemia/lymphoma with t(12;21)(p13.2;q22.1); ETV6-RUNX1

B-lymphoblastic leukemia/lymphoma with hyperdiploidy

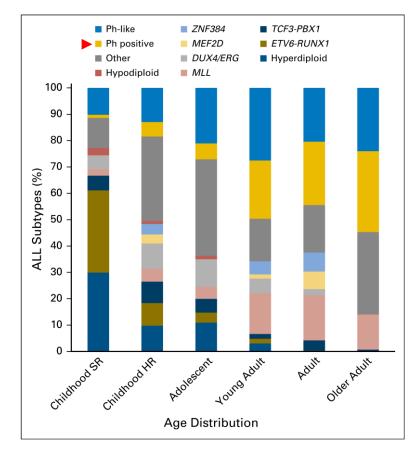
B-lymphoblastic leukemia/lymphoma with hypodiploidy

B-lymphoblastic leukemia/lymphoma with t(5;14)(q31.1;q32.3) IL3-IGH

B-lymphoblastic leukemia/lymphoma with t(1;19)(q23;p13.3);TCF3-PBX1

Provisional entity: B-lymphoblastic leukemia/lymphoma, BCR-ABL1-like

Provisional entity: B-lymphoblastic leukemia/lymphoma with iAMP21


T-lymphoblastic leukemia/lymphoma

Provisional entity: Early T-cell precursor lymphoblastic leukemia

Natural killer (NK) cell lymphoblastic leukemia/lymphoma

Ph+ ALL

Ph+ ALL Incidence Increases With Age

Iacobucci, I, and Mullighan, CG. J Clin Oncol 2017; 35:975-983

Treatment?

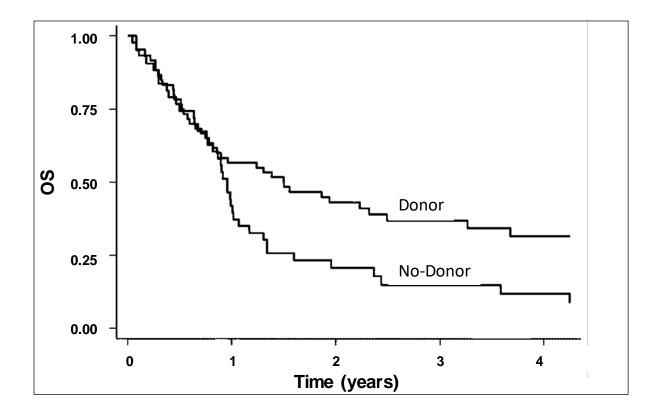
TKI Era

Longstanding "Truths"

- High risk
- Inferior outcomes with conventional ALL chemotherapy
- AlloSCT for all eligible patients

New Questions ... New Trends

- Which TKI?
- Older patients
- Less intensive or chemo-free strategies, especially in the elderly
- Diminishing role of alloSCT
- Newer approaches to R/R disease
- Bring upfront the drugs that are effective in R/R disease


Pre-TKIs ...

Ph+ ALL associated with an inferior outcome using conventional ALL chemotherapy

Outcomes of Patients With Newly Diagnosed Ph+ ALL Treated With Chemotherapy Only

Clinical Trial (year)	N	Median Age, [range]	Chemotherapy	CR, %	SCT in CR1, %	OS, %
Gotz (1992) ⁵³	25	44 [21-74]	BFM	76	8	6 at 40 mo
Larson (1995) ⁵⁴	30	32 [16-80]	CALGB	70	NA	16 at 36 mo
Thomas (2001) ⁶	51	35 [14-89] ^a	LALA	NA	16	10 at 60 mo
Gleissner (2002) ⁵⁵	175	45 [15-65]	GMALL	68	NA	15 at 36 mo
Takeuchi (2002) ³	51	31 [15-59] ^a	JALSG	51	NA	5 at 72 mo
Kantarjian (2004) ⁴	48	40 [15-92] ^a	HyperCVAD	92	23	12 at 60 mo
Pullarkat (2008) ⁵	36	47 [17-64]	SWOG	67	NA	8 at 60 mo
					1	·

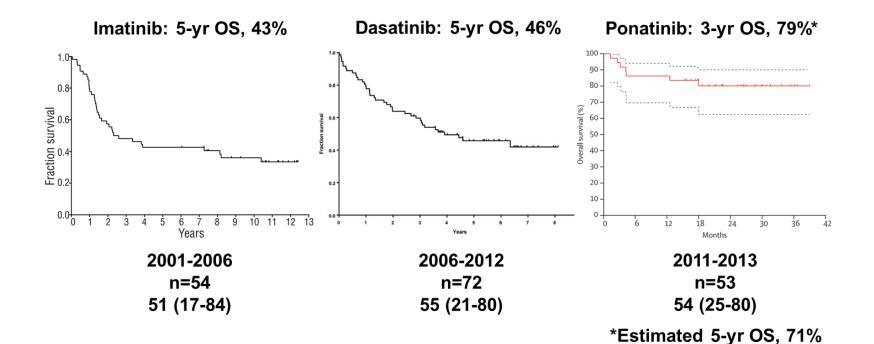
Role of AlloSCT, Ph+ALL, Pre-TKI

TKI Era . . .

- Imatinib
- Dasatinib
- Ponatinib

Which TKI?

Outcomes of Patients With Newly Diagnosed Ph+ ALL Treated With Chemotherapy Plus Imatinib


Clinical Trial (year)	N	Median Age, [range]	Chemo- therapy	TKI, mg/d	CR, %	CMR, %	SCT in CR1, %	OS, %
Imatinib		. 01	17					
Yanada (2006) ⁵⁶	80	48 [15-63]	JALSG ALL202	IM 600	96	26 at CR	49	76 at 12 mo
Wassmann (2006) ⁹	45	41 [19-63]	GMALL	IM 400	96	27 at CR	80	43 at 24 mo
Fielding (2014) ¹⁰	175	42 [16-64]	UKALLXII/ ECOG2993	IM 400-600	92	NA	46	38 at 48 mo
Chalandon (2015) ¹³	135	49 [18-59]	Low-int induction	IM 800	98	29 at ~3 mo	74	48 at 60 mo
	133	45 [21-59]	High-int induction	IM 800	91	23 at ~3 mo	79	43 at 60 mo
Bassan (2010) ⁵⁷	59	45 [20-66]	NILG	IM 600	92	40 at ~3 mo	72	38 at 60 mo
Daver (2015) ¹¹	54	51 [17-84]	HyperCVAD	IM 400-800	93	45 at ~3 mo	30	43 at 60 mo
De Labarthe (2007) ⁵⁸	45	45 [16-59]	GRAAPH 2003	IM 600-800	96	NA	49	51 at 18 mo
Lim (2015) ¹²	87	41 [16-71]	Multiagent chemo	IM 600	94	NA	64	33 at 60 mo

Yilmaz, M. et al. Clin Adv Hem Onc 2018; 16:216-223

Outcomes of Patients With Newly Diagnosed Ph+ ALL Treated With Chemotherapy Plus Nilotinib, Dasatinib, or Ponatinib

Clinical Trial (year)	N	Median Age, [range]	Chemo- therapy	TKI, mg/d	CR,	%	CMR, %	SCT in CR1, %	OS, %
Nilotinib									
Kim (2015) ²³	90	47 [17-71]	Multiagent chemo	NIL 800	91		77 at ~3 mo	63	72 at 24 mo
Dasatinib									
Foa (2011) ³¹	53	54 [24-76]	Prednisone	DAS 100-140	93		22 at CR	NA	69 at 20 mo
Ravandi (2015) ³⁰	72	55 [21-80]	HyperCVAD	DAS 100	96		65 at ~3 mo	17	46 at 60 mo
Ravandi (2016) ⁵⁹	94	44 [20-60]	HyperCVAD	DAS 70-100	88		NA	47	69 at 36 mo
Ponatinib	1								
Jabbour (2015) ^{36,37}	64	48 [21-80]	HyperCVAD	PON 30-45	100		77 at ~3 mo	16	78 at 36 mo
		·							·

OS, HyperCVAD Plus Imatinib, Dasatinib, or Ponatinib

Daver, N. *et al. Haemato*logica 2015; 100:653-61 Ravandi, F. *et al. Cancer* 2015; 121:4158-64 Jabbour, E. *et al. Lancet Hematology* 2015; 16:1547-55 Jabbour, E. *et al. Clin Lymph M yel Leuk* 2018; 18:257-65

OS, by Molecular Response, HyperCVAD Plus TKI

Univariate analysis, RFS and OS

		Risk of relapse or death			Risk of death			
Characteristic	HR	95% CI	Р	HR	95% CI	Р		
Age (y)	1.01	0.99-1.04	.27	1.02	0.99-1.04	.15		
Log WBC	1.56	0.95-2.56	.08	1.43	0.85-2.38	.18		
Platelets	1.00	1.00-1.00	.89	1.00	1.00-1.01	.75		
Absolute PB blasts	1.00	1.00-1.01	.15	1.00	0.99-1.00	.68		
BM blasts (%)	0.99	0.98-1.00	.18	0.99	0.97-1.00	.05		
Performance status ≥2	3.22	1.31-7.90	.01	1.97	0.75-5.13	.17		
CD20 expression ≥20%	1.31	0.68-2.53	.42	1.46	0.71-3.00	.30		
CNS leukemia	1.96	0.81-4.70	.13	1.24	0.43-3.56	.69		
p190 BCR-ABL1 transcript	1.02	0.49-2.16	.95	1.03	0.47-2.27	.95		
Cytogenetics: Ph alone vs Ph ⁺ other	0.42	0.19-0.93	.03	0.46	0.20-1.06	.07		
TKI: ponatinib vs dasatinib vs imatinib	0.59	0.37-0.94	.03	0.52	0.31-0.88	.02		
CMR at 3 mo	0.43	0.21-0.78	.01	0.42	0.21-0.82	.01		

WBC, white blood cell; PB, peripheral blood; BM, bone marrow; CNS, central nervous system.

Meta-analysis: Ponatinib vs 1st/2nd-Generation TKIs in Ph+ ALL

Outcomes	All (n = 26 Studies)	Ponatinib (n $=$ 1 Study)	First- and Second-Generation TKIs (n $=$ 25 Studies)
Response			
CMR	34 (26-43)	79 (66-89) ^a	32 (25-40)
Survival			
2-y OS	59 (53-65)	83 (70-92) ^a	58 (53-63)
3-y OS	52 (43-60)	79 (66-89) ^a	50 (42-58)

Why Is Ponatinib Superior to Other TKIs?

- Deeper and more rapid molecular response; a larger proportion of patients achieve MMR and CMR
- Relapse after treatment with imatinib, dasatinib, and nilotinib is often associated with the outgrowth of (pre-existing?) leukemic clones bearing BCR-ABL1 KD mutations conferring TKI resistance
- By NGS, these resistance mutations are often present well before overt hematologic relapse, and may be present at the time of diagnosis

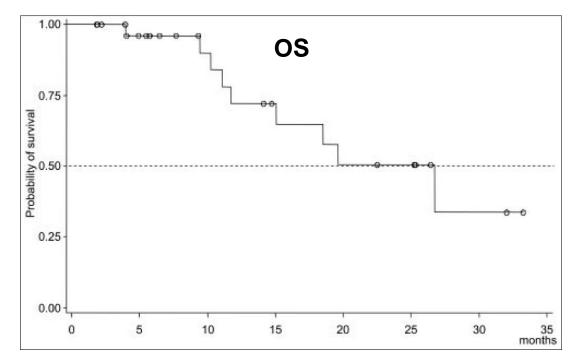
Pfeifer, H. *et al. Blood* 2007; 110: 727-34 Soverini, S. *et al. Leukemia* 2016; 30:1615-19 Rousselot, P. *et al. Blood* 2016; 128:774-82 DeBoer, R. *et al. Leuk Lymph* 2016; 57: 2298-2306

Why Less Intensive Approaches?

Baseline facts

- Aging population and increasing incidence of Ph+ ALL
- Increasing toxicity of chemotherapy in the elderly (especially if "pediatricinspired" protocols are used)
- Increased toxicity when TKIs added to conventional chemotherapy regimens

Taken together with


• Dramatically improved outcomes when TKIs added

Opportunities for less-toxic, chemo- or steroid-sparing approaches?

Reduced-Intensity Approaches to Ph+ ALL: Low-Intensity Chemotherapy/Steroids Plus TKI

Clinical Trial (year)	N	Age, median [Range]	Chemotherapy	TKI, mg/d	CR, %	SCT in CR1, %	OS, %
Ottmann (2007) ¹⁵	28	66 [54-79]	GMALL	IM 400	96	0	42 at 24 mo
Vignetti (2007) ¹⁴	30	69 [61-83]	Prednisone	IM 800	100	0	50 at 24 mo
Delannoy (2006) ⁶⁰	29	66 [58-78]	GRALL-AFR09	IM 600	72	0	66 at 12 mo
Rousselot (2016) ³²	71	69 [59-83]	EWALL-Ph-01	DAS 100-140	96	10	36 at 60 mo
Ottmann (2014) ²⁴	47	65 [55-85]	EWALL-Ph-02	NIL 800	87	20	67 at 24 mo

Imatinib Plus Prednisone Only

GIMEMALAL0201-B Study: n=30, median age 69 (range 61-83) Imatinib 800 mg/day plus prednisone 40 mg/m²/day × 45 days CR rate 97%; well tolerated; mostly done as OP; median OS ~20m

- Less intensive induction regimens containing a TKI are feasible, less toxic, and associated with very high CR rates
- In absence of subsequent (or simultaneous) chemotherapy, however, molecular responses and OS are inferior
- Simultaneous or subsequent chemotherapy results in better CMR rates and improved OS, similar to that obtained with more-intensive chemotherapy

Relapsed Disease . . .

Ph+ ALL

• CR rates only moderate; outcomes post-relapse poor

Traditionally . . .

- Salvage chemotherapy
- Alternative TKI on the basis of *BCR-ABL1* KD mutation analysis
- AlloSCT

More recently . . .

- ▶ Blinatumomab, inotuzumab, CAR T cells
 - Alternative TKI on the basis of BCR-ABL1 KD mutation analysis
 - AlloSCT

Blinatumomab vs Inotuzumab vs CAR T Cells for R/R Ph+ALL

Blinatumomab

ALCANTARA study (Martinelli G, et al. JCO 2017: 35: 1795-1802)

- Open-label, single-arm, multicenter, phase II study, at 19 European and US centres
- Adult (age ≥18) Ph+ BCP-ALL relapsed after, or refractory to, at least 1 second-generation or later TKI, or intolerant to second-generation or later TKIs, and intolerant or refractory to imatinib
- 45 very heavily pretreated patients
 - 46% ABL1 KD mutations (27% T315I)
 - 44% prior alloSCT
 - 38% ≥3 prior TKIs (51% prior ponatinib)

Blinatumomab

ALCANTARA study (Martinelli G, et al. JCO 2017: 35: 1795-1802)

- CR/CRh within 2 cycles: 36%
- CR/CRh in patients with
 - ABL1 KD mutation: 35%
 - T3151 mutation: 40%
 - ≥3 prior TKIs: 47%
 - Prior ponatinib: 35%
- Complete MRD response: 88%
- AlloSCT realization: 25%

Inotuzumab

INO-VATE study (Kantarjian H, et al. N Engl J Med 2016; 375: 740-53)

- Phase III multicenter (18 countries), randomized study of R/R B-ALL (both Ph+ and –), randomized from 2012-2014 to inotuzumab vs SOC salvage chemotherapy
- n=279 overall; of the first 109 patients in each group . . . 14/109 (13%) Ph+ inotuzumab
 18/109 (17%) Ph+ SOC
- CR/CRi: 78.6% vs 44.4%, but PFS only ~4 months

Blinatumomab vs Inotuzumab, R/R Ph+ B-ALL

	Blinatumomab ^{*,#}	Inotuzumab^
No. treated	45	38
CR/marrow CR (%)	16 (36)	25 (66)
MRD- in CR, %	88	63
Median OS, months	7.1	8.1
Proceeding to alloSCT, %	44	32

*From ALCANTARA study. ^From 1010 and 1022 (INO-VATE) studies. #More heavily pretreated.

> Kantarjian, H. *et al.* N Engl J Med 2016; 375: 740-53 Martinelli, G. *et al.* JCO 2017: 35: 1795-1802 Stock, W. *et al.* JCO 2018; 36: (2018 suppl. abstr. 7030)

Phase I study, MSKCC, patients with heavily pretreated R/R B-ALL treated with autologous 19-28z CAR T cells

2010-2016, 83 patients enrolled; 53 patients infused (64%)

~1/2 of patients had low tumor burden (<5% marrow blasts)

Of 53 treated patients, 16 (30%) were Ph+

- Median no. prior TKIs: 2.5 (range 1-4)
- 5 patients with T3151 mutation
- 10/16 patients refractory to ponatinib

Characteristic	Value
Age	
Median (range) — yr	44 (23–74)
Distribution — no. (%)	
18–30 yr	14 (26)
31–60 yr	31 (58)
>60 yr	8 (15)
No. of previous therapies — no. (%)	
2	21 (40)
3	13 (25)
≥4	19 (36)
Primary refractory disease — no. (%)	
Yes	12 (23)
No	41 (77)
Previous allogeneic HSCT — no. (%)	
Yes	19 (36)
No	34 (64)
Previous treatment with blinatumomab — no. (%)	
Yes	13 (25)
No	40 (75)
Pretreatment disease burden†	
Median bone marrow blasts (range) — $\%$	63 (5–97)
Bone marrow blasts — no. (%)	
≥5%	27 (51)
<5% with extramedullary disease	5 (9)
≥0.01% and <5%	15 (28)
<0.01%	6 (11)
Philadelphia chromosome-positive — no. (%)	
Yes	16 (30)
No	37 (70)

Subgroup Analysis of Complete	Remission								
Subgroup	No. of Patients			Co		Remiss 6 CI)	ion		P Value
Overall	53						_	83	
Disease burden									0.07
Low	21							95 (3 to 38)	
High	32					-		75	
Pre-CAR HSCT									1.00
No	34				_	-	_	82 (-23 to 19)	
Yes	19					-		84	
No. of previous therapies									0.37
2	21						-	90 (–17 to 29)	
3	13					-		85 (-17 to 39)	
≥4	19			-		-	-	74	
Ph status									0.42
Ph-	37					-	-	79 (-32 to 4)	
Ph+	16				-		-	93	
Conditioning chemotherapy									1.00
Cyclophosphamide+fludarabine	10			_		-		80 (-31 to 23)	
Cyclophosphamide	43						_	84	
Age group									0.53
18–30 yr	14				_		-	93 (-7 to 32)	
31–60 yr	31				_	-	_	81 (-27 to 39)	
>60 yr	8					-		75	
		0	20	40	60	80	100		
		Pat	ients wit	h Comp	lete Rei	mission	(%)		

Park, J. et al. N Engl J Med 2018; 378:449-59

Blinatumomab vs Inotuzumab vs CAR T?

- Availability
- CR rates by ITT
- MRD negativity
- Relative toxicity
- Tumor burden considerations
- Need for subsequent alloSCT?
- First vs subsequent relapse
- Infrastructure and training requirements
- FACT/IEC accreditation requirements
- Cost

Going forward . . .

 Several studies evaluating upfront use of blinatumomab or inotuzumab +/chemo plus TKIs...

Numerous questions remain

- Intensive chemotherapy, vs less-intensive chemo vs chemo-free approaches?
- Which TKI (dasatinib vs ponatinib)?
- Optimizing TKI plus blinatumomab etc for relapsed disease (we and others use both drugs simultaneously)
- Sequencing of blinatumomab and inotuzumab in the same patient?
- Role of blinatumomab in MRD+, Ph+ ALL in CR?
- Ongoing role of alloSCT in TKI/immunotherapy era?
- Optimized molecular monitoring strategy and when to switch TKIs
- Role of CAR T cells?

How Do I Treat?

Untreated Ph+B-ALL...

- At PM, all ALLs receive the pediatric DFCI 01-175 ALL protocol, with PM modifications for age (<60, ≥60) and Ph status
- Ph+ ALLs receive modified DFCI plus imatinib (400 mg/600 mg) or dasatinib (100 mg)
- *BCR-ABL1* transcripts are measured by PCR at diagnosis and postinduction, and then every 3 months
- Aim for PCR negativity, or at least ~4-log reduction (or better) by 3-4 months
- AlloSCT offered only to patients not achieving molecular targets
- Hope to initiate upfront study of ponatinib plus blinatumomab

How Do I Treat?

Relapsed Disease...

- TKI defined by *BCR*-ABL1 KD mutation analysis
- TKI plus blinatumomab, followed by alloSCT in fit patients age ≤70-75
- In absence of alloSCT, lifelong TKI
- Inotuzumab is available, but is generally not used in this indication due to perceived VOD risk
- CAR T-cell therapy: Kymriah is approved in Canada and will be available soon (at selected centres) up to age 25
- In the meantime, and for older adults, CAR T-cell therapy is available via clinical trial

Ph-like (BCR-ABL like) ALL

Ph-like (BCR-ABL like) ALL

- Ph- subtype characterized by a gene expression profile similar to Ph+ ALL and a range of kinase-activating rearrangements and mutations, and associated with a poor outcome
- Frequently bear alterations of B-lymphoid transcription factor genes (most commonly *IKZF1*)
- ~1/2 are surface CRLF2+
- 10%–20% of standard- and high-risk childhood B-ALL, with an increasing prevalence with increasing age

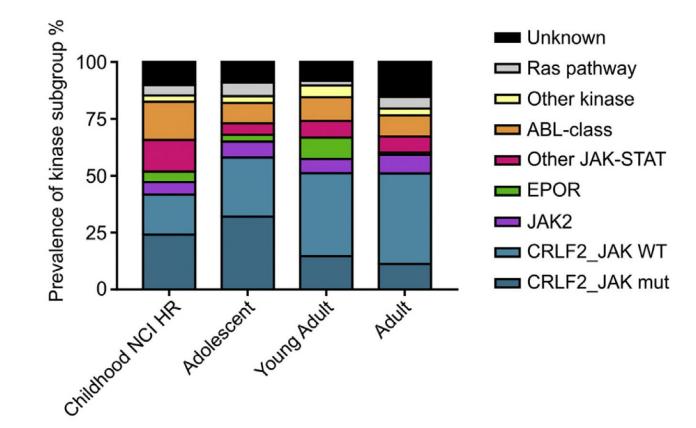
Ph-Like (BCR-ABL like) ALL

Incidence

Prevalence and clinical outcomes of Ph-like ALL.

Clinical Trial	Age (yrs)	NCI Risk Group	Ph-like prediction	Ph-like ALL prevalence (%)	Total cases studied	Treatment Outcome
COG P9906	1-21	HR	PAM	20.5%	200	5 yr EFS 25.0%
COG AALL0232	1-30	HR	PAM	14.0%	572	5 yr EFS 62.6%
COG AALL0932	1-30	SR	LDA	17.0%	505	N/A
COG AALL1131	1-30	HR	LDA	22.4%	884	N/A
St. Jude Total XV	1-18	All	PAM	11.6%	344	5-yr EFS 90.0%
COALL 92/97	0-18	All	HC	19%	154	5 yr DFS 59.5%
DCOG ALL 8/9	0-18	All	HC	15%	92	5 yr DFS 57.1%
GMALL	16-84	All	PAM	12.6%	207	5-yr DFS 26%
HOVON	16-71	All	HC	16.5%	127	5-yr EFS ~25%
Multiple US	21-39	All	LDA	27.9%	344	5-yr EFS 24.1%
	40-59			20.4%	304	5-yr EFS 21.4%
	60-86			24.0%	150	3-yr EFS 8.0%
MDACC	15-49	All	PAM/LDA	42.0%	80	5-yr OS 23%
	40-84			24.0	68	
Multiple US	18-39	All	LDA	25.9%	27	N/A
	40-88			18.3%	60	

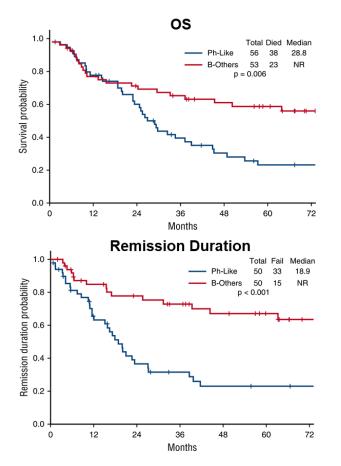
Baseline Characteristics of Ph-Like ALL, Categorized as CRLF2+ and Non-CRLF2

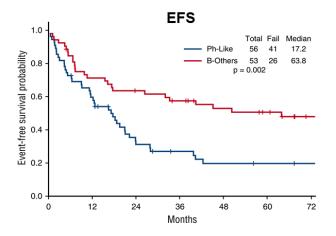

	Ph-like AL			
	CRLF2 ⁺	Non-CRLF2	P	
N	37	19		
Age, y, median (range)	35 (18-71)	26 (15-62)	.12	
Sex, n (%)				
Female	10 (27)	9 (47)	.13	
Male	27 (73)	10 (53)		
Ethnicity, n (%)				
White	8 (22)	5 (26)		
Hispanic	29 (78)	9 (48)	.008	
African American	_	2 (10)		
Asian	_	3 (16)		
Cytogenetics, $n = 49$, n (%)				
Diploid	15 (45)	4 (25)	.49	
Hyperdiploid	6 (18)	4 (25)		
Hypodiploid	3 (9)	1 (6)		
Miscellaneous	9 (28)	7 (44)		
Presenting features				
WBC, $ imes$ 10 ⁹ /L, median (range)	27.7 (1-603)	5.3 (1-81)	.001	
Platelet count, $ imes$ 10 ⁹ /L, median (range)	36 (1-169)	41 (8-238)	.55	
Hemoglobin, g/dL, median (range)	9.4 (6.5-13.7)	9.2 (5.7-15.1)	.19	
Bone marrow blast %, median (range)	92 (62-98)	87 (17-99)	.17	
CNS involvement at Dx, n (%)	5 (14)	3 (16)	.82	
IKZF1 deleted, $n = 41$, n (%)	21/25 (84%)	7/16 (44%)	.014	
Treatment received, n (%)				
Hyper-CVAD based	29 (78)	8 (42)	.007	
Augmented BFM	8 (22)	11 (58)		

Ph-Like (BCR-ABL like) ALL

Chromosomal Rearrangements/Fusions

ABL Class	ABL1 ABL2 CSF1R LYN PDGFRA PDGFRB
JAK/STAT	CRLF2 JAK2 EPOR TYK2 IL2RB JAK1/3 IL7R SH2B3
Other	NTRK3 FLT3 FGFR1 BLNK

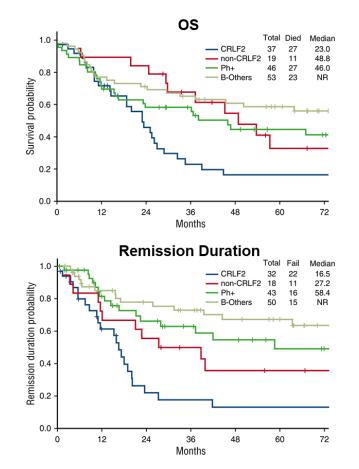

Rearrangements Vary With Age

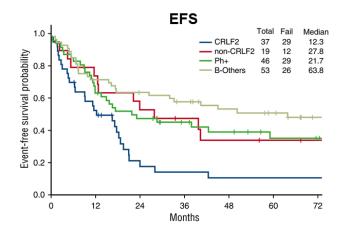


Responses in Ph-Like ALL, Ph+ALL, and B-Other ALL

	B-ALL categories, $N = 155$						
	Ph-like	Ph ⁺	B-other	<i>P</i> (all 3 groups)	<i>P</i> (Ph-like vs B-other)		
N	56 ³³ (15-	⁵ 49 (22-8	4) 53 (15-79	9)			
CR/CRp, n (%)	50 (89)	43 (93)	50 (94)	.57	.34		
MRD assessed at CR, n = 98, n (%)		3.5 4 <u>(</u> -71) (22-					
MRD^+	23 (70)	15 (44)	4 (13)	<.001	<.001		
MRD ⁻	10 (30)	19 (56)	27 (87)				

OS, EFS, and Remission Duration, Ph-Like vs B-Other


Ph-like


n=56; median age 33.5 (15-71) HyperCVAD, 37 (66%) Augmented BFM, 19 (34%)

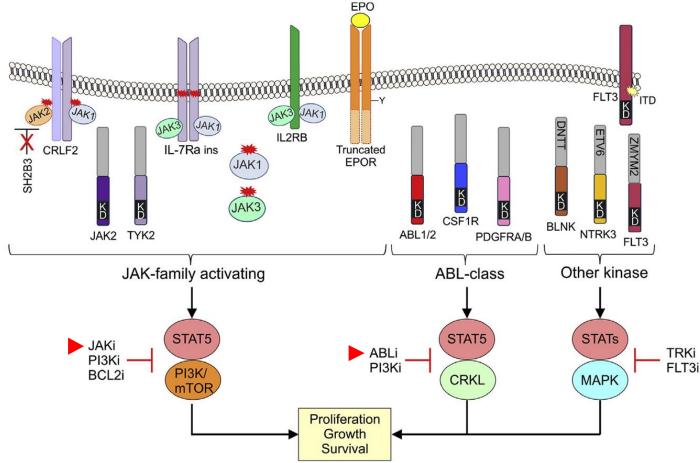
B-other

n=53; median age 38 (15-79) HyperCVAD, 41 (77%) Augmented BFM, 12 (23%)

OS, EFS, and Remission Duration, CRLF2/Non-CRLF2 Ph-Like vs Others

OS:

CRLF2 vs B-other, p=.001 CRLF2 vs non-CRLF2, p=.01


EFS:

CRLF2 vs B-other, p=.001 CRLF2 vs non-CRLF2, p=.01 CRLF2 vs Ph+, p=.02

Remission Duration:

CRLF2 vs B-other, p<.001 CRLF2 vs Ph+, p=.001 Non-CRLF2 vs B-other, p=.03

Potential for Therapeutic Intervention

Roberts, K., Best Pract & Res Clin Haem 2017; 30:212-221

Does Intervention Change Outcome?

- Preclinical and isolated anecdotal reports Eg, Tanasi I, et al. *Blood* 2019; 134:1351-1355
- Numerous ongoing clinical trials
 - TKI
 - JAK inhibitor
 - Blinatumomab, etc
 - Others
- AlloSCT

Status at PM ...

- CRLF2 flow cytometry routine
- Other testing is not available outside of clinical trial
- Both PM/UHN and HSC are developing algorithms; Canada-wide initiative
- RNA-Seq possible on a research basis at PM/UHN and HSC
- No clinical intervention guidelines (ruxolitinib, dasatinib, alloSCT) formalized yet
- CRLF2+ patients are currently being referred to alloSCT in CR1
- Anecdotal use of imatinib or of ruxolitinib

Question 1: Regarding Ph+ve ALL in adults, which of the following is true?

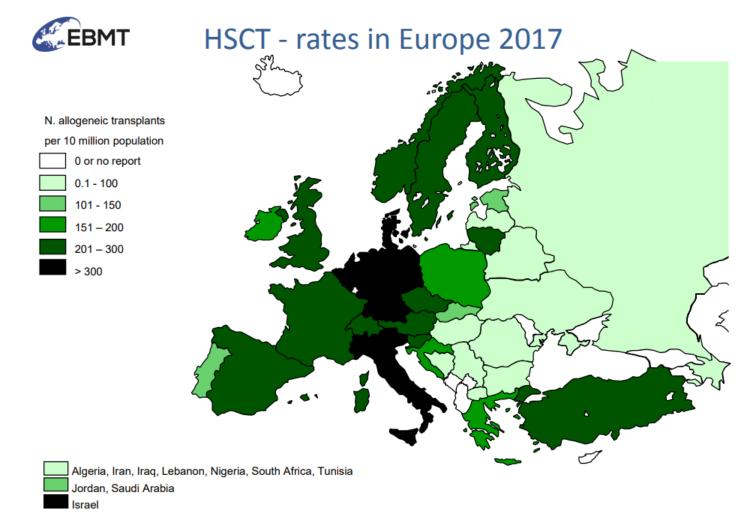
- 1. patients in CR should proceed to alloSCT, if at all possible
- 2. MRD positivity at the post induction time-point is most predictive of outcome
- 3. incidence increases with age
- 4. all TKIs are essentially equal
- 5. concurrent use of blinatumomab and a TKI is excessively toxic

Question 2: Regarding Ph-like ALL in adults, which of the following is true?

- 1. in contrast to Ph+ve ALL, the incidence of Ph-like ALL decreases with age
- 2. CRLF2+ and non-CRLF2 cases have similar presentations
- 3. CRLF2+ cases are less likely to carry JAK mutations
- 4. the OS of non-CRLF2 Ph-like cases is similar to that of Ph+ ALL
- 5. achievement of CR and post-induction MRD negativity is similar in Ph-like and Ph+ ALL

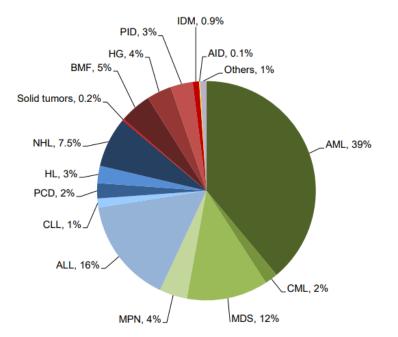
Thank You! Questions? Comments?

Panel Discussion on the Role of HSCT

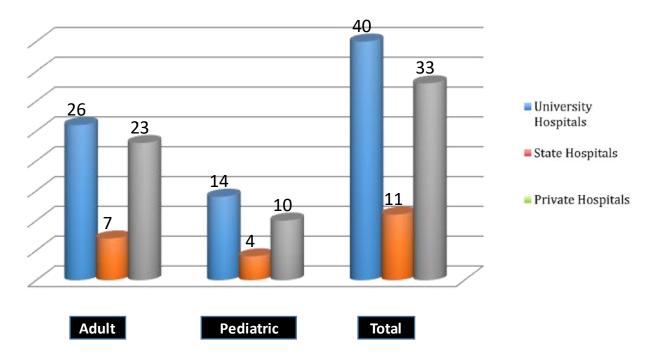


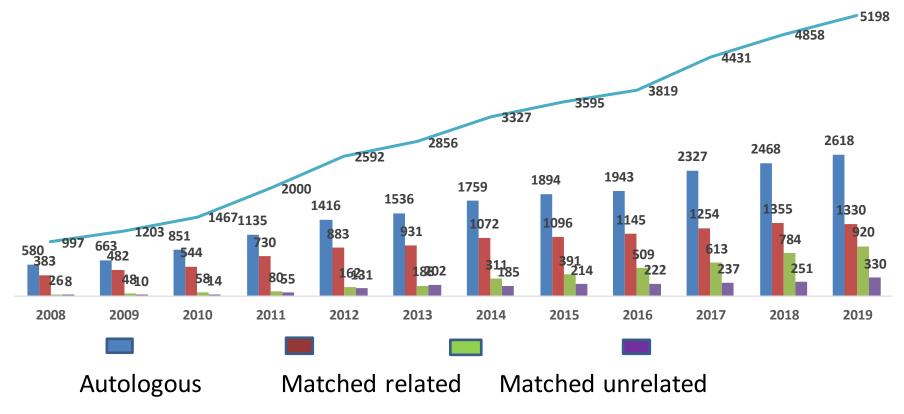
Experience of HSCT in the Region

Fatih Demirkan



EBMT Activity Survey 2017 https://www.ebmt.org/sites/default/files/2019-09/Transplant%20Activity%20Survey%202017%20Summary.pdf


EBMT 2017: alloSCT


EBMT Activity Survey 2017 https://www.ebmt.org/sites/default/files/2019-09/Transplant%20Activity%20Survey%202017%20Summary.pdf

Turkey: Distribution of transplant centers according to type of institution – 2017

Personal communication from Dr Demirkan.

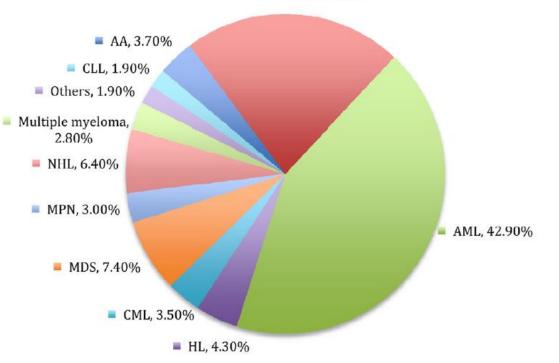
Turkey: HSCT activity compared with HLA compatibility (2008–2019)

Personal communication from Dr Demirkan.

HSCT: Matched unrelated donor (2014 vs 2019)

TURKEY 2015 alloHCT: 47% *MUD: 13.5%* Haplo: 11.8% TURKEY 2019 alloHCT: 49.6% *MUD: 35.6%* Haplo: 12.8%

Personal communication from Dr Demirkan.

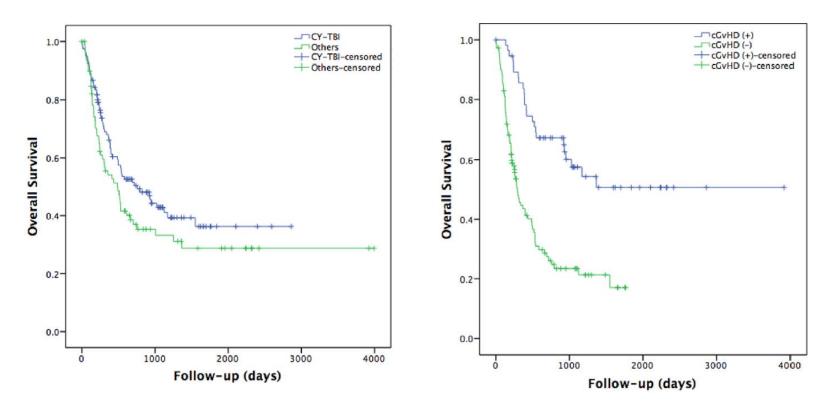

Turkish National Donor Registry (TÜRKÖK)

- Established April 2015
- DONOR POOL: 590,000
- Donor candidates between 18 and 25 years old: 25.8%
- ≻2015–2020 FEB
 - ►1850 TRANSPLANTATIONS
- 2019 YEAR– 864 TRANSPLANTATIONS

Personal communication from Dr Demirkan.

Indications for alloHSCT in Turkey

ALL, 22.20%



Retrospective analysis of adult patients with acute lymphoblastic leukemia undergoing allogeneic hematopoietic cell transplantation: A multicenter experience of daily practice

Variable	Results	Available data (n)
Gender (male/female)	122/83	205
Age (median; range)	28 (18-59)	205
Lineage (n; %)		205
B-ALL	133 (64.9%)	
T-ALL	72 (35.1%)	
Ph+ ALL (n; %)	52 (25.4%)	205
Risk group (n; %)		169
High risk	133 (78.7%)	
Standard risk	36 (21.3)	

Variable	Results	Available data (n)
Remission status before HCT		203
CR1	130 (64%)	
CR2	40 (19.7)	
Beyond CR2 and/or active disease	33 (16.3%)	
Conditioning regimen		205
Cy-TBI	124 (60.5%)	
Bu-Cy	24 (11.7%)	
Bu-Flu-ATG	26 (12.7%)	
Flu-Mel	9 (4.4%)	
Flu-TT-Mel-ATG	6 (2.9%)	
Others	16 (7.8%)	
Conditioning intensity		205
MA	154 (75.1%)	
RIC	41 (20%)	
NMA	10 (4.9%)	

CR1, TBI-based conditioning and development of cGvHD are important parameters predicting OS

Which allo donor type increased in the past 5 years in Turkey?

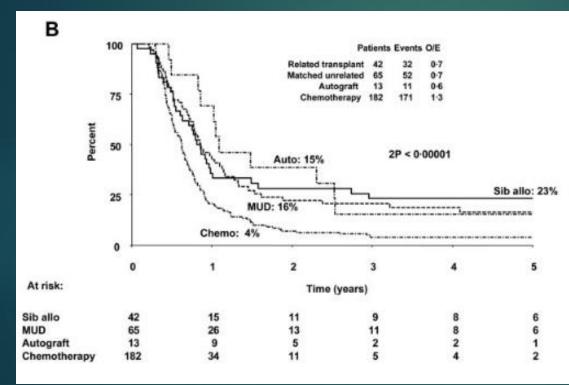
- a) Matched related
- b) Matched unrelated
- c) Haploidentical
- d) Autologous

What is the approximate percentage of ALL indication among all alloHSCTs in Turkey?

- a) 40%–50%
- b) 7%-10%
- c) 20%–25%
- d) 3%–5%

Pros and Cons of HSCT

Fatih Demirkan and Andre Schuh


Pros of HSCT

Fatih Demirkan

HSCT in relapsed ALL

MRC UKALL12/ECOG 2993 trial

Survival postrelapse stratified according to therapy given in relapse. Patients who died within 100 days of relapse and those who were transplanted in CR1 were excluded from this analysis, for better comparison of the different therapeutic modalities

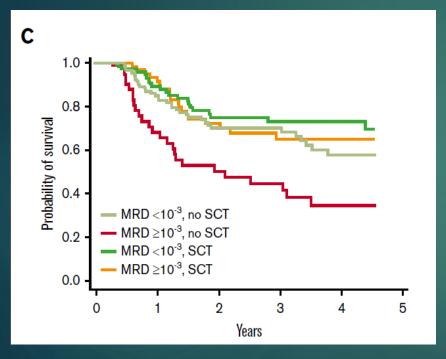
Fielding, et al. Blood. 2007;109(3):944-950.

Indications for HSCT at first CR

- Presence of the Philadelphia (Ph) chromosome
- High WBC count at the time of presentation WBC > 30 × 10⁹/L in B-ALL or WBC > 100 × 10⁹/L in T-ALL
- A slow response to induction therapy; no CR after first induction
- Adverse cytogenetics
- ▶ MRD $\ge 10^{-3}$ after induction or $\ge 10^{-4}$ after early consolidation

Giebel S, et al. Bone Marrow Transplant. 2019;54:798-809.

CR1: HSCT for whom?

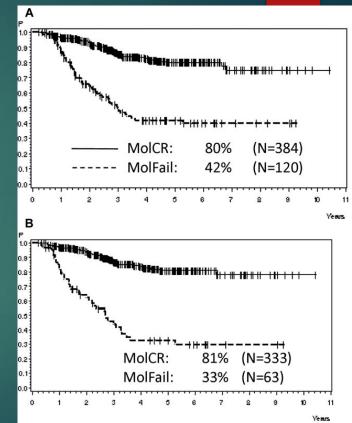

- ► For everyone
- ► For high-risk patients
- For MRD+ patients after induction therapy

MRC UKALL XII/ECOG EC2993: Ph- ALL

Group	n	OS (5), %	Relapse (5), %	NRM (2), %
High risk*	401			
Donor (+)	171	40 (P = .2)	39	39
Donor (-)	230	36	62	12
Standard risk [†]	512			
Donor (+)	218	63 (P = .02)	27	20
Donor (-)	294	51	50	7

* Age >35; WBC >30,000/mm³ (B) – 100,000/mm³ (T); time to CR >4 weeks. †In standard-risk group 60% <30 years old. Goldstone AH, et al. *Blood*. 2008;111:1827-1833.

HSCT may improve unfavorable impact of poor MRD response


GRAALL-2003 and GRAALL-2005 trials

- 522 high-risk patients, 282 (54%) received SCT after 3 or 6 blocks of consolidation on the basis of the availability of a related or unrelated donor. Two hundred seventyeight patients were studied for MRD after first induction (154 SCT and 124 non-SCT patients)
- SCT benefited patients with MRD levels ≥10⁻³ at week 6 (hazard ratio, 0.4) compared with nontransplantation patients, and SCT erased the unfavorable impact of poor MRD response in this cohort

Effect of allogeneic SCT for patients with molecular failure

GMALL06/99 and 07/03 trials

- CR was achieved in 89% of all patients
- Measurement of MRD found that 30% of the patients with cytologic CR did not achieve molecular CR
- In patients with molFail without allogeneic SCT in first CR, the median time from detection of molFail to cytologic relapse was 7.6 mo
- Probability of CCR after 5 years was significantly higher for patients with molFail and SCT in first CR than for those without SCT in first CR (66% vs 12%; P = .0001) and better survival for patients with SCT than for those without (54% vs 33%)

Probability of survival for patients in the SR and HR groups according to molecular response status in week 16, (A) overall (P = .0001) and (B) excluding SCT in first CR (P = .0001).

Gokbuget N, et al. Blood. 2012;120(10):2032-2041.

Restrictions of MRD-driven strategy in deciding HSCT

- MRD testing is not available
- If less-intensive regimens like hyperCVAD are commonly used, relevance of MRD negativity may not be strong
- The prognostic impact of MRD seems to be influenced by the disease status; best at first CR and then after first salvage treatment
- Presence of a matched sibling donor

Giebel S, et al. Bone Marrow Transplant. 2019;54:798-809; Jabbour E, et al. Cancer. 2017;123(2):294-302.

Summary

- HSCT cannot be replaced by other treatment options yet in relapsed/refractory ALL and in MRD+ high-risk patients at first CR
- No randomized trials comparing alloHSCT with consolidation chemotherapy for patients achieving MRD negativity after induction
- The use of monoclonal antibodies or bispecific antibodies for consolidation or maintenance is not definite

What is the indication for alloHSCT at first CR?

- a) High WBC count at the time of presentation
- b) A slow response to induction therapy; no CR after first induction
- c) Adverse cytogenetics
- d) High MRD after induction or after early consolidation
- e) All of the above

According to the MRC UKALL12/ECOG 2993 trial alloHSCT in relapsed setting can offer a 5-year OS of ___?

a) 70%

- b) 50%
- c) 20%
- d) 10%
- e) 4%

Cons of HSCT

Andre Schuh

Allogeneic SCT for ALL - Con

Andre Schuh Princess Margaret Cancer Centre Toronto

July 8, 2020

Question: Regarding ALL in adults, which of the following is true?

- 1. Ph+ patients in CR should proceed to alloSCT, if at all possible
- 2. MRD positivity at the post induction time-point is most predictive of outcome
- 3. improved outcomes in adults treated with pediatric or pediatric-inspired protocols may diminish the need for alloSCT
- 4. any strategy that defers up-front alloSCT requires ongoing, sensitive MRD testing

Traditional Approach to AlloSCT in ALL

- All eligible patients in CR2
- AutoSCT and alloSCT
- High-risk patients in CR1 (age, presentation WBC, time to CR, high-risk cytogenetics [Ph, 11q23 abnormalities], etc)
- Adults were generally treated with "adult" protocols, with poor outcomes compared with pediatric population

Strategies to Improve Outcomes in Adult ALL

- Adoption of pediatric or "pediatric-inspired" protocols
- TKIs in Ph+ ALL
- Trials to clarify the role of alloSCT
 - Mostly donor/no-donor
 - Multiple systematic reviews, meta-analyses, etc
- More recently
 - Molecularly defined risk
 - Identification of new high-risk ALL subtypes
 - Role of MRD

Numerous Trials (mostly donor/no-donor)

- Most predate the use of pediatric protocols in adults
- Many predate the use of MRD
- Varying definitions of "high-risk"; inclusion/exclusion of Ph+
- Variable effects; sometimes confusing or contradictory results and conclusions, eg, alloSCT improves OS only in standard-risk patients, or only in high-risk patients
- Most have found an alloSCT effect primarily in high-risk patients, and this is a common recommendation . . .
- But see the MRC UKALL XII/ECOG E2993 study (Goldstone, AH et al. *Blood* 2008;111:1827-1833)

Multiple Systematic Reviews, Meta-analyses, etc

- Most studies analyzed predate the use of pediatric protocols in adults
- Contradictory data using the same studies

For Example

Yanada N, et al. *Cancer.* 2006;106:2657-2663

- 7 studies; 1274 patients; donor/no-donor; Ph+ included
- Donor group had better OS (HR=1.29), with effect most marked in high-risk group (HR=1.42)

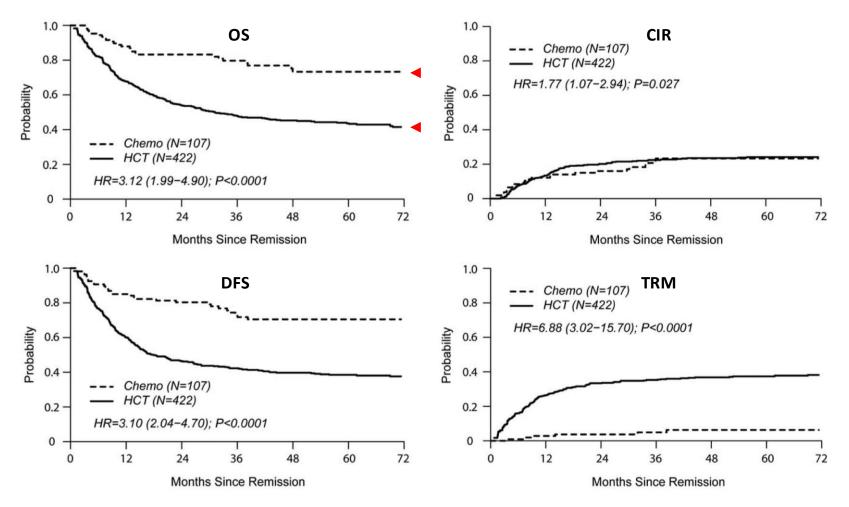
Pidala J, et al. Cochrane Database of Systematic Reviews. 2011 #11; pp 1-49

- 14 trials; 3157 patients; donor vs no-donor; Ph+ included
- Overall OS advantage in donor group (HR=0.86; p=0.01 but not OS advantage when standard-risk and high-risk groups analyzed separately
- Increased DFS and TRM, and decreased relapse, in donor group
- Conclude that alloSCT is the optimal therapy in ALL patients in remission

Gupta V, et al. Blood. 2013;121:339-350

- Individual patient data meta-analysis; 13 studies; 2962 patients; Ph+ excluded
- Survival advantage in donor group in patients age <35 (OR 0.79; p=0.0003)
- No survival in donor group in patients age ≥35 (OR 1.01; p=0.9)
- AlloSCT provides a survival advantage in younger patients of ~10% at 5 years

What If One Focuses on Adults Treated With a Pediatric-Inspired Protocol?


For example

Seftel, MD et al. *AJH* 2016;91;322-329

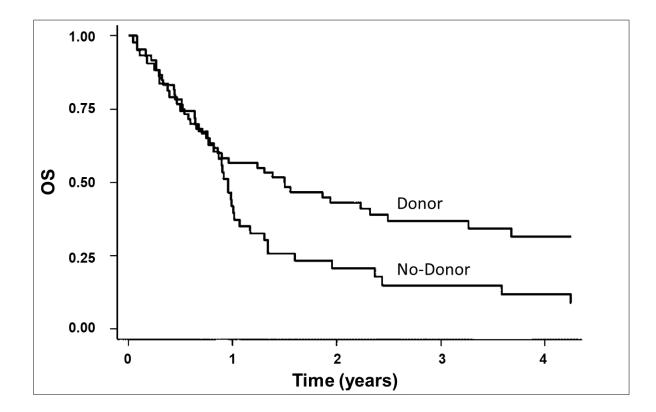
 Compared 108 concurrent Ph- ALL patients aged 18-50 in CR1 on successive Dana-Farber ALL Consortium pediatric-inspired protocols DFCI 01-0175 and DFCI 06-254, with 422 age-, disease-, and transplant variable- matched CR1 alloSCT recipients (CIBMTR)

٠	 At 4 years of follow-up 		alloSCT	Chemo	P value
		Relapse	24%	23%	0.97
		TRM	37%	6%	<0.0001
		DFS	40%	71%	<0.0001
		OS	45%	73%	<0.0001

 In multivariable analysis, only alloSCT was predictive of shorter OS (HR 3.12; P <.0001)

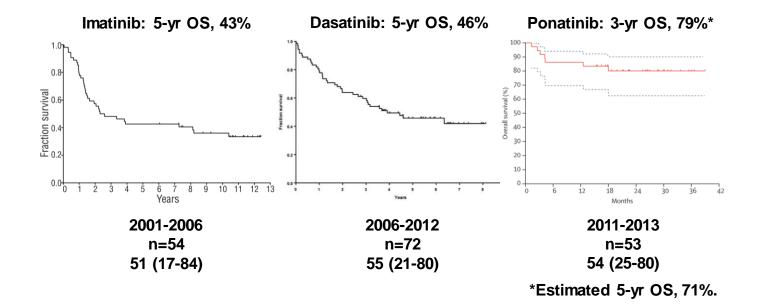
Seftel, MD et al. AJH 2016; 91; 322-329

What If One Focuses on MRD?

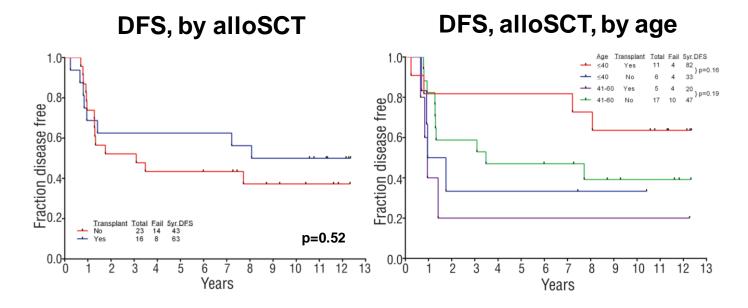

- Not measured in the majority of older studies
- Numerous studies indicate a worse RFS/OS in MRD+ patients
- Numerous studies and guidelines suggest alloSCT if still MRD+ by 12-16 weeks
- Post-alloSCT outcomes are inferior in patients MRD+ pretransplant
- OS is improved in MRD+ patients undergoing alloSCT (relative to no alloSCT)
- MRD status in CR may trump pretreatment risk-stratification
- It is not known whether pretransplant interventions to reduce/eliminate MRD improve OS post-alloSCT

see . . .

Bassan R, et al. *Blood Cancer J* 2014:4:e225 Gökbuget N, et al. *Hematology* 2019;24:337-348 Bassan R, et al. *Haematologica* 2109;104:2028-2039

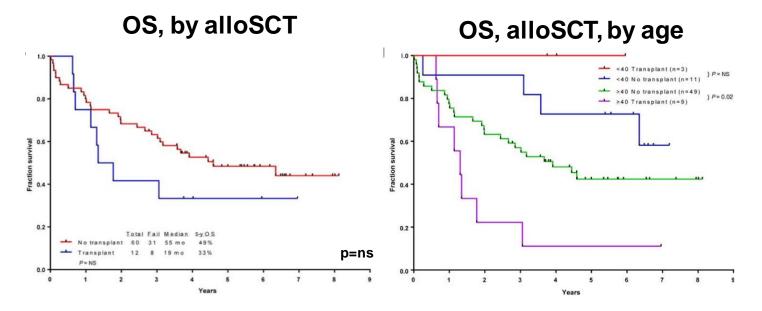

What About Ph+ ALL?

Role of alloSCT, Ph+ ALL, Pre-TKI

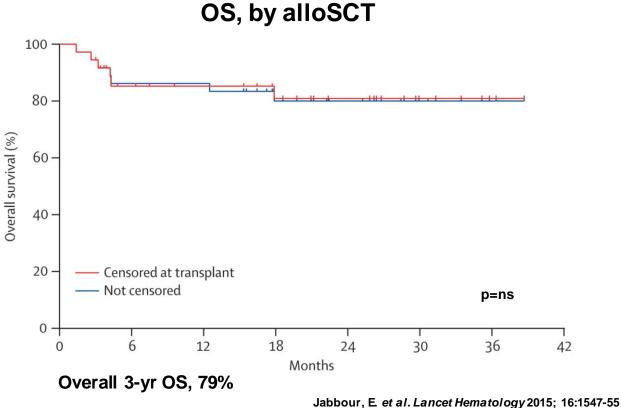

Dombret, H. et al., Blood 2002; 100: 2357-2366

OS, HyperCVAD + Imatinib, Dasatinib, or Ponatinib

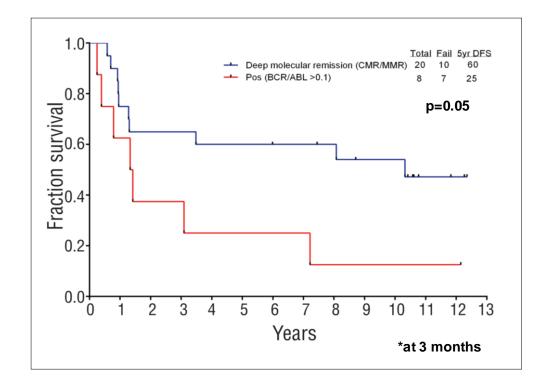
Daver, N. *et al. Haemato*logica 2015; 100:653-61 Ravandi, F. *et al. Cancer* 2015; 121:4158-64 Jabbour, E. *et al. Lancet Hematology* 2015; 16:1547-55 Jabbour, E. *et al. Clin Lymph Myel Leuk* 2018; 18:257-65


HyperCVAD + Imatinib +/- AlloSCT

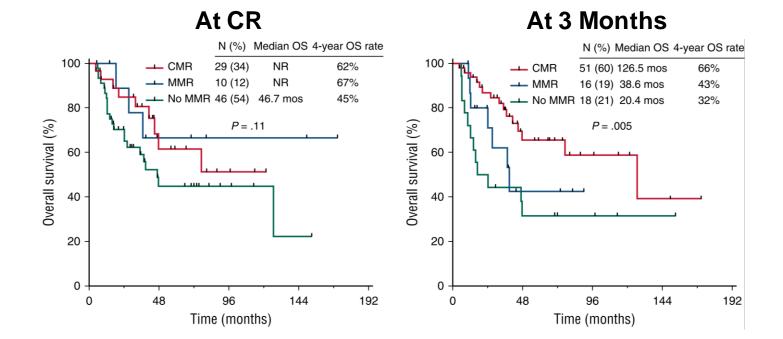
Overall 5-yr OS, 43% But, in 41-60 age group, OS better without alloSCT


Daver, N. et al. Haematologica 2015; 100:653-61

HyperCVAD + Dasatinib +/- AlloSCT


Overall 5-yr OS, 46% But, in ≥40 age group OS better without alloSCT

HyperCVAD + Ponatinib +/- AlloSCT



Jabbour, E. et al. Clin Lymph M yel Leuk 2018; 18:257-65

OS, HyperCVAD + Imatinib, by CMR/MMR*

OS, by Molecular Response, HyperCVAD + TKI

Short, N. et al. Blood 2016; 128: 504-7

OS, by Molecular Response, HyperCVAD + TKI Univariate analysis, RFS and OS

	Risk of relapse or death			Risk of death		
Characteristic	HR	95% CI	Р	HR	95% CI	Р
Age (y)	1.01	0.99-1.04	.27	1.02	0.99-1.04	.15
Log WBC	1.56	0.95-2.56	.08	1.43	0.85-2.38	.18
Platelets	1.00	1.00-1.00	.89	1.00	1.00-1.01	.75
Absolute PB blasts	1.00	1.00-1.01	.15	1.00	0.99-1.00	.68
BM blasts (%)	0.99	0.98-1.00	.18	0.99	0.97-1.00	.05
Performance status ≥2	3.22	1.31-7.90	.01	1.97	0.75-5.13	.17
CD20 expression ≥20%	1.31	0.68-2.53	.42	1.46	0.71-3.00	.30
CNS leukemia	1.96	0.81-4.70	.13	1.24	0.43-3.56	.69
p190 BCR-ABL1 transcript	1.02	0.49-2.16	.95	1.03	0.47-2.27	.95
Cytogenetics: Ph alone vs Ph ⁺ other	0.42	0.19-0.93	.03	0.46	0.20-1.06	.07
TKI: ponatinib vs dasatinib vs imatinib	0.59	0.37-0.94	.03	0.52	0.31-0.88	.02
CMR at 3 mo	0.43	0.21-0.78	.01	0.42	0.21-0.82	.01

WBC, white blood cell; PB, peripheral blood; BM, bone marrow; CNS, central nervous system.

AlloSCT in Ph+ ALL in CR1 in Post-TKI Era?

If only overall OS is considered ...

- Imatinib YES
- Dasatinib YES
- Ponatinib LIKELY NO

But when CMR/MMR and age are considered ...

- Imatinib MAYBE
- Dasatinib MAYBE
- Ponatinib LIKELY NO

But...

- Frequent follow-up for MRD required
- Availability of NGS helpful, especially if MRD+

At PM ...

Ph–

- AlloSCT for
- All in CR2
- In CR1 for 11q23, Ph-like
- Maybe for complex, hypodiploid
- MRD+ after 2nd intensification cycle (~13-14 weeks)

Ph+

- AlloSCT for all in CR2
- In CR1 for poor molecular response (>~3.5 log reduction) at ~13-14 weeks, and after tweaking TKI
- If alloSCT is deferred, regular, accurate MRD is required

Question: Regarding ALL in adults, which of the following is true?

- 1. Ph+ patients in CR should proceed to alloSCT, if at all possible
- 2. MRD positivity at the post induction time-point is most predictive of outcome
- 3. improved outcomes in adults treated with pediatric or pediatric-inspired protocols may diminish the need for alloSCT
- 4. any strategy that defers up-front alloSCT requires ongoing, sensitive MRD testing

Thank You! Questions? Comments?

Panel Discussion on the Role of HSCT: Discussion and Voting

In your practice, what is the most important factor for deciding ineligibility for HSCT?

- a) Age ≥65 years
- b) Frailty
- c) Comorbidities

Do you think that MRD can guide your decision on HSCT?

- a) Yes, as patients who achieve MRD negativity are on the way to cure and do not require HSCT
- b) No, as HSCT is the SOC today and should be part of the treatment algorithm of patients independently of MRD
- c) I do not know

What are the factors influencing the increased probability of relapse post-HSCT?

- a) Disease status
- b) Chemosensitivity at the time of transplantation
- c) Development of graft-versus-host disease
- d) All of the above
- e) None of the above

Debate on CD19-Targeted Approaches

See APTITUDE HEALTH

What is your preferred ALL treatment choice in salvage if all these therapies are available in your country?

- a) CAR T therapies
- b) Monoclonal antibodies or bispecifics

Do you think that children and young adults with active non-bulky CNS disease can safely be treated with CD19 CAR T cells?

a) Yes

- b) No
- c) I do not know

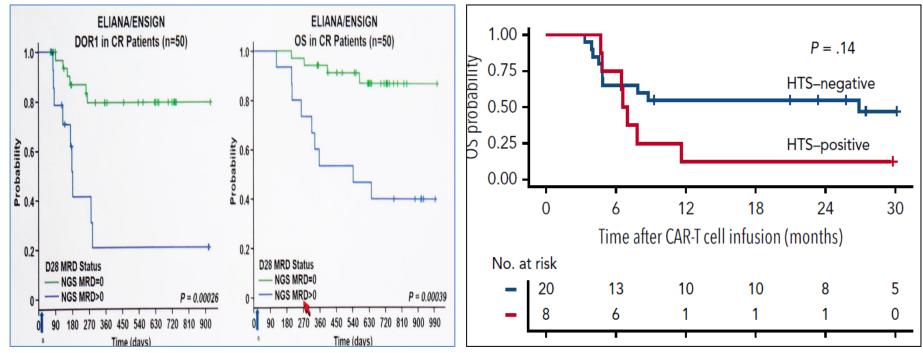
What advantages do you see in bispecific antibodies vs CAR T cells?

- a) Readily available off the shelf
- b) Dosing can be easily interrupted in case of toxicity
- c) Can be combined with chemotherapy
- d) I do not know

Debate on CD19-Targeted Approaches: CAR T

Josep-Maria Ribera

CD19 CAR T: Main results in R/R ALL

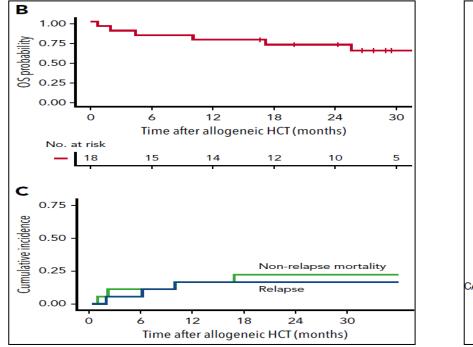

Author, reference	Institution	Costimulatory domain	Age (median, range)	Infused N	ORR %	CRS, %	Neurotoxicity, %	05
Maude et al. ¹⁵	UPenn	4-1BB	14years (5–60)	30	90%	100% (severe, 27%)	43%	78% at 6 months
Davila et al. ¹⁶	MSKCC	CD28	50 years (NA)	16	88%	severe, 44%	Gr 3/4, 25%	NA
Lee et al. ¹⁷	NCI	CD28	15years (5–27)	21	67%	76% (Gr 3/4, 29%)	29% (Gr 3/4, 5%)	52% at 12 months
Turtle et al. ¹⁸	FHCRC	4-1BB	40years (20–73)	30	93%	83%	50% (Gr 3/4, 50%)	NA
Gardner et al. ¹⁹	SCRI	4-1BB	12years (1–25)	43	93%	93% (Gr 3/4, 23%)	49% (Gr 3/4, 21%)	69.5% at 12 months
Maude et al. ²⁰	Novartis	4-1BB	11 years (3–23)	75 ¹	81%	77%	40% (Gr 3/4, 13%)	76% at 12 months
Park et al. ²¹	MSKCC	CD28	44 years (23–74)	53²	83%	85% (Gr 3/4, 26%)	48% (Gr 3/4, 42%)	median, 12.5 months

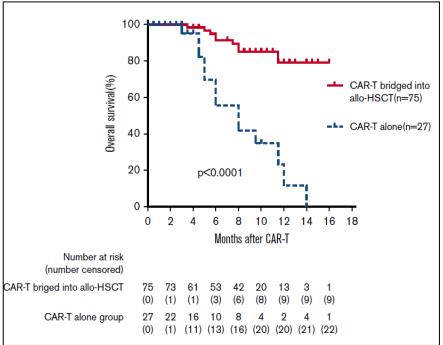
Ribera JM, et al. Ther Adv Hematol. 2020;11:1-15.

Second-generation CD19 CAR T in R/R adult ALL: Facts

- Limited experience, short-term results
- High CR rate (80%–90%), MRD– in 60%–80%
- Short duration of response (median 8–18 mo)
- Better results in patients with low tumor mass, promising in MRD+ patients
- Need for subsequent alloHSCT unclear, with good results in some series
- Early MRD assessment by high-throughput sequencing predicts outcome
- Prognostic factors in MRD–neg CR patients identified
- Major concerns: durability, CD19–neg relapses

Early clearance of the leukemic clone by HTS associated with better outcome

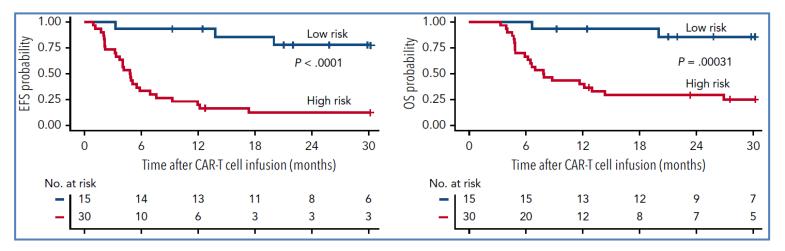

Median OS 26.9 vs 6.8 months


Pulsipher et al. ASH 2018. Abstract 1551.

Hay K, et al. Blood. 2019;133:1652-1663.

HSCT after CAR T

AlloHSCT in MRD- patients after CAR T


Hay K, et al. Blood. 2019;133(15):1652-1663.

Zhang X, et al. Blood Adv. 2020;4: 2325-2338.

D28 landmark multivariable analysis for DFS in MRD– CR patients (n = 45)*

Variable	HR (95% CI)	P value
LDH prior to lymphodepletion ⁺	1.39 (1.12–1.74)	.003
Platelets prior to lymphodepletion [‡]	0.65 (0.47–0.88)	.006
Fludarabine in lymphodepletion	0.34 (0.15–0.78)	.011

⁺Per 100 U/L increment; [‡]Per 50,000/µL increment.

Hay K, et al. Blood. 2019;133(15):1652-1663.

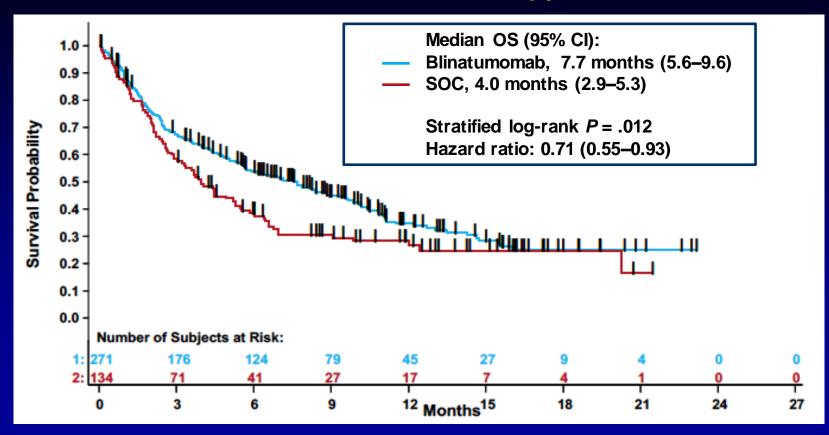
*40% of patients with MRD-CR were transplanted.

Strategies to improve outcomes after CD19 CAR T-cell therapy

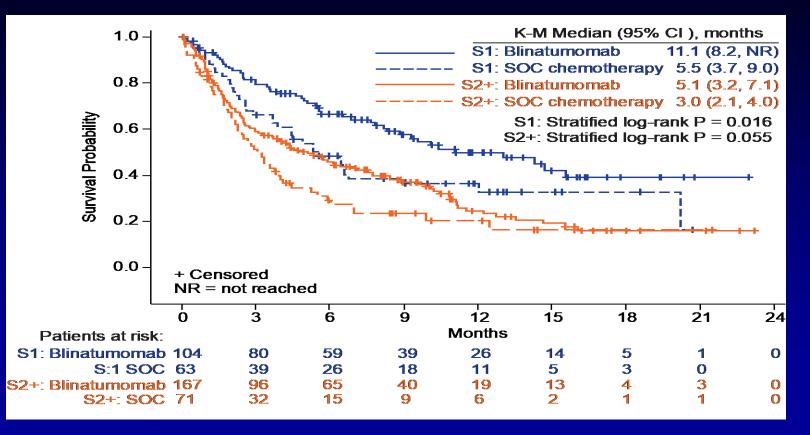
- Beyond CD19 target prevent CD19–neg relapse
 - CD22
 - CD19+CD22
 - CD19+CD20+CD22
- Improve CAR T-cell persistence
 - Fully human/humanized scFv to prevent immune rejection
 - Combination with checkpoint inhibitors (eg, tisagenlecleucel + pembro/nivolumab)
- Improve availability
 - Off-the-shelf CAR T
- Expand indications
 - CAR T (CD7, CD1a) or NK for R/R T-ALL

Debate on CD19-Targeted Approaches: Monoclonal Antibodies and Bispecifics

Elias Jabbour

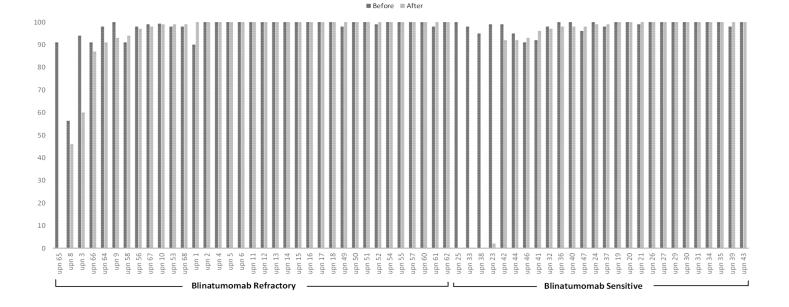


Historical Results in R-R ALL


• Poor prognosis in R-R ALL Rx with standard of care (SOC) chemotherapy

Rate (95% CI)	No Prior Salvage (S1)	1 Prior Salvage (S2)	≥2 Prior Salvages (S3)
Rate of CR, %	40	21	11
Median OS, months	5.8	3.4	2.9

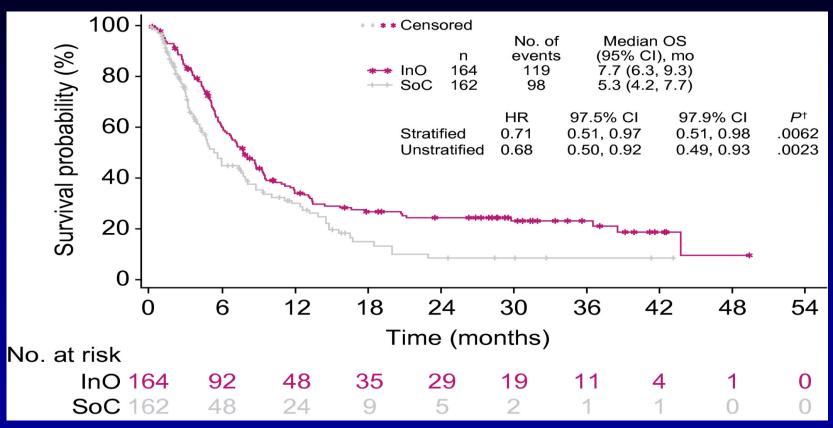
Blinatumomab vs Chemotherapy in R/R ALL



Phase III TOWER Study: Survival by Salvage

Dombret. Leuk Lymphoma. April 2019.

CD19 (%) Expression Before and After Blinatumomab Therapy



61 patients evaluated for immunophenotype; 56 (92%) had CD19+ disease

- 5 (8%) had ALL recurrence with CD19– disease
- 2 patients progressed with lower CD19+ disease

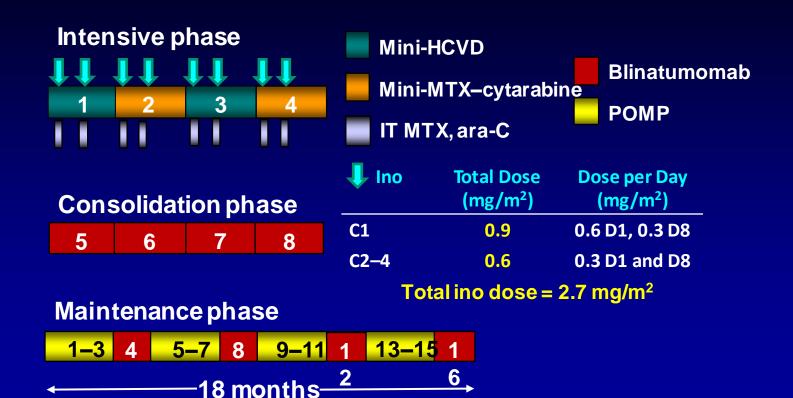
Jabbour. Am J Hematol. 2018;376:836-847.

OS After Censoring

Kantarjian H, et al. Cancer. 2019;125(14):2474-2487.

AlloSCT Post-inotuzumab in R/R ALL

- 236 pts Rx with inotuzumab; 103 (43%) alloSCT
- Ino as S1 in 62%; prior SCT 15%
- Median OS post-SCT 9.2 mo; 2-yr OS 46%
- 73 pts had alloSCT in CR post-Ino: 2-yr OS 51%
- VOD 19/101 = 20%
- Lower risk of mortality post-HSCT associated with MRD negativity and no prior HSCT

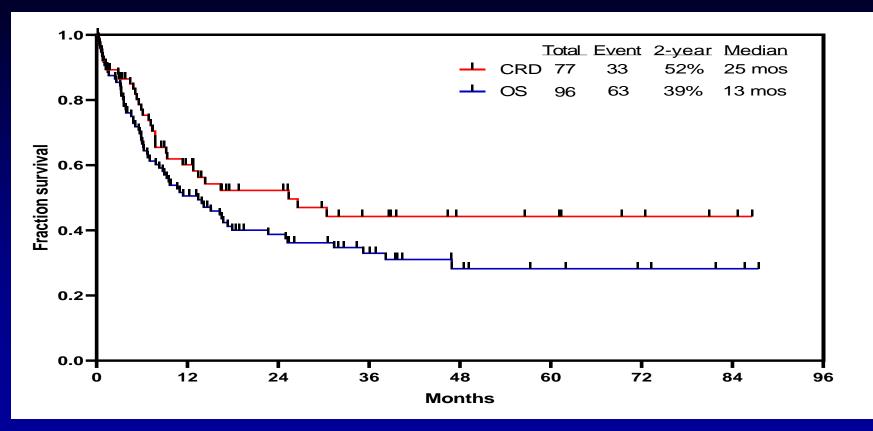

Phase II Study of Inotuzumab in R-R Children-AYA ALL (COG ALL0232)

- 48 pts; median age 9 yr (1–21). S2+ 67%. Prior blina 29%; prior allo-SCT 23%; prior CAR T 23%
- Inotuzumab weekly × 3: 0.8–0.5 mg/m² D1, 0.5 mg/m² D8 and D15. Total 1.8–1.5 mg/m²/course, up to 6 courses
- CR/CRi 30/48 (62%), MRD– 19/29 (65%)
- 12-mo EFS 36%; 12-mo OS 40%
- 19 pts (39%) received allo-SCT
- 5 VOD (10.4%): all post-SCT: 5/19 (26%)

Mini-HCVD-Ino-Blina in ALL: Design

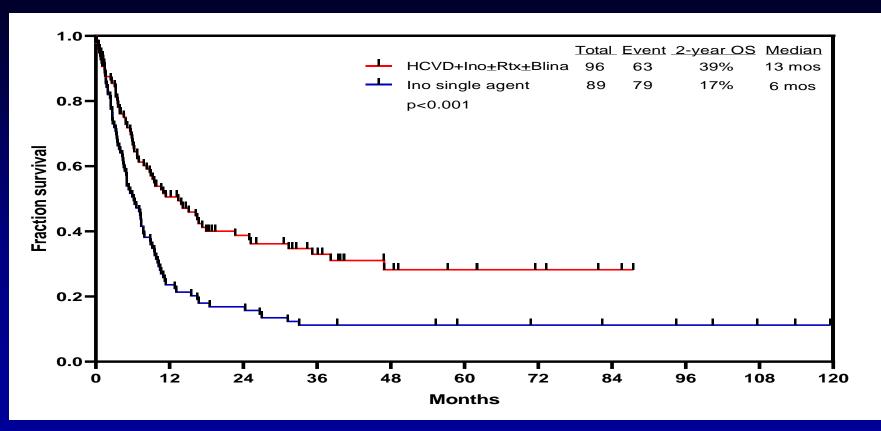
- Dose-reduced hyper-CVD for 4–8 courses
 - Cyclophosphamide (150 mg/m² \times 6) 50% dose reduction
 - Dexamethasone (20 mg) 50% dose reduction
 - No anthracycline
 - Methotrexate (250 mg/m²) 75% dose reduction
 - Cytarabine (0.5 g/m² \times 4) 83% dose reduction
- Inotuzumab on D3 (first 4 courses)
 - Modified to 0.9 mg/m² C1 (0.6 and 0.3 on D1 and 8) and 0.6 mg/m² C2-4 (0.3 and 0.3 on D1 and 8)
- Rituximab D2 and D8 (first 4 courses) for CD20+
- IT chemotherapy days 2 and 8 (first 4 courses)
- Blinatumomab 4 courses and 3 courses during maintenance
- POMP maintenance for 3 years, reduced to 1 year

Mini-HCVD + Ino ± Blinatumomab in R-R ALL: Modified Design

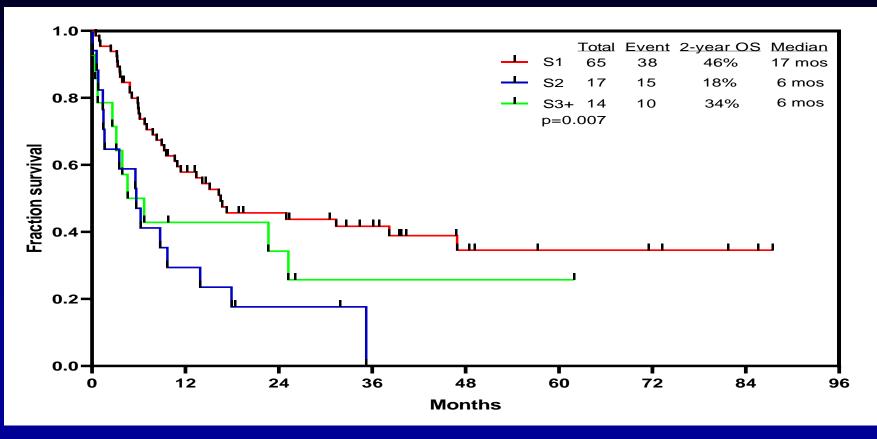


Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Sasaki K, et al. Blood. 2018;132:abstract 553.

Mini-HCVD + Ino ± Blinatumomab in R-R ALL: Response by Salvage (N = 96)


Response	Ν	Percentage
Salvage 1	58/64	91
S1, primary refractory	8	100
S1, CRD1 <12 mo	21	84
S1, CRD1 ≥12 mo	29	94
Salvage 2	11	61
Salvage ≥3	8	57
Overall	77	80
MRD-	62/75	83
Salvage 1	50/56	89
Salvage ≥2	12/19	63
Early death	7	7

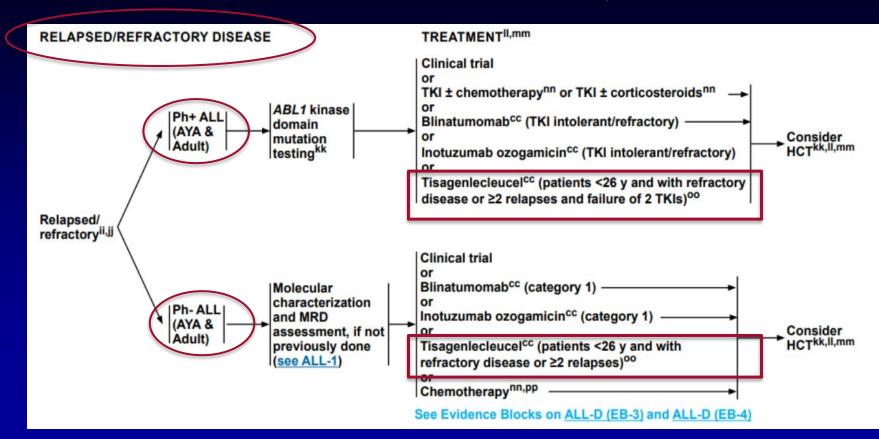
Mini-HCVD + Ino ± Blinatumomab in R/R ALL: CR Duration and OS (median F/U 48 months)


Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Sasaki K, et al. Blood. 2018;132(suppl):553.

Mini-HCVD + Ino ± Blinatumomab in R/R ALL: Historical Comparison

Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Sasaki K, et al. Blood. 2018;132(suppl):553.

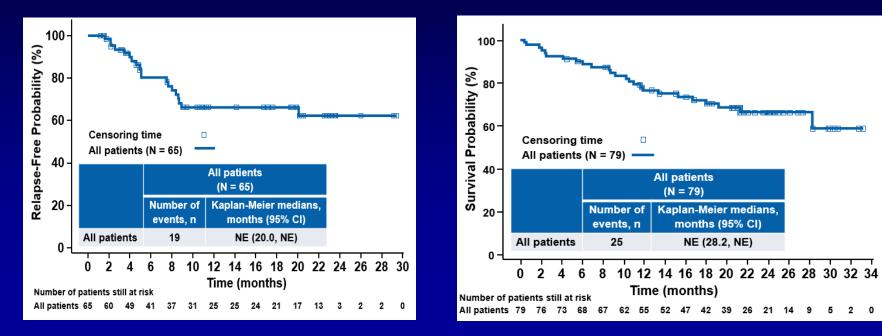
Mini-HCVD + Ino ± Blinatumomab in R/R ALL: OS by Salvage Status



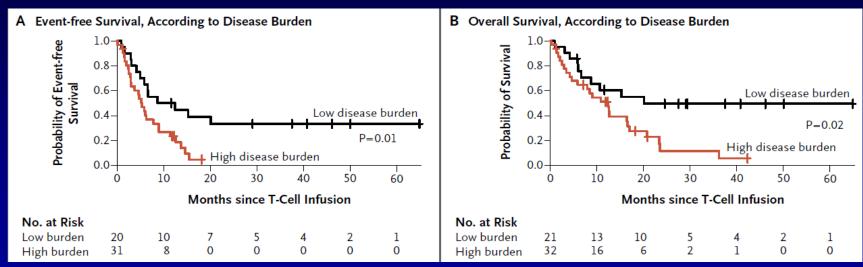
Sasaki. Blood. 2018;132:abstract 553; Jabbour E. JAMA Oncol. 2018;4:230.

Mini-HCVD + Ino ± Blina in ALL: VOD

- N = 96 pts
 - 67 pts Rx monthly InO; of them, 22 (33%) received subsequent alloSCT
 - 29 pts Rx weekly low-dose InO followed by Blina; of them, 15 (52%) received subsequent alloSCT
- VOD = 9 (9%); all had at least 1 alloSCT, 3 had 2 alloSCT
 - 9/67 (single; 13%) vs 0/29 (weekly LD; 0%)


Where Does CAR T-Cell Therapy Stand?

NCCN Guidelines ALL version 1.2020: https://www.nccn.org/professionals/physician_gls/pdf/all.pdf


ELIANA Trial Update

- 113 screened, 97 enrolled, 79 infused
- 3-mo CR 65/79 = 82%, or 65/97 = 67%
- 24-mo OS 66%; RFS 62%. G 3-4 CRS 49%. ICU 48%

CD19-CD28z CAR (MSKCC): Outcome by Tumor Burden

- High tumor burden
 - Bone marrow blasts ≥5% (n = 27)
 - Bone marrow blasts <5% + extramedullary disease (n = 5)</p>
- Low tumor burden (MRD+ disease; n = 21)

Median EFS Low tumor burden (MRD+): 10.6 mo High tumor burden: 5.3 mo Median OS Low tumor burden (MRD+): 20.1 mo High tumor burden: 12.4 mo

Park. NEngl J Med. 2018;378:449-459.

Adult R-R ALL: CAR T vs MoAb

Parameter	HCVD-Ino- Blina	MSKCC (R-R)	MSKCC (MRD)	Blina (MRD)
Ν	ITT	Evalu	lable	ITT
ORR, %	78	75	95	NA
MRD–, %	83	67		78
Median OS, mo	14	12.4	20.1	36
Salvage 1, mo	25	Not reported	Not reported	40
Toxicities	VOD (10%)	G3–4 CRS (26%); NE (42%)		G3–4 CRS (2%); NE (13%)

Venetoclax + Navitoclax in R/R ALL

- Navitoclax inhibits BCL2, BCL-XL, and BCL-W
- Venetoclax-navitoclax synergistic antitumor activity
- Rx with Ven/Nav + chemoRx (PEG-ASP, VCR, Dex)
- 47 pts (25 B-ALL + 19 T-ALL + 3 LL), median age 29
- Median 4 prior therapies; 28% post-ASCT, 13% post-CAR T
- ORR 28/47 (60%); MRD negativity 15/26 (58%)
- 4/32 (13%) CR/CRi/CRp at D8 after Ven/Nav
- Median OS 7.8 mo; 9.7 mo (B-ALL) and 6.6 mo (T-ALL)
- Preliminary BH3 profiling analysis revealed a trend in BCL2 dependence at baseline in T-ALL cells vs both BCL2 and BCL-XL dependence in B-ALL cells

Jabbour E, et al. EHA 2020. Abstract 144.

Salvage Therapies in ALL: Conclusions

- Very effective salvage therapy in R/R ALL
 - High MRD negativity rate
 - Best outcome in salvage 1
- Combination with low-dose chemotherapy
 - Safe and effective
 - Median survival 14 months
 - Salvage 1: 24 months (2-year OS rate >50%)
- AEs better controlled
 - CRS: debulk with sequential chemotherapy
 - VOD lower doses explored
- CAR T-cell Rx offered post-blinatumomab and -inotuzumab failure
 - Salvage 2 and high-risk salvage 1 (eg, MLL)
 - Consolidation in high-risk patients (replacing alloSCT)
- Better "blinatumomab" and "inotuzumab" needed
 - Better "Blina": long half-life; SQ; no neurotoxicities
 - Better "InO": no VOD

Debate on CD19-Targeted Approaches: Discussion and Voting

What is your preferred ALL treatment choice in salvage, after the debate?

- a) CAR T therapies
- b) Monoclonal antibodies or bispecifics

Do you think that children and young adults with active non-bulky CNS disease can safely be treated with CD19 CAR T cells?

a) Yes

- b) No
- c) I do not know

What advantages do you see in bispecific antibodies vs CAR T cells?

- a) Readily available off the shelf
- b) Dosing can be easily interrupted in case of toxicity
- c) Can be combined with chemotherapy
- d) I do not know

Emerging Data and the Management of ALL Patients During COVID-19

Elias Jabbour

Has the COVID-19 pandemic impacted the number of new cancer patients you are seeing in your clinic?

- No, I am seeing about the same number of new cancer patients per month
- Yes, I am seeing fewer new cancer patients per month
- Yes, I am seeing more new cancer patients per month

Do you feel that associations like NCCN, ASCO, or ASH have provided sufficient guidance on caring for cancer patients during the COVID-19 pandemic?

- Yes
- No

- Clinical infection <1%-2% worldwide</p>
 - Mortality rate of 1%–5% in COVID-infected patients in the general population
 - Potentially ≥30% in patients with cancer
- Careful consideration to the risk of COVID-19 in leukemia vs
 Reducing access of patients to specialized cancer centers
 Modifying therapies to those with unproven curative benefit

- Patients with leukemia have uniquely higher risk of COVID-19 infection for multiple reasons associated with
 Underlying disease
 Treatment
 - Patient-specific factors

		Cause		
Risk Factors	Leukemia Diagnosis	Treatment	Patient Specific	
Neutropenia	Х	Х		
Leukopenia	Х	Х		
Hypogammaglobulinemia	Х	Х		
Depressed immune function	Х	Х		
Hypercoagulable state	Х	Х		
Organ dysfunction (cardiac, renal, liver, pulmonary)	Х	Х	Х	
Comorbid conditions			Х	
Age			Х	

	Possible Risk Factors
ALL	 Myelosuppression due to underlying disease and treatment Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Prolonged steroid exposure Pulmonary and renal impairment due to methotrexate therapy Cardiac dysfunction due to anthracycline exposure Increased risk of COVID-19–associated thrombosis with asparaginase
AML	 Myelosuppression due to underlying disease and treatment Cardiac dysfunction due to anthracycline exposure Pulmonary injury due to midostaurin
CML	 Cardiac injury due to dasatinib, nilotinib, ponatinib Pulmonary injury due to dasatinib Increased risk of COVID-19–associated thrombosis with ponatinib and nilotinib
CLL	 Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Impaired innate immune response as well as B-cell and T-cell function with Bruton's tyrosine kinase (BTK) inhibitors

Paul S, el at. Acta Haematol. 2020;1-13.

- Weigh the treatment of a lethal, acute illness requiring aggressive therapy against the systemic limitations of inpatient stays, frequent clinic visits, and increasingly restricted blood product supply
- Development of several targeted therapies to treat acute leukemia may allow a reduction of dose-intensity while preserving the efficacy and the potential for cure
- Patients who are candidate for intensive Rx to be tested upfront

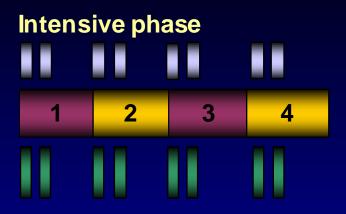
- Patients with leukemia have uniquely higher risk of COVID-19 infection for multiple reasons associated with
 Underlying disease
 Treatment
 - Patient-specific factors

		Cause		
Risk Factors	Leukemia Diagnosis	Treatment	Patient Specific	
Neutropenia	Х	Х		
Leukopenia	Х	Х		
Hypogammaglobulinemia	Х	Х		
Depressed immune function	Х	Х		
Hypercoagulable state	Х	Х		
Organ dysfunction (cardiac, renal, liver, pulmonary)	Х	Х	Х	
Comorbid conditions			Х	
Age			Х	

	Possible Risk Factors
ALL	 Myelosuppression due to underlying disease and treatment Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Prolonged steroid exposure Pulmonary and renal impairment due to methotrexate therapy Cardiac dysfunction due to anthracycline exposure Increased risk of COVID-19–associated thrombosis with asparaginase
AML	 Myelosuppression due to underlying disease and treatment Cardiac dysfunction due to anthracycline exposure Pulmonary injury due to midostaurin
CML	 Cardiac injury due to dasatinib, nilotinib, ponatinib Pulmonary injury due to dasatinib Increased risk of COVID-19–associated thrombosis with ponatinib and nilotinib
CLL	 Hypogammaglobulinemia Impaired B-cell function due to CD20-targeted monoclonal antibodies Impaired innate immune response as well as B-cell and T-cell function with Bruton's tyrosine kinase (BTK) inhibitors

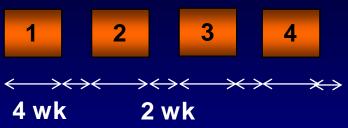
Paul S, el at. Acta Haematol. 2020;1-13.

Treating ALL in the Time of COVID-19


Туре					
		Ph negative	<60 y.o.	•	HCVAD \times 4 cycles followed by Blina \times 4 cycles
			≥60 y.o.	•	Mini-HCVD + Ino \times 4 cycles followed by Blina \times 4 cycles
			≥70 y.o.	•	Mini-HCVD + Ino \times 2 cycles followed by Blina \times 8 cycles
Induction/ Consolidation		MRD positive	•	Move to Blina early after 2 cycles of HCVAD or mini-HCVD + Ino or clinical trial for MRD positivity Allogeneic SCT can be considered if benefit outweighs risks	
	Ph positive		•	Blina + TKI or Ino + TKI Blinatumomab + ponatinib preferred	
	Maintenance			• • •	Important to still give maintenance May omit vincristine to reduce clinic visits and reduce steroids May transition to maintenance early if MRD negativity achieved and administering HCVAD or mini-HCVD is logistically difficult Incorporate Blina or low-dose Ino in late intensification

• Asparaginase possibly increases the thrombotic risk: complication of COVID-19

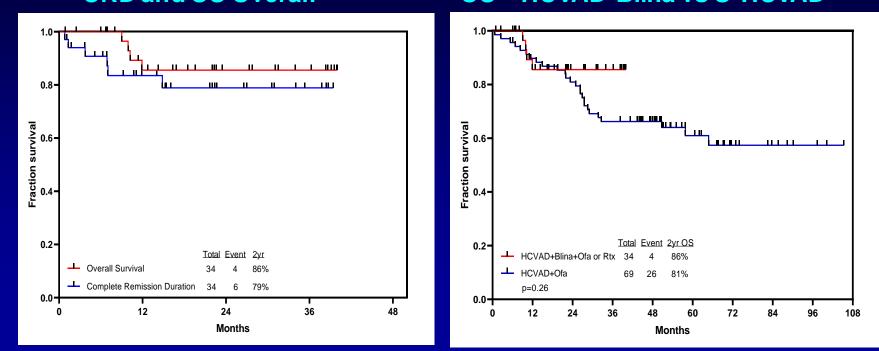
• If necessary, peg-asparaginase recommended

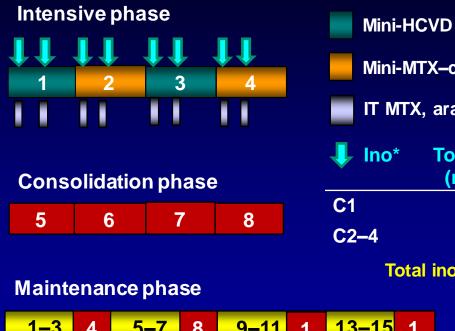

Paul S, el at. Acta Haematol. 2020;1-13.

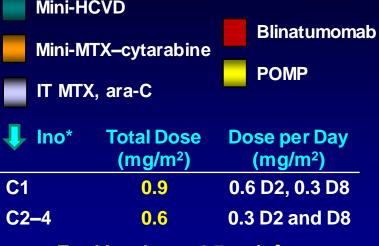
Hyper-CVAD + Blinatumomab in B-ALL (Ph– B-ALL <60 years): Treatment Schedule

Blinatumomab phase

*After 2 cycles of chemo for Ho-Tr, Ph-like, t(4;11)


Maintenance phase


Richard-Carpentier. Blood. 2019;134:abstract 3807.


Hyper-CVAD + Blinatumomab in FL B-ALL (N = 34)

CR 100%, MRD negativity 97% (at CR 87%), early death 0%
 CRD and OS Overall
 OS – HCVAD-Blina vs O-HCVAD

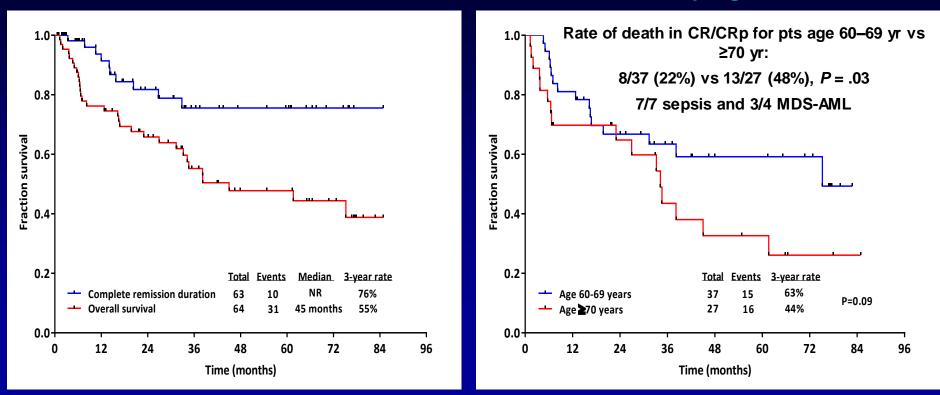
Mini-HCVD + Ino ± Blina in Older ALL: Modified Design (pts 50+)

Total ino dose = 2.7 mg/m²

*Ursodiol 300 mg tid for VOD prophylaxis.

Jabbour E, et al. Cancer. 2018;124(20):4044-4055; Kantarjian H, et al. Lancet Oncol. 2018;19:240.

Mini-HCVD + Ino ± Blina in Older ALL (N = 64)

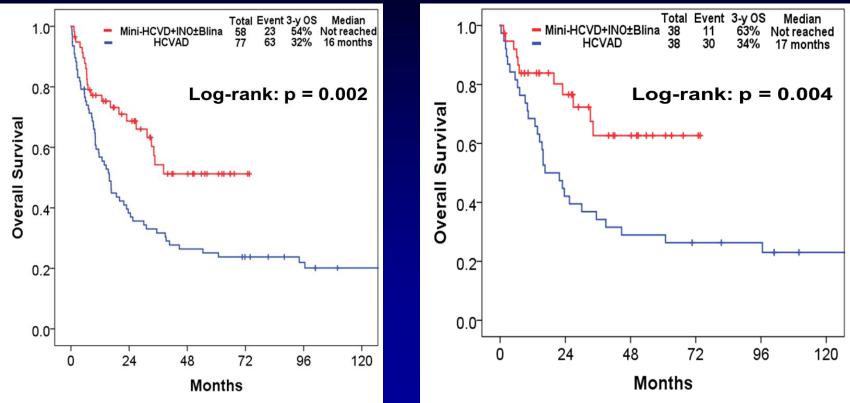

Characteristic	Category	N (%)/Median [range]		
Age (years)	≥70	68 [60-81]	Response (N = 59)	N (%)
Age (years)	270	27 (42)	ORR	58 (98)
Performance status	≥2	9 (14)	CR	51 (86)
WBC (× 10 ⁹ /L)		3.0 [0.6-111.0]	-	· · · · ·
	Diploid	21 (33)	CRp	6 (10)
	HeH Ho-Tr	5 (8) 12 (19)	CRi	1 (2)
Karyotype	Tetraploidy	3 (5)	No response	1 (2)
i tul yotype	Complex t(4;11)	1 (2) 1 (2)	Early death	0
	Misc IM/ND	9 (14) 12(19)	Flow MRD response	N (%)
CNS disease at diagnos	sis	4 (6)	D21	50/62 (81)
CD19 expression, %		99.6 [30-100]	Overall	60/63 (95)
CD22 expression, %		96.6 [27-100]	Överall	00/00 (00)
CD20 expression	≥20%	32/58 (57)		
CRLF2+ by flow		6/31 (19)		
TP53 mutation		17/45 (38)		

Short. Blood. 2019;134:abstract 823.

Mini-HCVD + Ino ± Blina in Older ALL: Outcome

CRD and OS overall

OS by age



Short. Blood. 2019;134:abstract 823.

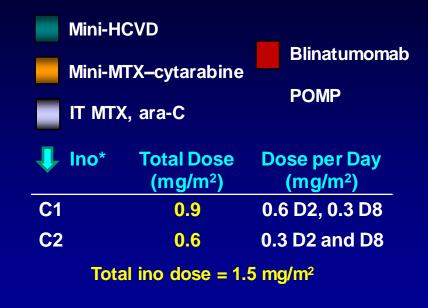
Mini-HCVD + Ino ± Blina vs HCVAD in Elderly ALL: Overall Survival

Prematched

Matched

Sasaki. Blood. 2018;132:abstract 34.

Mini-HCVD + Ino ± Blina in Older ALL: Amended Design (pts ≥70 years)

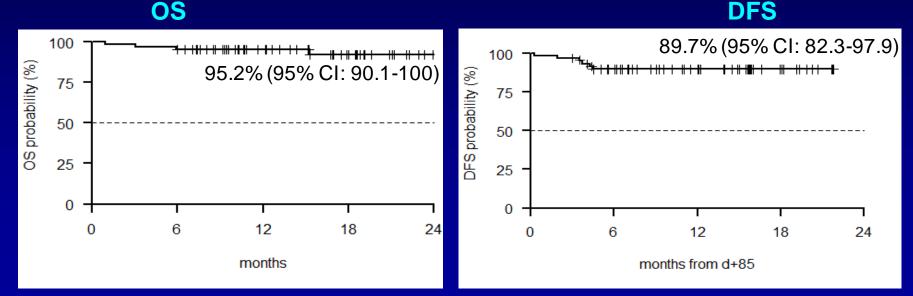


Consolidation phase

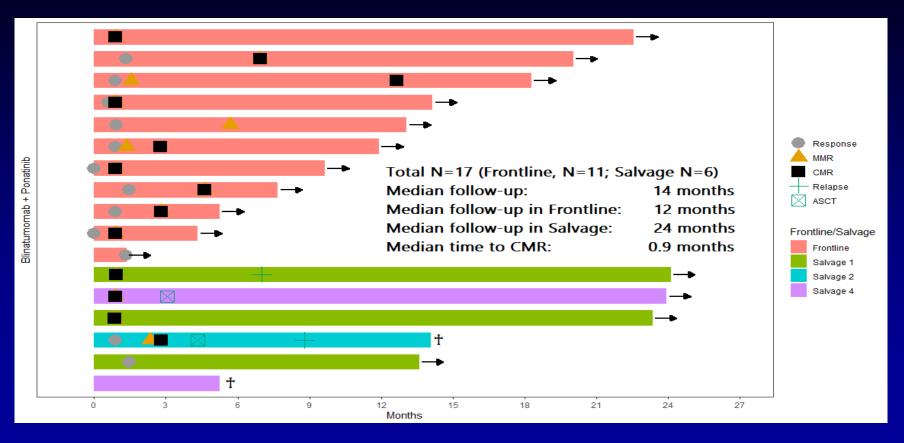
56		7	8	

Maintenance phase

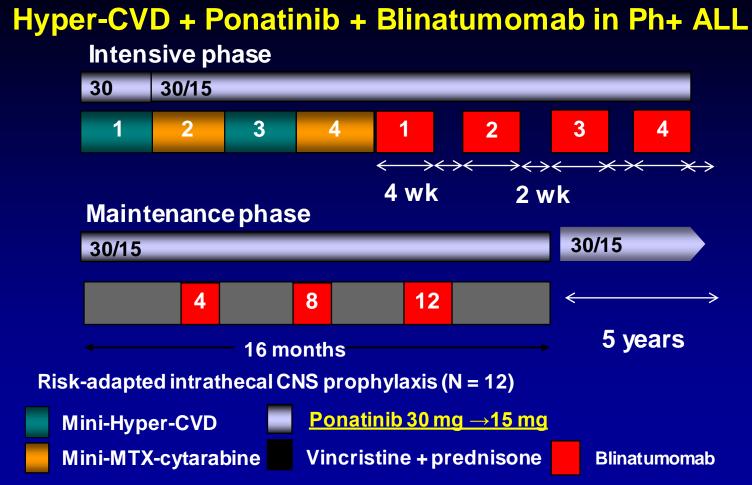
*Ursodiol 300 mg tid for VOD prophylaxis.


Jabbour E, et al. *Cancer.* 2018;124(20):4044-4055; Kantarjian H, et al. *Lancet Oncol.* 2018;19:240.

Treating ALL in the Time of COVID-19: Advantage of These Regimens


- Blina significantly less myelosuppressive. Although currently administered after 4 courses of HCVAD or mini-HCVD, pts switch to Blina earlier, after 2 courses, to avoid additional myelosuppression
- No or low tumor burden after intensive Rx, no CRS: need for hospitalization significantly reduced. Blina dose-escalation on day 5 instead of day 8
- 7-day bags: outpatient setting with reduced clinic visits
- Blina earlier deepens MRD response and safely shortens maintenance from 30 months to 18 months

Dasatinib-Blinatumomab in Ph+ ALL


- 63 pts, median age 54 yr (24–82)
- Dasatinib 140 mg/D × 3 mo; add blinatumomab × 2–5
- 53 post–dasa-blina × 2 molecular response 32/53 (60%), 22 CMR (41%); MRD ↑ in 15, 6 T315I; 12-mo OS 96%; DFS 92%

Blinatumomab + Ponatinib Swimmer Plot (N = 17)

Personal communication from Dr Jabbour.

https://clinicaltrials.gov/ct2/show/NCT03147612

- Risk of COVID-19 complications weighed very carefully vs restricting access of patients to highly specialized centers and of advocating for regimens without known equivalent curative potential
- Efforts should be prioritized to reduce patient and staff exposure while maintaining optimal care
- Utilizing less-intensive Rx, reducing patient visits, and establishing collaborative care at local centers or through telemedicine
- Rx decisions individualized on the basis of patient-related factors, risk of added toxicity, and feasibility of treatment administration
- Standard hygiene and social distancing measures to be pursued

Emerging Data and the Management of ALL Patients During COVID-19

Panel discussion

Session Close

Elias Jabbour and Fatih Demirkan

₩ APTITUDE неаltн°

Virtual Breakout: Pediatric ALL Patients (Day 2)

Chair: Rob Pieters

TITLE	SPEAKER
 Session opening Educational ARS questions for the audience 	Rob Pieters
First-line treatment of pediatric ALLPresentationQ&A	Rob Pieters
Current treatment options for relapsed ALL in children including HSCT considerations Presentation Q&A	Hale Ören
 Bispecific T-cell engagers for pediatric ALL Presentation Q&A 	Patrick Brown
 Case-based panel discussion: Management of long- and short-term toxicities Overview of long-term toxicities Patient case presentation Panelists: Rob Pieters, Hale Ören, Patrick Brown, Akif Yesilipek, Sema Anak, Bulent Antmen, Tunc Fiskin, Gulyuz Ozturk 	Rob Pieters Hale Ören Discussion
 Session close Educational ARS questions for the audience 	Rob Pieters
	 Session opening Educational ARS questions for the audience First-line treatment of pediatric ALL Presentation Q&A Current treatment options for relapsed ALL in children including HSCT considerations Presentation Q&A Bispecific T-cell engagers for pediatric ALL Presentation Q&A Case-based panel discussion: Management of long- and short-term toxicities Overview of long-term toxicities Patient case presentation Panelists: Rob Pieters, Hale Ören, Patrick Brown, Akif Yesilipek, Sema Anak, Bulent Antmen, Tunc Fiskin, Gulyuz Ozturk Session close

Virtual Breakout: Adult ALL Patients (Day 2)

Chair: Elias Jabbour

TIME UTC+3	TITLE	SPEAKER
15.00 – 15.15	 Session opening Educational ARS questions for the audience 	Elias Jabbour
15.15 – 15.35	Optimizing first-line therapy in adult and older ALL – integration of immunotherapy into frontline regimens Presentation Q&A	Elias Jabbour
15.35 – 15.55	 Current treatment options for relapsed ALL in adult and elderly patients Presentation Q&A 	Fatih Demirkan
15.55 – 16.45	Case-based panel discussion Management of long- and short-term toxicities and treatment selection in adult and elderly patients Panelists: Elias Jabbour, Fatih Demirkan, Andre Schuh, Josep-Maria Ribera	Fatih Demirkan Andre Schuh Discussion
16.45 – 17.00	Session close Educational ARS questions for the audience 	Elias Jabbour

Closing Remarks

Elias Jabbour and Fatih Demirkan

APTITUDE HEALTH

Thank You!

- >Please complete the evaluation page that will appear on your screen momentarily
- > Your notes on the slides will be emailed to you by July 17
- > The meeting recording and slides presented today will be shared on the globalleukemiaacademy.com website by July 17
- > You will also receive a certificate of attendance by email by July 17

THANK YOU!

